は しがき

増大を続ける世界人口にたいする食糧の安定的供給と環境問題のジレンマは、21世紀における人類の生存の基本に関わるもっとも重要な課題のひとつである。農業生産にとどまらず環境への悪影響を最小限に抑えるとともに、地球規模で生じつつある環境劣化のなかで効率的かつ持続的な農業生産を将来にわたって確保し、しかもさらに進んで自然環境の一部としての農業が、食糧生産以外の面から人間生活にあたる好ましい影響をこれから以上に評価してゆくことが重要であるという認識が広まっている。すなわち農業においてもいまや環境問題を離れて生産を論議できない段階に入ってきたといえよう。

これらの事情に対応するため、当研究所では設立の趣旨にもとづき、自然生態系と調和した農業の展開を目指として、農業環境の総合的管理の基礎となる技術的研究の設計を図る立場から、①農業環境資源の賦存量把握ならびにそれらの特性、機能の評価、②農業生態系構成要素の動態と相互作用の解明と制御技術の開発、③農業生態系の総合的管理技術の開発、④地球環境の変化と農業生態系の間の相互関係の評価および農業生態系管理技術の開発をおもな枠組みとして研究を推進してき

この年報では、関係方面への広報と普及を目的として、当研究所における平成6年度の研究活動及び所掌業務に関する活動実績の概要を集録し、あわせて研究のハイライトとして主要研究成果11課題を紹介している。

このほか当研究所では、研究成果の詳細に関して別途「農業環境技術研究所報告」、『農業環境技術研究所資料』、『NIAES主要成果シリーズ』、または研究トピックの紹介のためには「農環研ニュース」、『解説シリーズ』を刊行している。これらについてもご活用をお願いしたい。さらに当研究所のみならず農業環境研究関係機関の成果を広く取り扱った「農業環境研究成果情報」、『農業環境研究叢書』を随時刊行している。これら年報をはじめとする各種刊行物を通じて、当研究所の活動に関係各位に御理解いただき、今後の活動に対して御批判と御協力をいただければ幸いである。

平成7年10月

農業環境技術研究所所長

永 田 俊 徹
農業環境技術研究所年報 平成 6 年度

農業環境技術研究所年報
平成 6 年度

目 次

は し が き

I. 研究実施の概要 .. 1
 1. 企画調整部 ... 1
 2. 環境管理部 ... 2
 3. 環境資源部 ... 4
 4. 環境生物部 ... 8
 5. 資材動態部 ... 11

II. 平成 6 年度研究課題 .. 14
 1. 研究課題一覧 ... 14
 2. プロジェクト研究等分担一覧 32
 3. 農林水産業特別研究費（応用研究）補助金による研究課題一覧 35
 4. 科学技術振興調整費による重点基礎研究課題一覧 35
 5. 所内プロジェクト研究実施課題一覧 35

III. 研究成果と展望 ... 36
 1. 地理情報を利用した土壌類型別保水容量に基づく流出モデル 36
 2. 植物生体情報の多波長画像計測法 40
 3. 水稲は水田からメタンを放出するパイプである 44
 4. 三種類の天然素材からなる新規土壌処理剤の合成 52
 5. 食料の生産と水質汚濁 .. 56
 6. 中国内蒙古半乾燥地域における過放牧による砂漠化過程の特性 60
 7. 3−クロロ安息香酸分解菌プラスミドの再編成 63
 8. コナガの飛翔行動特性 .. 67
 9. 土壌殺菌剤PCNB分解微生物の分布と性質 70
 10. 高速液クロ／ICP質量分析法を用いた植物中Cd－γECペプチド複合体の状態分析 75

IV. 研究成果の発表及び広報 .. 79
 1. 機 関 誌 .. 79
 (1) 農業環境技術研究所で刊行した機関誌 79
 (2) 他機関で刊行された機関誌 81
 2. 学会（誌）発表 .. 82
 (1) 学 会 誌 .. 82
 (2) 学会発表 .. 87
 3. 公 刊 図 書 .. 95
 4. そ の 他 .. 97
 5. 広 報 ... 102
 (1) 新聞記事 .. 102
 (2) テレビ・ラジオ等 ... 102
V. 研究・技術協力

1. 会議・研究会等

2. 技術協力

(1) 受託調査

(2) 受託研究

(3) 委託研究

3. 研究・研修等

(1) 派遣

1） 流動研究員

2） 国内留学研究員

3） 国際研究集会

(2) 招へい

1） 流動研究員

2） 外国人研究員

3） 特別な研究員

(3) 研修等

1） 依頼研究員

2） 技術講習

3） 外国人研修（JICA）等

4） 職員の研修

5） 研修会への講師派遣

6） 委員会への委嘱・応嘱

4. 共同研究等

(1) 共同研究

(2) 交流共同研究

5. 昆虫の同定依頼

VI. 総務

1. 機構

2. 人事

(1) 定員

(2) 人事異動

(3) 職員名簿

(4) 受賞・表彰等

(5) 外国出張

3. 会計

(1) 予算

(2) 国有財産

(3) 機械等購入

(4) 特許等一覧表

4. 図書

5. 刑行

6. 視察者・見学者受入

7. 委員会
Ⅰ．研究実施の概要

1．企画調整部

企画調整部では、地球環境研究チームが、地球規模の環境変動と生物生産およびその環境との相
互作用に関する総合的な調査研究を実施している。

本年度は、農業生産活動が地球環境に及ぼす影
響の解明を目的に、地球環境の変化が農業生態系の
機能・動態に及ぼす影響の解明と評価および環境
変化に適応した農業生態系のための技術開発に関
して以下の研究を行った。

地球環境変化が小麦の生育に及ぼす影響を解明
し、生産力予測技術を開発するため、エコトロン
で2品種（農林61号：関東以西栽培品種：キタカ
ミコムギ：東北地方栽培品種）の栽培実験を行っ
た。その結果、乾物収量は、高温に相応しい高二
酸化炭素が伴った場合に増収が認められた。しか
し、その傾向は品種により異なり、キタカミコム
ギでは、高二酸化炭素区および高温・高酸化炭
素区の収量増加は農林61号に比べ小さかった。

地球環境変化に伴う世界の主要穀類の生産量・
生産地変動を明らかにするために、NOAA/GVI
データから推定された植生図、土壤図、気温、降
水量から北半球の主要穀類生産地分布図をGFHI
作成気候変動シナリオに基づき栽培可能地域図を
作成した。その結果、現在と二酸化炭素2倍時と
を比べると、栽培適地面積はほとんど変化である
が、北米、ロシア、中国の栽培地域の変動が予想
された。

茨城県浄瀬川流域を対象に、森林域を針葉樹
林・広葉樹林と日向・日陰域に区分し、各区分ご
とに地上部現存量のランドサットTMデータによ
る推定式を作成した。その推定式を用いて連続す
る2年の現存量の差分から森林域の地上部炭素収
支区分図を作成した。対象地域の森林全体の炭素
収支は、0.64kgCm-2yr-1であった。

酸性降下物の影響を考慮したための定常マス
バランスモデルに関して、酸性化限界に関する3
種の推定を行った。その結果、指標により
推定結果が大きく異なり、モデル式の改良ととも
に、生態系や土壌に適した指標の選定が必要であ
ることが判明した。また、土壌緩衝性として重要
な土壌鉱物の風化による塩基供給速度は定量的な
データがなく、表層質、土壌構造などのデータか
ら推定される。これを定常に明確にするため、
広島、島根両県の土壌を採取し、イオン組成と粒
径分布を測定し、表層質などとの関係を調べた。

農業生産過程における石油製品および電力の消
費に由来する二酸化炭素排出量を推定した。我が
国の石油製品、電力からの二酸化炭素排出量9.47
億tの内、農林業の排出量は、石油製品から0.21億
t、電力から0.02億tと推定される。農業トラクター
製造から0.18億t、農業生産資材生産過程から約
0.04億t排出されると推定される。温室およびハウス
では、年間7.23t/10aを排出し、農機具運転か
ら、年間10a当り、米0.07t、小麦0.03t、穂麦0.04t、
こめ0.04t、大豆0.08t、0.10t、ナタネ0.04~0.05
tが排出されると推定される。

気象衛星ひまわり受信システムを用い、気象・
気候を各種スケールから把握する目的から気候
気象の現象の連関図を作成した。気候変動の観点
から、1993年の冷
夏と1994年の干ばつに係る異常性を雲系分布や
時間・緯度断面の天候ダイヤグラムで示した。気
候変数の観点からは、統発するエルニーニョとア
ジア・オセアニアの気候との関連性を解析した。
環境モニタリングの観点から、酸性降水に関連す
る大陸起源雲系を追跡した。また、ピナトゥボ火山
大噴火が気候に与えた影響について解明した。

気象衛星ひまわりのデータを用いた簡便な日々
のメッシュ日射量推定を試みた。日本標準時9、
12、15時の可視画像を使用し、日の出・日の入りを6、12時に固定し、大気透過率を1と仮定した
簡略条件下で推定した。十勝平野と北関東の結果を基に、宇都宮の全天日照量実測値と比較すると、
相関係数は0.928、0.856（データ数：55）であった。

沖縄島北部の土地利用形態の異なる5河川流域をモデル地域として、赤土砂堆積分布の変動を解析した。
さらに、赤土砂堆積分布図と土地被覆分類図を作成し、土地利用形態と赤土砂堆積の関係を検討した。その結果、河口周辺で赤土砂堆積面積が、7年間で2倍に増加した例がみられた。

流域内の標地積面積と関連が認められた。

2、環境管理部

環境管理部は資源・生態系管理及び計測情報科の2科で構成され、物質循環及びエネルギー動態
の解明と制御技術の開発、農業生態系に関する情報の収集・解析・処理システムの開発、農業生態
系の変動予測と総合的な評価手法の開発、管理計画法と管理技術の開発、農業生産活動が地球環境
に及ぼす影響の評価と農業生態系管理技術の開発に関する調査研究を行っている。

資源・生態系管理科では、物質循環及びエネルギー動態の解明と制御技術の開発、農業生態系の総合
的管理技術の開発及び農業生産活動が地球環境に及ぼす影響の評価と農業生態系管理技術の開発に
ついて、次の研究を進めている。

物質循環とエネルギー動態の解明では、農業生態系、とくに農用林における炭素循環・収支を明らかにするため。
林床から放出される二酸化炭素量と環境要因として、各調査地の地温、土壌水分との関係を検討した。また、農村生態系における
養分循環のモデル化による新農業システムの評価に向けて、農作物の副生産、家畜畜尿の利用と処理の
実態を明らかにし、生産活動から農地還元までの有機物フローを日本の農村の平均値として作成した。

農業生態系の総合的管理技術の開発では、農業生態系の構造の把握と機能の定着的評価法の開発
のため、市町村レベルから全国レベルまでそれぞれのレベルでの環境保全機能について検討した。
中規模地域における環境保全機能の総合的評価手法の開発では、土壌浸食防止機能などについて、
地域、農家の管理による土地保全機能を考慮した類型化を行った。また、中規模耕作放棄水田における
環境保全機能の変動評価は、環境保全機能の変動評価の基礎資料として、航空写真と衛星データを用いて耕作放棄水田の拡大状況を把握し、
農村地域におけるアメニティ維持機能の心理的評価手法の開発では、みどりの構成要素を対象
として、共存構造解析手法を使ってその認知、評価および満足度の構造を明らかにした。

農林地の構成とその機能に対する評価の解析では、アンケート調査にもとづき、全国の農林地がもつ居住
快適性機能を評価した。環境保全機能からみた農村空間の地域類型化では、国庫保全機能を全国評
価し、環境保全機能の側面からみたマクロケーロルでの農村空間の地域類型化を行った。

農村コミュニティ評価法に関する研究では、アンケート調査結果から、住民の環境観や評価の将来変化を、
世代間での環境観や評価の相違もとづいて検討した。

農村空間の生態的管理のための計画法の開発のために、フクロウ等天敵による加害鳥類個体群管理技術の開発において、都市化進行地域での
フクロウ定着はスズメの増加を防ぐが、そのためには開鎖林縁部をもつ一定面積の繁殖林樹の確
保が必要であることを示した。また、農村環境の
生物保持機能に着目したビオトープ結合システムの
開発では、農村景観構成要素の望ましい配置を
検討するため、造成したミニ農村でカエル類と水
空間・土地利用との関係を明らかにした。

農業生産活動が地球環境に及ぼす影響の評価と
農業生態系管理技術の開発では、砂漠化と温室効
果ガスの動態解明に取り組んでいる。半乾燥・半
湿潤地域における砂漠化に及ぼす人間活動の影響
評価に関する研究では、中国東部を対象にランド
サットデータを用いて、砂漠化域の抽出法を開発し、
砂漠化域の特徴とその動向を明らかにした。
温室効果ガスの動態解明と制御技術の開発のため
に、農耕地から放出されるイオウ化合物、メタン、
亜酸化窒素について計測し、次のようにした。農
耕地から放出される含硫ガス・フラックスを開発
した測定方法で実測して、その種類と発生要因お
よび発生量を明らかにした。また、水田からのメ
タン発生量の解明とその生成・発生に及ぼす温度
の影響を検討した。その結果、水田メタンフラッ
クスの日変動はその生成速度だけでなく水温や気
温に影響されるプロセスが重要な制御要因になっ
ていることが明らかになった。また日本とタイの
水稲栽培期間のメタンフラックスの平均値は土壌
によって大きく異なることが明らかになった。さ
らに尿素及び総効性窒素肥料を施用した土壌から
の亜酸化窒素と一酸化窒素のフラックス測定を測
定した結果、施肥尿素量に対する土壌からのNO
-NとN₂Oの総生成量の割合は尿素区1.5％、マイ
スター区1.1％、CDU区1.0％であった。

計測情報課の研究は、農業生態系に関する各種
の情報を正確に計測する分野と、取得された情報
を効率的に処理・解析する分野に大別することが
できる。農業生態系を構成する要素は膨大で、そ
の機能は複雑・多岐にわたる。そこで得られるデー
タは時間的・空間的広がりを持つために、反復が
取れなかったり、欠測値が多いなどという特徴を
持つ。このような情報を効率的に、リアルタイム
に把握するためには、その測定手法の高度化・普遍
化が必要である。また、取得された情報と諸要素
の関係を明らかにするためには、新しい数理・統
計的解析手法の開発が必要である。さらに、この
膨大な情報を迅速かつ効率的に処理利用するため
には、データを蓄積・伝達する機能をもった新た
なシステムの構築も必要となる。

衛星データを利用したリモートセンシング分野
では、全天候型のマイクロ波データによる解析手
法の開発を中心とした研究が進められ、作物の冷
害予測やフィリピンの環境モニタリングへの適用
が検討された。また、衛星データを用いて、北海
道根室地方における牧草地の更新年度マップを作
成し、草地管理や製牧管理への適用を試みている。

植物の非破壊センシング技術の分野では、植物
の水分ストレスを、近赤外域や中間赤外域の反射
データを用いて面的に評価する手法や、個体群の
3次元構造を詳細に表示するソフトウェアを開発
した。またフィンランドとの共同では、北極域自
然植生の分光反射特性変化を自動計測し、生育
ステージの進展をスペクトル変化で捉えることが
できた。さらに、作物生育を計測するための新し
い測器として、近距離から21の多波長分光画像情
報を取得できるイメージング・スペクトロメー
ターを試作・開発している。

原子炉利用新技術の開発と利用拡大に関する研
究の一環として、環境中トレーサー放出源のアク
チバプルトレーサ利用法について検討し、大気中
ヨウ素の土壌表面への降下量、土壌蓄積率や分布、
土壌下層からの浸出率などを定量的に計測・算出
することを可能にした。また、環境試料中の元素
を即発γ線を用いて計測する新しい手法の開発を
検討し、その測定条件などを決定することができ
た。このほか地下水に含まれるリンのモニタリン
グについては、高分解能ppbレベルのリン酸を分
析する方法を検討している。

農業生態系の構成要素の動態を数理的に解析す
る分野では、地球温暖化シナリオのもとで、複雑
な地形条件が気温分布に及ぼす影響を推測するモ
デルの開発と、パラメータの局地分布特性の評価
を行い、これを関数化した。一方、ホソヘリカメ
ムシの第1世代成虫の発生時期を予測するモデル
の精度を高めるために、調査地で観測された日最
高気温と日最低気温から日別有効積算温暖を計算
し、室内実験で得られた有効温暖-発育速度モデ
ルを用いて、本種の越冬世代成虫の産卵推移や第
1世代幼虫の孵化や成虫の羽化の時期を推定した。

農業生態系における情報の数理・統計的解析法
を開発する分野では、直線回帰について検討し、
説明変数Xに誤差を伴うモデルのもとでの校正法
を考察した。コンピュータ・シミュレーションに
より、この推定量を用いて校正を行った場合の特
性について従来法と比較した結果、新しい校正法
は未知試料の広い範囲において精度の高い計測値
を与えることが証明された。また、生物分類体系の基礎となる系統樹構築において生じる祖先的形質状態推定の問題を解決するための数学的理論とそれを実行するためのアルゴリズムを開発した。

農業環境情報の処理法や利用システムに関する研究分野では、従来、人間の勘や経験に頼っていた各種農業情報を定量的評価に置き換えるための試みがなされている。例えば、株価フリーパイ解析によるダイズF1の葉形の評価を試み、ダイアレル分析結果と比較した。また、ダイズ草姿に関する育種選抜の経験的判断を、ニューラルネットにによってモデル化し、意志決定を支援するための手法開発を進めた結果、専門家の判断と70%程度は一致させることができた。このほか農業環境技術研究所が保有している衛星画像の概観を確認できるクラスタ解析を、所内でLAMを介して利用するためのパソコンデータベース・システムを開発した。

3．環境資源部

環境資源部は気象管理科、土壤管理科及び水質管理科の3科から構成され、農業気象、農耕地土壌及び農業用水の水質について、農業環境資源としての特性、機能の維持・利用並びに資源の保全に関する調査研究を行っている。

気象管理科では、農業気象資源の評価と分布の解明、気候資源の特性解明と機能の評価、大気－植物系における物質・エネルギーの動態解明と制御技術の開発、生物の気象生態学、大気組成の変化が植物に及ぼす影響の解明と制御技術の開発などのほか、地球規模の環境変化と農業生態系の相互作用について研究を進めている。

気候資源については、植物の生長方向を樹高及び直徑に分離したモデルを開発し、平均直徑と平均樹高の関係が広葉樹群では上に凸、針葉樹群では直線関係にあることを明らかにした。平成5年の寒害日の日別気温データをウェーブレット解析し、ウェーブレット振幅の総和が各地の作業指数と高い相関関係にあることを明らかにした。これは、新たな気候資源指標となる可能性を示している。また、UV-Bを連続観測し、全天日射量に対するUV-Bの比には、季節変化が認められ、観測期間中、その比が増減していることを明らかにした。

気象特性については、過剰な放牧が植生を破壊し、降雨後に土地面の反射率の低下と純放射の増大をもたらし、降雨を蒸発で失い砂漠化を助長することを明らかにした。農業用水フィルムハウス内の微気象測定から、POハウス内の湿度が低く、フィルムが密着しないことから換気率を向上させ、CO₂濃度環境を好適に保つことを明らかにした。非分散型赤外分析計を用いた群落上のメタノン測定の結果、メタン濃度は夜間に最大、日出前に最小の日変化となること、葉面が散在する草地では夜間にメタン発生が認められることを明らかにした。この結果は、自然状態での温室効果ガスの測定が十分実用的であることを示している。

気象生態については、日本稲及びインド稲の出穂反応からDVSモデルのパラメータを検討し、同一のパラメータで気象の経過から出穗予測が可能であることを明らかにした。また、水稲の生長モデルに器官施肥量のパラメータを組み込み検討した結果、気波の実測値と一致すること、海外へ適用する場合は、葉面積拡大過程に品種パラメータの導入が必要なことを明らかにした。これらの知見に基づく水稲の生長収量予測モデルを開発し、平成5年度東北地方の収量を計算したところ、推定された収量は作柄表示地帯別平均収量と高い相関のあることを明らかにした。このモデルについては、さらに精度向上に取り組む。

大気保全については、現在の2倍のUV-B強度を水稲2品種に照射し、水稲の生長と収量に変化のないことを明らかにした。また、酸性雨中に存在し葉内で強い毒性を発揮する過酸化水素が植物体表面に付着した場合、過酸化水素は毒性を発揮せず、植物体内に浸透しないことを確認した。さらに、水田から発生するイオウを含むガスのうち,
I. 研究実施の概要

シメチルサルファイドの発生は、水稲自生が体内で合成し、放出していることを明らかにした。単位面積当たりの水稲の畑面とメタン放出量の関係を調べた結果、水田から放出される畑面の総メタン量は栽培密度で変化しないことを明らかにした。

地球規模の環境変化に関する研究については、温暖化による植物生産力の季節変化への影響を評価するため、従来のモデルを改良した。新しい手法では、植物生産力の季節変化を推定できるが、現段階では、夏期の呼気量増加に伴う生産力減少が過大に評価された。また、沼生の発生条件と影響の範囲を明らかにするため、視野第1回目の年間平均面積積度を予測する手法を開発した。通常の細菌培養している小麦をCO₂供給装置で閉じ、CO₂濃度のみを550ppmに上昇させた試験区において栽培した小麦は出穂が4日早く、バイオマスは50％増加し、エネルギー収支では潜熱が低下し、積熱が増大することを明らかにした。また、構築した2次元NEO-Spamモデルを用いてCO₂ガス交換過程を計算した結果、栄養生長期後期における植生上部に多発する日焼遮断、及び群落内部の乱流拡散の停滞が植生の光合成速度に及ぼす影響を、定量的に評価することができ、本モデルによる大気-農耕地間の物質交換過程の定量的な解析が可能であることを確認した。一方、水稲生産力に対する影響についての実験的研究から、高CO₂条件下で栽培された水稲は、根の占有空間が大きい場合は乾物生産が高まるが、小さい場合は650ppmまでは高まるものの、それ以上で低下することが認められた。また、気温が2℃上昇した場合の全国の水稲稲量をモデルを用いて試算した結果、中部日本では1割程度減少するが、北海道と九州では低下が小さいと予想された。

土壌管理では、土壌資源が有機物生産および環境保全機能の増進を図るため、土壌資源の賦存量・変動の把握、土壌のコロイド特性および化学的、物理的、生物化学的特性の解明と制御技術、土壌の保全・修復技術について基礎的研究を実施している。

土壌汚染分野では、全国の主要河川流域土壌の王水可溶性成分の化学組成による低地土壌区分の可能性を示した。地形逆課を持つ流域で、微地形傾斜、土壌断面調査の組み合わせにより、層状地帯までの土壌層の把握を可能にした。環境総合モニタリングのための集水域の地形土壌条件の把握のために、モデル地域の台地の土壌調査によ り、層状地下水までの土層を類似化した。また、環境負荷発生量の相違を考慮し24区分し、土地利用区分図（5千分の1）を作成した。熱帯林の耕作化に伴う土壌の劣化変動の把握のために、タイ国の森林・耕地土壌の比較を行い、耕地化による炭素量、C/N比、交換性Kの減少を明らかにした。

土壤形成過程における時間-空間の物質移動の定量的解析モデル適用のため、造成後26年が経過した圃場の標高データを算出し、現在の浸食深と比較した。中山間地水田放棄後の経年変化は乾燥して断面形態や物理性の変化が顕著で、湿潤地ではその変化は緩やかであることを明らかにした。

耕作・ポール電極配置法を用いた深層土調査手法を開発した。土壌中にアメフラの放射化分析および放射性同位体量分析法の検討を行い、対象ピークの選定が重要であることを明らかにした。

筑後川の洪水氾濫により浸水する可能性のある地域のうち、海面下昇の影響を受ける地域の面積を、土壤統計および土壌生産力可能性等級別に算出した。気候変動に伴う炭素の変動予測のため、フィーバンド泥炭土を調査し、平均泥炭生成速度は構成植物に依存する。C/N比は土壌により極端に小さいが認められ、中世温湿気候の年間炭素集積量は現在より多く、経年変化炭素も多いことを示した。

土壌汚染特性解明では、土壌への二酸化硫黄の負荷量を予測するために反応装置を試作し、土壌の二酸化硫黄の吸着・酸化量を測定し、大気濃度での土壌への硫酸イオン負荷の推算行った。

灰水低地上にフェノール酸を添加し、土壌マングンの還元浸出および重金属類の溶出移動を示した。12種類の重金属と土壌有機物との関係を調べた結果、フリオン酸、フユロ酸に多く検出し、タリウム、カドミウムは堆肥区のフロ酸への集積を認めた。各種土壌について風乾に伴う交換性マンガン
含量の増大の原因はマンガン鉱物に由来することを明らかにした。粘土、含水酸化鉄、フェノール酸を用いて土壌凝集剤を試作し、国頭マージに対す効果を認めた。

土壌物理性の解明では、土壌中の物質移動について、黒ボク下層土の陰イオン吸着は、溶液濃度が低いほど吸着による移動の遅れが大きく、一価陰イオンの吸着は溶液濃度上昇に伴う土壌の陰イオン交換容量の増加によること、移動過程では土壌の正味荷電は一定であることを明らかにした。

土壌植物系の水移動では根の吸水抵抗が支配的であること、土壌の乾燥付近蒸散が低下する要因は根の表面の水ポテンシャルであることを明らかにした。土壌構造恶化はせん断力による塑性変形が支配的であり、乾燥圧縮と類似の効果があり、圧縮による粗孔隙の消失はガス拡散の悪化も顕著なことを認めた。黒ボク土のマトリックスポテンシャル体積含水率間の吸・脱水境界曲線はvan Genuchten式に近似し、この式をPhilip相似仮説に適用し、領域分布密度関数を求め、任意のマトリックスポテンシアルにおける体積含水率をヒステリシスを考慮して計算することに成功した。

土壌浸透水のモニタリング手法開発のために、土壌試料の体積含水率および不飽和透水係数を測定し、下層土は粗大孔隙を多く含み、選択的流れの可能性を明らかにした。

土壌の生化学的特性解明では、キマメ根からの鉄型リン酸溶解有機酸の分泌成分および品種間差を検討した結果、キマメ葉中の無機リン酸濃度の低下が根分泌物の鉄型リン酸溶解能増大に影響し、品種間差は小さいことを認めた。イネ、キマメ、ラッカセイは難溶解性リン酸吸収能力が高いこと、キマメには難溶解性リン酸溶解の根分泌物を有し、マロン酸、シュウ酸、ピジン酸が関与することを明らかにした。

土壌有機物については、植物由来有機化合物の土壌生態系における構造の解明では、じゃがイモを調査し、藤乳菌病の増殖抑制拮抗物質をハブソウ植物から生理活性成分を検出した。牛ふん堆肥を土壌に施用した時の根伸張促進活性の消長を検討し、初期の活性物質は堆肥含有物であり、後期のものは有機物分解生成物であることを明らかにした。地球温暖化による地温・水分が土壌有機物分解に及ぼす影響を把握するために、各種堆肥連用黒ボク土と赤黄色土を用い、各種水分・温度条件で培養した結果、炭酸ガス発生差温度、水分量の増大で増大するが、両者の交互効果は無く、独立変数で評価されることが示された。

土壌保全では、クラスター形成時の雨水浸透過程を予測する二層型浸透モデルを開発し、クラスターの飽和・不飽和透水係数の推定を可能にした。河川水流量と水質の環境モニタリング手法開発のために、ウオーターサンプラー装置を開発・設置した。沖縄石垣島の赤黄色土バイオ膜の土壌流出の実態把握のため、傾斜圃場の細密測定及び土壌物理性を調査し、圃場内の作業道は侵食が進み、バイオ膜植生は土壌保持能力を認めた。棚田耕作放棄が傾斜地保全機能へ及ぼす影響を評価するために、法面崩壊状況、地形、放棄年数との関連を調査し、法面勾配を緩和してその傾斜部を土地利用すること、水田として残すべき傾斜角度は10-15度が指標となることを明らかにした。酸緩能能の大きな黒ボク土とマサ土に人工酸性雨を負荷させ、ブロトン取支の影響を検討し、黒ボク土の酸化は大で、マサ土は著しく少ない。アロフェン質黒ボク土では硫酸の吸着が顕著に増加することを明らかにした。気候変動による降雨特性変動と侵食特性を明確にする目的で、沖縄石垣島で降雨エネルギー観測し、粒径、降雨エネルギー、雨滴エネルギーが大きいことを明らかにした。

水質管理では、水資源の合理的な管理・利用計画に資するため、水質の変動特性とその動態解明並びに農業生態系を利用した水質浄化技術の開発研究を行うとともに、地球規模の物理循環に関わる汚染物質の動態に関する調査研究を実施している。

水質特性とその動態に関しては、農耕地のイオウの収支と地下水への到達という観点から、既往のデータの整理・見直しを行った。その結果、人間活動に由来するイオウ化合物が深層地下水を汚
染している可能性は小さいが，農耕地生態系からの溶出に及ぼす土壌や被塗管理の影響は極めて大きいことを明らかにした。また，降雨の酸性化予測に資するため，現在行っている降雨の一括採取方法と湿性降雨物専用採取法を比較し，前者は年平均水素イオン濃度が60％低く，他の成分濃度は逆に114％～150％高いことを明らかにし，その差は日降雨量5 mm以下の時に大きかった。降雨試料中の第一選移金属元素が超高感度二次変換型高分解能ICP-MSを用いて直接測定された。その結果，降雨強度と濃度間に負の相関が認められた元素（Ti，Mn，Fe，Co，Ni，Cu，Ga）と相関が認められなかった元素（Cr，Zn）に大別された。また，ハイテク関連産業で用いられている各種レアメタルによる汚染の拡散経路を明らかにするため，水・土壌界面における挙動特性を検討した。溶出係数の小さい希士類元素は土壌コロイドに吸着して溶脱を抑制することが示唆された。小流域のモニタリングに関しては，流出水中の全窒素，全リンを測定するため，採水試料の同時分解法を確立し，分析に要する時間を大幅に短縮した。また，河川の流域を任意に区分し，各区分ごとの人口，耕地面積，山林面積，施肥量，収穫量，家畜頭数，家畜排水処理形態，生活排水処理形態を入力した場合に，河川中年の平均BOD，全窒素，全リン濃度を予測する数理モデルを開発した。

水質保全に関しては，農業水系の窒素除去能を評価するため，つぼ市内の小排水路・小河川の底泥および流水の脱窒速度をアセチレン阻害法で測定した。その結果，農地及び集落排水路における底泥の脱窒速度は，0.02～0.08gN/m2/dayであり，流水中の硝酸態窒素濃度が高いほど大きかった。また，流水中の脱窒活性が数地点で認められ，最高0.04mgN/L/dayを示す地点があった。天然素材を使用した豚舎排水中の除リンおよび回収リンの有効利用を目的とし，豚舎2次処理水に対するカキ殻カルムの除リン特性を検討した。カキ殻の800℃加熱処理ではリン除去効果は高いが，カルサイト，アラゴナイトの分解温度よりも低い温度で酸化カルシウムに変化し，pHは12以上，流出水中のカルシウム濃度は40mg/Lを示すため，実用上は中和操作が必要となる。流入水中の亜酸酸イオン濃度が一定以上になると，素材を構成する亜酸カルシウムの溶解性が規制され，除リン能力が低下する。とくに日排除量が多い場合，充填素材を通過する汚水量と高圧管を流下する汚水量との比率を大きくすることが除リン特性向上のため重要とみられた。

地球規模の物質循環に関しては，食糧供給システムより生じる窒素負荷量を推定した。1992年では，その内訳は家畜畜尿：36.7万トン，肉製品製造に伴う廃棄物：5万トン，油脂，そば，醤油製造業：8.7万トン，水産加工業：12.3万トン，農耕地：33.7万トンと推定された。これらの総和は生活系より生じる負荷の約1.5倍に相当する。負荷量の1995年以降の変動について予測したが，窒素負荷は，年々増加して行くことが明らかになった。地球の温暖化に関与する亜酸化窒素の発生予測については，窒素の収支と亜酸化窒素の収支とを結合させた数理モデルのパラメータ感度解析を行い，観測される実測値をより良く説明できるモデルに改良した。これによれば，来世紀における窒素肥料使用量予測を再度吟味した新たなシナリオでは，来世紀末に対流圈中の亜酸化窒素濃度は，現在の310ppbvから約400ppbvまで上昇すると予測された。また，地球温暖化の結果予想される永久凍土の融解に伴う窒素循環の変化を検討した。カナダ調査地域の湿地3点，樹林地1点での間隙水中の溶存無機窒素は，アンモニアが僅かに検出されたが，亜酸及び亜酸化窒素ともほとんど認められなかった。メタン発生は泥炭湿地で0.1～18.9mgC/m2/dayであったが，樹林地，バルサ（不連続永久凍土帯の南緯に形成される泥炭のマウンド：表面は乾燥し，地衣・低灌木が生育）ではほとんど検出されない。一方，亜酸化窒素は泥炭湿地の一部及びバルサ上部で僅かに検出された。
4. 環境生物部

環境生物部は植生管理科、微生物管理科、昆虫管理科の3科で構成され、植生の特性及び利用、並びに微生物・線虫、昆虫・小動物の分類、特性、生態及び利用に関する調査・研究を実施している。各科における研究実施の概要は次のとおりである。

植生管理科では、農業環境を長期にわたり良好な状態に維持し、農業生産の安定向上を図るために、その環境構成要素である植生の生態的特性及び環境保全機能の解析を中心に研究を実施している。

近年バラコートに抵抗性を示す雑草の出現が報告されているが、その一つであるハルジョオンの抵抗性バイオタイプの関東以北における分布を調査した。その結果、バラコート抵抗性バイオタイプは福島県と青森県の2ヶ所で確認された。調査地域内の採取地点数の3%に抵抗性バイオタイプがみられたことから東北地方にもバラコート抵抗性ハルジョオンが分布することが明らかになった。

農耕地の雑草防除の有効な方法を検討するため、スギナの繁殖特性を明らかにするために、スギナの根茎形成物質の活性検査を検討した結果、ショ糖濃度3〜4%のwhite培地を使用することが適当であることが明らかになった。この方法によって根茎形成活性を調べたところ、スギナの根茎と茎葉の抽出物に、根茎の萌芽と伸張を抑制する効果が認められた。

生物群集レベルにおける相互作用の解明に係わる研究の一環として、ネギとニラの混植による土壌病害防止メカニズムについて検討した。その結果、ニラの根ではフサリウムのコロニー、ネギでは細菌のコロニーが形成され、本細菌はフサリウム物質を生産するPseudomonas gladioliと同定された。またネギの根から土壌pHを上昇させる物質が破壊しており、土壌の種類が異なるもpH上昇効果が認められた。西アフリカ産シンクス科植物Combretum bracteatumの乾燥葉より新たな精製法であるゲル通過法を適用して2種類の活性物質を同定した。これらの活性物質は双方とも糖由来の化合物と考えられ、低濃度でもダイコーンの根と胚軸の成長を阻害。この活性は植物由来の成長阻害物質として極めて強力であった。

イネ科植物の根から分泌される生理活性物質ムギ酸と鉄－腐植複合体との相互作用を明らかにするため、火山灰土壌、石灰質土壌及び泥炭土壌から腐植酸を抽出、精製し、これとムギ酸を反応させた。鉄－腐植酸複合体から一定のムギ酸によって溶解する鉄の量には、火山灰土壌＞石灰質土壌＞泥炭土壌の関係が認められた。しかしムギ酸の濃度を高くしても鉄の溶解量はあまり変化しないことから、あるpHにおいてムギ酸が溶解できる鉄の量は限界されているものと考えられた。

物質循環及びエネルギー動態の解明に係わる研究の一つとして、水稲を一毛作した水田において、地表面および田面水表面とそれに接する気相の間ににおけるCO₂フラックスを測定した。測定結果から栽培期及び休閑期のCO₂フラックスの季節変化を推定すると、栽培期は大気中から田面水への負のフラックスと、田面水から大気中への正のフラックスを繰り返すパターンが認められた。これに対して、休閑期は全域を通じて地表面から大気中への正のフラックスが認められた。またフィルタードの異なる土壌タイプの大麦畑において、土壤表面及び雪面からのCO₂放出速度の季節変化を測定した結果、泥炭土では春から夏にかけて土壤呼吸速度が上昇し、その後減少した。一方、砂質土と粘土質土では明瞭な季節変化は認められなかった。

オゾン量の減少に伴うUV－B領域の紫外線量の増大が憂慮されていることから、野生植物のUV－Bに対する反応を調べた。オオバコを供試した試験では、UV－B照射によってオオバコの各器官への乾物分配率は葉身で減少したが、根茎では僅かに増加する傾向がみられた。
と微地形の関係を調べた結果、放牧圧が加わるとまず起伏のある部分から稲作化することが明らかになった。

水質や水量にかかわらず異なる変化がみられるようになった農村地域の集水域の環境保全を図る一環として、茨城県八郷町の川又川支流にモデルエリアを設定し、エリア内の水系に沿って分布する植生の調査を行った。現地の植生は湿性立地に出現するミソソバが主として優占するタイプと、典型的な耕地型雑草であるメヒシバ、イヌタケ群落に大別できた。前者は水面からの高さが低く、水位変動に伴う冠水による擾乱をよく受ける立地に分布するのに対し、後者は水位変動があまり起こらない立地に分布した。

微生物管理では、真菌、細菌、ウイルス、線虫を対象に、分類・同定、特性の解明と機能の評価、制御及び利用に関する基礎的・基礎的研究を実施している。

真菌の分類・同定では、国内外の新病害の病原菌、亜熱帯地域生息菌、薬用植物常在菌、輸送・加工中の害菌を対象に合計199種同定した。細菌については、ヤーコン、ナス、ダイズ、エンドウ、マンゴー、ブドウ、キウイルーツ、グラジオラス、ラン類等から分離された病原細菌を同定した。また、同一機能の遺伝子に共通の塩基配列をプローブとして細菌を識別する新しい試みが行われた。ウイルスについては、イネ緑葉枯死ウイルスのタンパク質の検出、機能解析を検体抗体を用いて行うため、ウイルスのゲノムにコードされる未知のタンパク質のペプチドを合成した。線虫については、トゲワシセンチュウ属の7種を新種として命名・記載した。また、イシュクセンチュウ、ラセンセンチュウ、ナガハリセンチュウを同定した。それぞれに未記載種と判断されるものがあった。

特性の解明と機能の評価に関しては、以下のことが判明した。重複寄生菌Eudarluca cariciを分離し、コムギさび病の生物防除に利用可能なことを見出した。イネ褐条病細菌菌体から抽出された分子量約50Kのポリペプチドが病原性に密接に関連する物質である可能性を示した。ファセオロトキシン産生のキウイルーツ及びサルナシかいょう病菌3株とインゲン及びクズかき枯病菌2菌株の毒素耐性酵素遺伝子は5株とも完全に一致し、病原型の異なる系統にまでが特異性を有していることが明らかとなった。イネ緑葉枯死ウイルスの外被蛋白質遺伝子を導入した組換えイネについて一般圃場で新たな特性を調査した結果、環境に対する安全性が確認された。昆虫寄生性線虫のセマグラコガネ幼虫に対する殺虫力はSteinernema kushidaiが高い。土壌動物を調査した結果、土壌動物の生息個体数及びバイオマスは、牛糞施用区で最も高く、ついで化学肥料施用区、無施用区の順であった。

キウイルーツかいょう病菌の毒素耐性関連遺伝子をキウイルーツに導入・発現させる試みがなされた結果、20個体中16個体が同遺伝子の組込まれた形質転換体であることが確認された。本病抵抗性個体の作成として期待される。放線菌のキチナーゼの生産抑制は遺伝子の転写の段階でなされている。制御物質と考えられるキチナーゼ遺伝子のプロモーター断片に結合するタンパク質を精製した結果、今までに見つかったタンパク質の外、2つのタンパク質が見出された。3-クロロ安息香酸分解菌Alcaligenens eutrophus NH 9菌の塩基配列を解析した結果、2つの読み枠（ORF1、ORF2）は、それぞれchlorocatechol1、2-dioxygenase、choloromucolate cycloisomeraseをコードしていると判明した。イネ緑葉枯死ウイルスのRNA1塩基配列を決定した。本ウイルスはプロアウェイルス科のテヌイウイルス属として分類するのが適当と思われる。

微生物個体群の動態解明では、岐阜県のホウレンソウ土壌病害発病抑制型土壌と発病型土壌の細菌群の多様性を評価した。非根部における多様性は抑制型土壌で高く、根部・根面では逆の傾向を示した。白絹菌を体細胞の不完全性により個体識別し、各地域ごとの個体構成を調べた。

また、組換え微生物の動態解明と安全性評価に関しては、38℃で生育しない株をスイサイド遺伝
子としてスクリーニングし、その有効性を液体培地で検討した結果、30℃から38℃への温度シフトにより、宿主のPseudomonas putidaの生菌数が低下することが判明した。土壤におけるスサイド遺伝子の発現は殺菌土壤の37℃区で菌量や低下というかたちで認められたが、褐色火山灰土壤ではスサイド遺伝子は働きなかった。

地球環境の変化が土壤微生物に及ぼす影響では、土壤の長期間（12か月）の温度処理が土壤中の細菌相に及ぼす影響を調べた結果、真性細菌数は25℃で約1/100、35℃、40℃では1/1000に減少した。細菌の多様性は、温度上昇に伴って減少し、特に25℃から35℃の間で著しく減少した。人工性雨で処理した土壤の細菌集団の多様性は、処理直後対照区の約56%に減少したが、25℃で12か月間置留した後では、約85%まで回復した。

昆虫管理科では、昆虫の分類・同定、特性の解明、管理技術の開発を目的に研究を行っている。

分類では、未整形な分類群について分類体系の確立を計るとともに、特定害虫の天敵相および環境構成を要としての昆虫相の解明を進め、次の成果を得た。ヤガ科キヨトウ類はアワトウなどの重要害虫を多数含むが、形態的に酷似し、分類は混乱している。そこで日本および台湾地域を対象に分類学的再検討を行い、3新種を含む68種を認めた。最近大きな被害をもたらしているマメハモグリバエは施設作物での発生が多く、生物的防除法の開発が望まれている。その基礎とするため来年天敵の調査を行ない、寄生蜂22種の存在を明らかにした。また、インドネシアの造林地害虫の天敵相を調査し、寄生蜂6種を発見した。山麓農耕地（新治郡八郷町）の野生ハナバチ相の特質を明らかにするため、これを平野部農耕地（つくば市）との比較のもとに解析した。その結果、山麓地域では73種が確認され、平野部より豊かなハナバチ相を有することが明らかとなり、その一因として営農環境の安定性が考えられた。

行動制御に関しては、卵群目害虫の移動・分散の主要な要因をなす飛行行動について解析を進め、アワトウなどヤガ科3種では飛行行動をアクトグラフを用いて記録し、光周期、羽化後の日齢、交尾・産卵行動、幼虫飼育密度等との関係をもとに解析した。また、移動性昆虫と定住性昆虫の飛行行動特性の違いを明らかにするため、移動性のシロオビノメイガと定住性のハイグマラノメイガの飛翔行動特性を比較・解析し、前者は後者に較べ寿命が長く、飛翔能力と繁殖活動性が高いことを明らかにした。性フェロモンによる行動制御に関しては、チョウコショウメンハマキにおいて性フェロモン製剤に対する反応性に地域的変異が認められるので、静岡、沖縄両県の個体で性フェロモンを比較した。その結果、有効成分（Z11-TDAおよびZ9-TDA）の比率が両者間で異なることが判明した。また、トビハマキに対するZ11-TDAの効果を調べ、100ng以上の処理濃度で交尾阻害活性を示すこと、しかしその活性は微量のE11-TDAの添加により阻害されることが判明した。このことから、Z11-TDA製剤に見られる効果の安定性は製剤中に含まれるE11-TDAが原因である可能性が示された。チャバネオカメシとその寄生性天敵マルボシハナバエの化学信文を究明するため、その基礎としてマルボシハナバエの発生消長、性比、カメシに対する寄生・発育の経過等を明らかにした。

天敵については、導入天敵の作用機作解明と天敵昆虫の効率的増殖技術の開発に関する研究を進めた。まず、クリタマバチに対する導入天敵チュウゴクオナガコバチは、関東平野において既に優先種となっていることが確認された。本種と在来天敵クリマラオナガコバチを識別する酵素としてアデニ酸キナーゼ及びアスパラギン酸アミノ酸転移酵素を発見した。両天敵の交雑の有無について、各地からのサンプルをアイソサライ分析した結果、交雑の兆候は認められなかった。増殖技術発展記載では、ヤマトクサガクロウについて温度と発育、産卵量、体重等との関係が明らかにされた。コナガの幼虫寄生蜂Diadegma semiclausumでは性比を雄に偏らせる目的を追求し、この種は多細胞の性決定に加え、同胞交配により2倍体の雄が生じることを明らかにした。ナミヒメハナカ
1. 研究実施の概要

メムシではスジコノマダラメイガの卵を餌とした実験室集団飼育を設立した。マメハモグリバエ寄生蜂の増殖技術確立の基礎として、まず寄主であるマメハモグリバエの増殖法について飼育密度、餌とするイネの品種、葉齢等について検討した。また、天敵と害虫の間の捕食・被捕食の関係解析にアフターパルトレーサーとしてユーロピームの利用を検討し、この要素の構成はチャコカクモンハマキ及び他の捕食性天然マトクサカゲロウに影響を与えず、標識化が可能であることが明らかにされた。

個体群動態研究では、環境条件と昆虫個体群の動態との関連を追求し、次の成果を得た。地球の温暖化に伴う害虫発生生態の変化を、トウモロコシにおけるアワメイガを例にシミュレーションモデルにより解析し、気温の上昇よりもその変動パターンが強く影響すること、同じ変動パターンであれば気温が高いほど発生時期は早まるが、発生量は頭打ちになることが予測された。カヘアケ暖場の栽培密度がモンシロチョウ個体群の安定性に及ぼす影響を解析し、生存率が植区で高く、死亡率は密度依存的であること、その依存性が植区で高いことが示され、これによりモンシロチョウの個体群動態は植区でより不安定であることが示唆された。ニジュウヤホシシトウの害がワルナスビの生育に与える影響を解析し、食害率の増加に伴い地上部の乾物重が減少し、物質の分配是有性繁殖型より栄養繁殖型に多くなることを明らかにした。谷津田環境にみられる雑木林（コカラ主体）における地上徘徊性昆虫の群集構造を解析し、比較的高い自然度を有することを明らかにした。

5. 資材動態部

資材動態部は、農薬動態科、肥料動態科の2科から構成され、農用資材（農薬、肥料、土壌改良資材等）の特性・動態・管理、農内外廃棄物の農業への利用、並びに作用機機未解明要素の動態に関する調査研究を行っている。

農薬動態科では、農薬の特性の解明と機能の評価、農薬の生物影響、農薬の環境中での動態の解明及び動態の制御に関する研究を行っている。

殺虫剤の分解代謝特性に関しては、イネの害虫であるニカメイガを材料に有機リン酸を無毒性にするタンパク質（薬物結合タンパク質）の特性を検討し、その精製を進めた。薬物結合タンパク質はα-ナフチルアセテートを加水分解するカルボキシルエステラーゼであること、その分子量は約75,000であることを明らかにした。

化学的手法では放射性標識が難しい植物生長調節剤ジペレリン類と殺虫剤イソフェンホス及びダイアジノンの代謝物の標識化を、各種の酵素系を用いた検討した。亜鉛栄養細胞系を酵素源に各種遊離型ジペレリン類の標識化技術及び、ミクロゾーム酸化酵素系を用いたフェンシス及びダイアジノンの中間代謝物の標識化技術を確立した。

農薬の立体異性体に関しては、酸アミド系除草剤メトラクロールの4種類の立体異性体について、土壌中の消長と殺草活性を検討した。メトラクロールの土壌中の残留性はRR体が最も高く、土壌中で各異性体の立体構造変換はできないことを明らかにした。また、イネに対する殺草活性はRS、SS体で高く不斉炭素原子を有する立体構造に影響されることを明らかにした。

農薬の生物影響に関しては、カタシマトビゲラ、ユスリカ等の水生昆虫で確認された有機リン系殺虫剤抵抗性の発現機構を検討し、カタシマトビゲラの有機リン剤（MEP）抵抗性は細胞質上清に存在する薬物結合タンパク質の増大であることが、ユスリカでは標的酵素であるアセチルコリンエステラーゼの薬剤親和性の低下によることを明らかにした。

水田土壌に生息する微生物に及ぼす農薬の影響に関しては、影響評価手法の開発を目的に、モデル土壌系を用いてグルコース添加後の微生物の発熱量の変化を測定する手法を検討した。グルコースの添加量、添加位置など実験条件を検討し、抗生物質や農薬の発熱パターンに及ぼす影響を明らかにした。

薬剤抵抗性に関する課題では、野菜、果樹等の
害虫であるワタアブラムシの有機リン剤抵抗性機構について検討した。有機リン剤抵抗性系統から3種類のエステラーゼアイソザイムを分離精製し、二次元電気泳動で解析した結果、等電点5.40のアイソザイムは感受性、抵抗性の両系統で検出されたが、等電点5.83、5.57の2つのアイソザイムは抵抗性系統でのみ検出されることで、これらのアイソザイムはN末端がいずれもブロックされていることを明らかにした。

広食性の野菜・花害虫であるハスモノヨトウの薬剤抵抗性に関しては、成虫の薬剤感受性のモニタリング手法開発のため成虫と幼虫の生理生化学的特性を比較した。本年度は薬剤感受性系統を用い分解能あるアリエステラーゼの器官別の活性を調べ、成虫で器官間の違いが約7倍、幼虫で約100倍の違いがあることを明らかにした。

農薬の環境における動態の解明に関連する課題として、ジシトアミリン系除草剤トリフルラリンの土壌中における動態を異なる栽培条件下で検討した。本剤は大部分が地表面に残留し、半減期は1カ月以内であった。本剤の動態に及ぼす栽培作物の種類、有機資材の投入、薬剤投入量による影響は認められず、本剤の土壌吸着には炭素含量の他に粘土組成、農薬の水溶解度など多くの要因の関与が示唆された。

土壌殺菌剤であるPCNBの微生物による分解活性を茨城県内の圃場で調査した。PCNB分解活性は本剤の適用圃場で高く使用歴のない圃場では分解活性は認められなかった。さらに、その分解活性は継代培養により失われやすく、活性の保持にはPCNB添加が必要であることを明らかにした。

水田で使用される農薬への大気への移行及び農薬の大気中の動態を解析する手段として昨年度開発した農薬捕集装置を田面水上の異なる高さ（20cmと70cm）に設置し、単位時間当たりの農薬濃度を測定した。2高度間の農薬濃度の差が2時間の捕集で分析できること、傾度法と変相関法の応用で農薬の揮発フラックスを測定できることを確認した。

環境汚染物質の一つであるペンタクロロフェノール（PCP）を分解する細菌（Pseudomonas sp.）の利用技術の開発を目的に、本細菌のPCP分解遺伝子の解析に取り組んでいる。現在、PCP分解菌にトランスポートを導入し、PCP分解パターンが正常な菌株と異なる菌株を選抜し、その分解代謝物の同定を試みている。異常代謝系をもつ菌株で蓄積される代謝物は非常に極性が高いと推定された。

残留農薬の安全性に関して、水稲の生長段階と農薬の残留量との関係を圃場で調査した。有機リン系農薬の残留量は苗葉部で高く玄米中で低いこと、カーボメート系農薬では苗葉部で低く玄米中で高いことを明らかにした。また、NACなど一部の農薬では乳熟期ごとに散布した場合に残留量が最大となり、残留農薬の設定にはイネの生育段階を考慮する必要のあることを明らかにした。

肥料動態観では、肥料・土壌改良剤の特性解明及び機能の評価、廃棄物等の農用資材としての評価と利用技術の開発、肥料等の成分の環境中における動態及び農業生態系における物質循環の制御技術の開発に関する調査研究を行っている。

肥料の特性に関しては、リン酸資材の効果の判定として、中性子照射による直接標識化リン酸資材のトレーサー・リースとしての利用価値、並びに適用範囲について、アイソトープ交換法と対照して検討した。中性子照射が支持性に及ぼす影響については、2％クエン酸溶液やトルオーグ液に対するリン酸資材の溶解性に大きな影響を与えなかったが、リン酸をトルオーグ液に溶解した場合、アイダホ産リン酸を選択、溶解したリンは明らかに資材中の全リンに比べて比放射能が高く、生成した32Pの弱酸に対する溶解性は未放射化のリン（31P）の溶解性より高いことが確認された。
I. 研究実施の概要

れた。直接顕色法により求めた過リン酸石灰の土壌溶液における寄与率は、アイソトープ交換法で求めた値と差異はなかったが、溶解性の低いリン鉱石の場合には、直接顕色化法をそのままトレーサー・ソースとして用いることはできないことを明らかにした。

農耕地から溶存する低濃度のリン酸の計測法について検討し、マラカイトグリーン法のうちVan Veldhovenの方法を一部改良することによって10μg/Lまでの低濃度のリン酸を濃縮することなく測定できることを明らかにした。

有機質肥料の特性については、黒ボク土、灰色低地土、黄色土を用いて有機質材料の窒素無機化特性を解析した。無機化は反応モデルの数値型に最も良く適合し、温度依存性が大きいことがうかがえた。可分解性窒素に対する材料間及び土壌間差が明確に現れ、黒ボク土では有機混合で最も高く、骨粉で最も少なく、その間にナタネ柏、魚骨があった。灰色低地土では骨粉を例外とすれば材料間差は小さく、灰色低地土ではナタネ柏、魚骨、有機配合の順に多い。無機化定数は、黒ボク土や灰色低地土ではナタネ柏、黄色土では有機配合が大きかった。また、黒ボク土や灰色低地土における活性化エネルギーは、各材料間の差異が小さかったが、黄色土の活性化エネルギーは、骨粉と有機配合で高い等有機質肥料の窒素無機化特性が土壌間で異なることを明らかにした。

家畜尿中の窒素・リンの化学的・物理的取扱法について検討し、家畜尿の成分組成は蓄種や団体により差があり、一定しない。しかし窒素の主体はいずれも尿素態窒素であり、約2週間でアンモニア態窒素に変わること、このアンモニア態窒素は、TBXなどアルカリ添加した通気法により、約80%は回収可能であること等明らかにした。

緩効性肥料、ベレット化有機質肥料を用い、水稲に対する全量基肥による施用効果、施用窒素の利用率を調査し、全量基肥の効果は高、安定した生育・収穫が確保された。特に緩効性肥料やベレット化有機質肥料の窒素の利用率は高く、水系への窒素負荷を軽減することが示唆された。

微量元素に関しては重金属によりストレスを受けたコマツナ、イネ体中のカドミウムとファイトキレチ群の複合体の分子量分布をSE-HPLC/ICP-MSを用いて解析し、コマツナとイネ群複合体の構造は均一であり、構造が異なっている。また、複合体の構造は培地中のCd濃度により異なることが明らかになった。

植物体内における微量元素の分析を行う場合、B、Mn、Al、Cu、Zn、MoはICP-MSで、Mn、Al、P、Mg、Fe、K、Caの分析にはICP-AESが妥当であることを明らかにした。

土壌-植物間におけるレアメタル類の動態制御技術に関しては、土壌の形態別元素含量とダイズ葉の元素含有率が調べられている。土壌中の形態別元素含量とダイズ葉の元素含有率との関係では、Laで交換態と上下葉位、Znで吸着態・酸化物態・有機態と特に上葉との相関が高かった。またレアメタルについては汚泥等有機性廃棄物のリサイクルに伴う動態制御について研究され、発生源の異なる汚泥中の各元素の形態別割合等が明らかにされ、概してCuは有機物分解が高く、Zn、Cdは酸化物態分解の割合が低い傾向にあることが示された。

ICP-QMS/安定同位体を利用した施用ホウ素の動態では、naturalレベルでのB-SIR測定精度について検討し、測定条件を明らかにすると共に植物体中の測定でも小数点2桁までのB-SIR解析が可能であることが示された。

廃棄物等の農用資源としての利用では、醤油粕のコンポスト化について試験を行い、脱塩・適量通気によりBODが顕著に減少し、コンポスト化が可能となり、製品の栽培試験においても障害の発生がないことを明らかにした。

家畜排泄物の新たな用途として、熱エネルギー源としての利用を図るため、家畜糞の油化条件等が検討中である。
II. 平成6年度研究課題

1. 研究課題一覧

<table>
<thead>
<tr>
<th>課題番号</th>
<th>研究課題</th>
<th>予算区分</th>
<th>研究期間</th>
<th>研究分担</th>
<th>担当者</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1. モノリス土壌の国際分類対比</td>
<td>経常</td>
<td>完2〜5</td>
<td>環境資源・土壌調査研</td>
<td>三土正則（退）</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>小原洋加藤邦彦</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>土壌機能の面的評価のための土壌の地形連鎖パターンの解明と土壌調査マニュアルの作成</td>
<td>経常</td>
<td>継3〜6</td>
<td>環境資源・土壌調査研</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>小原洋加藤邦彦</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>日本の低地土壌の物質組成に基づく区分</td>
<td>経常</td>
<td>継5〜8</td>
<td>環境資源・土壌調査研</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>太田健草場敬</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>土壌生成過程における物質移動の定量化的解析法の開発</td>
<td>経常</td>
<td>新5〜7</td>
<td>環境資源・土壌生成研</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>草場敬</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>土壌要因からみた土地荒廃指標の策定</td>
<td>科・重点基礎 [土地荒廃]</td>
<td>半5</td>
<td>環境資源・土壌調査研</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>太田健谷山一郎</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>土壌・気候資源の賦存量の把握</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>深層土の生成的特性の解明と深査法の開発</td>
<td>経常</td>
<td>継4〜6</td>
<td>環境資源・土壌生成研</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>太田健谷山一郎</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>農業気候資源の評価法の開発と分布の解明</td>
<td>経常</td>
<td>延58〜5〜(10)</td>
<td>環境資源・気候資源研</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>農業生態系におけるハイテク産業関連汚染物質の動態制御技術の開発に関する研究 I 土壌−水界面での挙動とその制御</td>
<td>公害防止 [ハイテク産業]</td>
<td>継5〜9</td>
<td>環境資源・水質動態研</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>土壌中のレアメタル賦存量と土壌生成環境の関係解明</td>
<td>原子力 [農業環境原子力利用]</td>
<td>継5〜9</td>
<td>環境資源・土壌生成研</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>太田健谷山一郎</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>環境生物の分類・同定法の開発</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>�限り目の分類学的研究</td>
<td>経常</td>
<td>継62〜4</td>
<td>環境生物・昆虫分類研</td>
</tr>
<tr>
<td>課題番号</td>
<td>研究問題</td>
<td>予算区分</td>
<td>研究期間</td>
<td>研究分担</td>
<td>担当者</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>経常</td>
<td>延63～7</td>
<td>環境生物・土壌分類研究</td>
<td>小西 正彦</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>経常</td>
<td>完61～2</td>
<td>環境生物・線動物研</td>
<td>水久保 陸之</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>経常</td>
<td>完61～4</td>
<td>環境生物・線動物研</td>
<td>水久保 陸之</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>経常</td>
<td>延2～4</td>
<td>環境生物・線動物研</td>
<td>水久保 陸之</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>経常</td>
<td>延63～7</td>
<td>環境生物・土類分類研究</td>
<td>鳥山 重光</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>経常</td>
<td>延3～6</td>
<td>環境生物・特性分類研究</td>
<td>高橋 真 実</td>
</tr>
<tr>
<td>17</td>
<td>8</td>
<td>経常</td>
<td>延2～6</td>
<td>環境生物・特性分類研究</td>
<td>西山 充司</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>経常</td>
<td>延3～5</td>
<td>環境生物・線動物研</td>
<td>阪田 育生</td>
</tr>
<tr>
<td>19</td>
<td>10</td>
<td>経常</td>
<td>延4～7</td>
<td>環境生物・線動物研</td>
<td>水野 明文</td>
</tr>
<tr>
<td>20</td>
<td>11</td>
<td>経常</td>
<td>新5～7</td>
<td>環境生物・線動物研</td>
<td>佐藤 豊三</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>国農試</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>経常</td>
<td>延2～6</td>
<td>環境資源・土壌物性研</td>
<td>加藤 英孝</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>経常</td>
<td>延3～5</td>
<td>環境資源・土壌保全研</td>
<td>吉田 正則</td>
</tr>
<tr>
<td>23</td>
<td>3</td>
<td>総合開発</td>
<td>完2～5</td>
<td>環境資源・土壌物理研</td>
<td>長谷川 周一</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>経常</td>
<td>延2～6</td>
<td>環境資源・土壌物理研</td>
<td>坂西 厚二</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>経常</td>
<td>延3～7</td>
<td>環境資源・土壌物理研</td>
<td>麓 多門</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>科・総合研究</td>
<td>延元～4</td>
<td>環境資源・気象特性研</td>
<td>長谷川 周一</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>原 剛 芳 信</td>
</tr>
</tbody>
</table>

II. 平成6年度研究課題

(4) 環境生物資源の保存値の把握
(2) 土壌・水・気候資源の特性の解明と機能の評価

(1) 土壌・気候資源の物理特性の解明と機能の評価
<table>
<thead>
<tr>
<th>課題番号</th>
<th>[研究問題]</th>
<th>予算区分</th>
<th>研究期間</th>
<th>研究分担</th>
<th>担当者</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>特性の解明と機能の評価一風乾燥植生地域における微気象および植物の生理生態機能の調査測定</td>
<td>経常</td>
<td>経 5 〜 6</td>
<td>環境資源・土壌物理研</td>
<td>吉田正則</td>
</tr>
<tr>
<td></td>
<td>不整乱土壌のヒステリシスが水フラックスに及ぼす影響</td>
<td>経常</td>
<td>経 5 〜 6</td>
<td>環境資源・土壌物理研</td>
<td>長谷川周一</td>
</tr>
<tr>
<td></td>
<td>(2) 土壌・水資源の化学的特性の解明と機能の評価</td>
<td>経常</td>
<td>完元 〜 5</td>
<td>環境資源・コロイド研</td>
<td>加藤英孝</td>
</tr>
<tr>
<td>28</td>
<td>植物生態系における土壌粘土の機能の解明</td>
<td>経常</td>
<td>経 3 〜 7</td>
<td>環境資源・コロイド研</td>
<td>高橋義明</td>
</tr>
<tr>
<td></td>
<td>赤土砂の分散特性の解明及び新素材による凝集技術の開発</td>
<td>経常</td>
<td>経 3 〜 7</td>
<td>環境資源・コロイド研</td>
<td>福野知之</td>
</tr>
<tr>
<td></td>
<td>土壌のpH緩衝機能の解明</td>
<td>経常</td>
<td>経 3 〜 8</td>
<td>環境資源・土壌有機研</td>
<td>竹中久一</td>
</tr>
<tr>
<td>31</td>
<td>植物由来有機化合物の土壌生態系における機能の解明と制御</td>
<td>経常</td>
<td>完元 〜 5</td>
<td>環境資源・水質特性研</td>
<td>芝野和夫</td>
</tr>
<tr>
<td></td>
<td>農耕地排水の水質変動要因の解明</td>
<td>経常</td>
<td>継 4 〜 10</td>
<td>環境資源・土壌有機研</td>
<td>大鳴秀雄</td>
</tr>
<tr>
<td>32</td>
<td>生理活性を有する有機資材の開発</td>
<td>一般別枠 [物質循環] (経常)</td>
<td>継 5 〜 8</td>
<td>環境資源・コロイド研</td>
<td>岡本玲子</td>
</tr>
<tr>
<td>33</td>
<td>土壌への重金属の負荷容量の評価</td>
<td>経常</td>
<td>新 6 〜 8</td>
<td>環境資源・コロイド研</td>
<td>竹中久一</td>
</tr>
<tr>
<td>34</td>
<td>土壌生態系における無機活性成分の機能の解明と制御</td>
<td>経常</td>
<td>新 6 〜 10</td>
<td>環境資源・コロイド研</td>
<td>福野知之</td>
</tr>
<tr>
<td>35</td>
<td>水分環境の変化が土壌コロイドの機能に及ぼす影響の解明</td>
<td>経常</td>
<td>新 6 〜 10</td>
<td>環境資源・コロイド研</td>
<td>高橋義明</td>
</tr>
<tr>
<td>36</td>
<td>(3) 環境生物資源の特性の解明と機能の評価</td>
<td>経常</td>
<td>新 6 〜 10</td>
<td>環境資源・コロイド研</td>
<td>福野知之</td>
</tr>
<tr>
<td>37</td>
<td>昆虫寄生性線虫の分類及び生態の解明</td>
<td>経常</td>
<td>完元 〜 5</td>
<td>環境生物・細・動物研</td>
<td>吉田睦浩</td>
</tr>
<tr>
<td></td>
<td>各種農業生態系における土壌動物相の比較</td>
<td>経常</td>
<td>完元 〜 5</td>
<td>環境生物・細・動物研</td>
<td>皆川寛隆</td>
</tr>
<tr>
<td>38</td>
<td>一般別枠 [安全性向上] (経常)</td>
<td>経常</td>
<td>完元 〜 5</td>
<td>環境生物・細・動物研</td>
<td>(九州農試)</td>
</tr>
</tbody>
</table>

（九州農試）

吉田睦浩
<table>
<thead>
<tr>
<th>課題番号</th>
<th>課題</th>
<th>研究期間</th>
<th>研究分担者</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>植物寄生性細菌の生理的特性と感染・発病機構の解明</td>
<td>継58〜8</td>
<td>平田賢司、朱亜峰、鈴木文彦、松田泉、西山幸司、佐藤豊三（四国農試）、門田育生、大久保博文、鳥山重光、岡部郁子、岡部郁子</td>
</tr>
<tr>
<td>40</td>
<td>植物関連微生物の特性の解明</td>
<td>継2〜6</td>
<td>本村龍介、藤井稔、小川直人、深田敬士</td>
</tr>
<tr>
<td>41</td>
<td>土壌伝染性ウイルスの検出の手法の開発</td>
<td>完2〜5</td>
<td>鳥山重光、高橋真実、木村雄輔、島本功、野田隆之（九州農試）</td>
</tr>
<tr>
<td>42</td>
<td>土壌に生息する下等菌類の特性解明と分類</td>
<td>継4〜7</td>
<td>矢野栄二</td>
</tr>
<tr>
<td>43</td>
<td>土壌環境における有用微生物の機能発現特性の解明</td>
<td>継3〜7</td>
<td>松田泉、鈴木文彦、澤田宏之</td>
</tr>
<tr>
<td>44</td>
<td>クサカゲロウ類の特性と機能</td>
<td>継5〜8</td>
<td>瑞田・松田</td>
</tr>
<tr>
<td>45</td>
<td>イネ絨葉枯ウイルスの外被タンパク質遺伝子を導入した組換えイネの安全性評価</td>
<td>継4〜6</td>
<td>(植物工学研究所)</td>
</tr>
<tr>
<td>46</td>
<td>ネクサレセンチュウ類の生理・生態</td>
<td>継5〜8</td>
<td>西村誠一、小泉博</td>
</tr>
<tr>
<td>47</td>
<td>内部寄生性昆虫の効率的増殖技術の開発</td>
<td>継5〜7</td>
<td>門田育生、西山幸司</td>
</tr>
<tr>
<td>48</td>
<td>種類の自然の空間的誘導と採種制御</td>
<td>継5〜7</td>
<td>鈴木文彦</td>
</tr>
<tr>
<td>49</td>
<td>植物群落内の散細生物と物質生産との関連の解明</td>
<td>新6〜10</td>
<td>藤原修</td>
</tr>
<tr>
<td>50</td>
<td>イネ褐条病細菌の宿主・寄生者相互作用の解明とその制御</td>
<td>新5〜7</td>
<td>松田泉、鈴木文彦、澤田宏之</td>
</tr>
<tr>
<td>51</td>
<td>植物病原菌個体群の変動に及ぼす影響の解明</td>
<td>新5〜8</td>
<td>瑞田・松田</td>
</tr>
<tr>
<td>52</td>
<td>増殖に関連する成虫行動の変化</td>
<td>新6〜9</td>
<td>瑞田・松田</td>
</tr>
<tr>
<td>53</td>
<td>移動性昆虫の飛行行動特性の変動と適応機構の解明と評価</td>
<td>新5〜8</td>
<td>瑞田・松田</td>
</tr>
<tr>
<td>54</td>
<td>イネ細葉枯ウイルス変異株出現と宿主の相互作用</td>
<td>継元〜10</td>
<td>鈴木文彦</td>
</tr>
<tr>
<td>55</td>
<td>放線菌の菌体外酵素生成に</td>
<td>大型別格（生態・発生）</td>
<td>瑞田・松田</td>
</tr>
<tr>
<td>課題番号</td>
<td>研究課題</td>
<td>研究問題</td>
<td>予算区分</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>56</td>
<td>おける生物情報</td>
<td>芳香族塩素化合物の微生物分解機構の解明</td>
<td>情報</td>
</tr>
<tr>
<td>57</td>
<td>4 キウイフルーツの病害抵抗性素材の作成</td>
<td>病害抵抗性素材の強化</td>
<td>バイテク</td>
</tr>
<tr>
<td>58</td>
<td>1 昆虫の低分子性異物に対する</td>
<td>立体異性農薬のバイオ標識化とその利用</td>
<td>大型別枠</td>
</tr>
<tr>
<td>59</td>
<td>素体異性農薬の立体標識化とその利用</td>
<td>原子力</td>
<td>素体異性農薬</td>
</tr>
<tr>
<td></td>
<td>2 素体異性農薬のバイオ標識化とその利用</td>
<td>素体異性農薬</td>
<td>素体異性農薬</td>
</tr>
<tr>
<td>60</td>
<td>3 酸アミド系除草剤の立体異性体の生物作用</td>
<td>素体異性農薬</td>
<td>素体異性農薬</td>
</tr>
<tr>
<td>61</td>
<td>4 昆虫における外来性化学物質代謝系の解明と機能の評価</td>
<td>大型別枠</td>
<td>生物情報</td>
</tr>
<tr>
<td></td>
<td>(2)肥料等の特性の解明と機能の評価</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>1 廃棄物及び農用資材の元相</td>
<td>環境における素体の動態解明</td>
<td>素体</td>
</tr>
<tr>
<td>63</td>
<td>2 食品副産物の肥料化</td>
<td>酸素供給</td>
<td>酸素供給</td>
</tr>
<tr>
<td>64</td>
<td>3 環境における素体の動態解明</td>
<td>素体</td>
<td>素体</td>
</tr>
<tr>
<td>65</td>
<td>4 素体・リソトの肥料化技術の開発</td>
<td>総合的開発【家畜排泄物】</td>
<td>総合的開発【家畜排泄物】</td>
</tr>
<tr>
<td>66</td>
<td>5 原子炉による農業資材の直接標識化技術の開発とその利用</td>
<td>原子効率</td>
<td>原子効率【農業環境原子炉利用】</td>
</tr>
<tr>
<td>67</td>
<td>6 放射光光源／X線吸収分光法による水稲生業中マンガンの存在形態</td>
<td>素体</td>
<td>素体</td>
</tr>
<tr>
<td>68</td>
<td>7 植物中の微量元素の存在状態と機能</td>
<td>素体</td>
<td>素体</td>
</tr>
<tr>
<td></td>
<td>(3)生物機能の資材の利用技術の開発</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>1 線虫の土壌系内における寄生性制御因子</td>
<td>大型別枠</td>
<td>生物機能</td>
</tr>
<tr>
<td>課題番号</td>
<td>[研究問題]</td>
<td>予算区分</td>
<td>研究期間</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>II 6. 平成6年度研究課題</td>
<td>農業生態系の構成要素の動態・相互作用の解明と制御技術の開発</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>(1) 環境生物の動態の解明と制御技術の開発</td>
<td>継 2～8</td>
<td>環境生物・植生生態研</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>(1) 生物個体群の動態の解明</td>
<td>継 2～6</td>
<td>環境生物・土壌生態研</td>
</tr>
<tr>
<td>72</td>
<td>(3) トピハマキの性フェロモン</td>
<td>継 4～6</td>
<td>環境生物・昆虫行動研</td>
</tr>
<tr>
<td>73</td>
<td>(4) チャナノカクロンハマキの種内交戦物質の生産と効果</td>
<td>継 5～7</td>
<td>環境生物・昆虫行動研</td>
</tr>
<tr>
<td>74</td>
<td>(5) 食植性昆虫が寄主植物の動態に与える影響の解明</td>
<td>継 5～7</td>
<td>環境生物・個体群研</td>
</tr>
<tr>
<td>75</td>
<td>(6) 昆虫における種内変異と個体群制御</td>
<td>継 5～7</td>
<td>環境生物・個体群研</td>
</tr>
<tr>
<td>76</td>
<td>(7) 昆虫における進化的動態予測および遺伝的制御</td>
<td>継 5～7</td>
<td>環境生物・個体群研</td>
</tr>
<tr>
<td>77</td>
<td>(8) VCGによる土壌系状菌の動態</td>
<td>新 6～10</td>
<td>環境生物・土壌生態研</td>
</tr>
<tr>
<td>78</td>
<td>(9) 土壌からの各種微生物検出のための特異的プローブの作成</td>
<td>新 5～7</td>
<td>環境生物・土壌生態研</td>
</tr>
<tr>
<td>79</td>
<td>(10) ガイムシ類の化学交信</td>
<td>新 6～9</td>
<td>環境生物・昆虫行動研</td>
</tr>
<tr>
<td>80</td>
<td>(11) 寄生植物の分布パターンとモンシロチョウ・ヨトウガの動態</td>
<td>単5</td>
<td>環境生物・個体群研</td>
</tr>
<tr>
<td>81</td>
<td>(12) 環境の空間構造における昆虫個体群の動態に与える影響の解明</td>
<td>新 6～10</td>
<td>環境生物・個体群研</td>
</tr>
<tr>
<td>(2) 組換え体の動態解明と安全性評価・管理技術の開発</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>1 スギナの塊茎形成機構の解明</td>
<td>新 6～10</td>
<td>環境生物・他感物質研</td>
</tr>
<tr>
<td>83</td>
<td>2 野外利用を目的とした有用組換え生物の土壌中での有効性検定</td>
<td>新 5～7</td>
<td>環境生物・土壌利用研</td>
</tr>
<tr>
<td>84</td>
<td>3 芳香族塩素化合物分解遺伝子等を用いた有用組換え生物の作出</td>
<td>新 5～7</td>
<td>環境生物・土壌利用研</td>
</tr>
<tr>
<td>課題番号</td>
<td>研究課題</td>
<td>予算区分</td>
<td>研究期間</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>85</td>
<td>(1) 生物群集レベルにおける相互作用の解明と制御技術の開発</td>
<td></td>
<td>論文完成</td>
</tr>
<tr>
<td>86</td>
<td>1 アプローチバンク技術の構造解析とその合成</td>
<td>大型別枠（生態秩序）</td>
<td>2019-10</td>
</tr>
<tr>
<td>87</td>
<td>2 ベニ目における生物間相互作用</td>
<td>継続</td>
<td>2019-5</td>
</tr>
<tr>
<td>88</td>
<td>天敵昆虫の増殖法の開発</td>
<td>継続</td>
<td>2019-5</td>
</tr>
<tr>
<td>89</td>
<td>4 アクチバブルトレーサーによる天敵研究技術の確立</td>
<td>原子力（野外RIトレーサー）</td>
<td>2019-6</td>
</tr>
<tr>
<td>90</td>
<td>農作物害虫に対する主要鳥類の捕食機能の解明</td>
<td>大型別枠（生態秩序）</td>
<td>2019-4</td>
</tr>
<tr>
<td>91</td>
<td>蚊類目及び双翅目昆虫の解明</td>
<td>継続</td>
<td>2019-7</td>
</tr>
<tr>
<td>92</td>
<td>7 ハナバチ類の巣およびコロニーの管理技術の開発</td>
<td>大型別枠（生態秩序）</td>
<td>2019-4</td>
</tr>
<tr>
<td>93</td>
<td>8 作物と雑草の競争に及ぼす光条件の時空間的変動の影響</td>
<td>大型別枠（生態秩序）</td>
<td>2019-4</td>
</tr>
<tr>
<td>94</td>
<td>10 土壌中における生理活性物質の挙動と活性発現</td>
<td>継続</td>
<td>2019-9</td>
</tr>
<tr>
<td>95</td>
<td>11 農業生態系における天敵の影響評価</td>
<td>継続</td>
<td>2019-8</td>
</tr>
<tr>
<td>96</td>
<td>12 導入天敵の作用機作と侵入昆虫の個体群制御</td>
<td>大型別枠（生態秩序）</td>
<td>2019-7</td>
</tr>
<tr>
<td>97</td>
<td>13 水田池沼環境における筋足動物群集の構造の解析</td>
<td>継続</td>
<td>2019-7</td>
</tr>
<tr>
<td>98</td>
<td>14 天敵寄生蜂の増殖技術の開発</td>
<td>小事項</td>
<td>2019-6</td>
</tr>
<tr>
<td>99</td>
<td>15 水田土壤系における農業の生物影響評価法の開発</td>
<td>継続</td>
<td>2019-9</td>
</tr>
</tbody>
</table>

(2) 生物と土壌・水・大気の相互作用の解明と制御技術の開発

<table>
<thead>
<tr>
<th>課題番号</th>
<th>研究課題</th>
<th>予算区分</th>
<th>研究期間</th>
<th>研究分担</th>
<th>担当者</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1 キマメ等植物分泌物による土壌蓄積リン酸の可溶化機構の解明</td>
<td>大型別枠（新需要）</td>
<td>2019-3</td>
<td>環境資源・土壌生化研</td>
<td>大谷卓</td>
</tr>
<tr>
<td>101</td>
<td>2 農地周辺の半自然植生物の</td>
<td>継続</td>
<td>2019-8</td>
<td>環境生物・保全植生研</td>
<td>阿江教治</td>
</tr>
</tbody>
</table>

県~豆　県~～　県~5　県~4　県~5　県~4　県~5　県~4　県~5　県~4
<table>
<thead>
<tr>
<th>課題番号</th>
<th>研究課題</th>
<th>予算区分</th>
<th>研究期間</th>
<th>研究分担</th>
<th>担当者</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>動態機構の解明</td>
<td>科・重点基礎</td>
<td>継58～62</td>
<td>環境資源・気象生態研</td>
<td>根元正之</td>
</tr>
<tr>
<td>103</td>
<td>作物類の気象生態反応の解明</td>
<td>科・重点基礎</td>
<td>継58～5</td>
<td>環境資源・大気保全研</td>
<td>矢倉正昭</td>
</tr>
<tr>
<td>104</td>
<td>大気質の変動の農作物への影響の評価法の開発</td>
<td>経常</td>
<td>継58～4</td>
<td>環境資源・大気保全研</td>
<td>阿江敬治</td>
</tr>
<tr>
<td>105</td>
<td>乾性及び湿性酸性物質の植物影響の評価に関する研究</td>
<td>環・地球環境</td>
<td>継58～4</td>
<td>環境資源・大気保全研</td>
<td>野内秀夫</td>
</tr>
<tr>
<td>106</td>
<td>植生個体レベルにおける紫外線防護機構に関する研究</td>
<td>環・地球環境</td>
<td>継58～4</td>
<td>環境資源・土壤生化研</td>
<td>小林和彦</td>
</tr>
<tr>
<td>107</td>
<td>植物個体レベルにおける紫外線防護機構に関する研究</td>
<td>環・地球環境</td>
<td>継58～4</td>
<td>環境資源・土壤生化研</td>
<td>小林和彦</td>
</tr>
<tr>
<td>108</td>
<td>ワタアブラムシにおける薬剤抵抗性の発現機構の解明</td>
<td>経常</td>
<td>継58～7</td>
<td>環境生物・保全植生研</td>
<td>鈴木健雄</td>
</tr>
<tr>
<td>109</td>
<td>イネばか苗病菌のEBI剤耐性の特性解明</td>
<td>経常</td>
<td>継58～7</td>
<td>環境生物・保全植生研</td>
<td>片桐正子</td>
</tr>
<tr>
<td>110</td>
<td>薬剤抵抗性アブラムシの生体防護発現機構の解明</td>
<td>経常</td>
<td>継58～7</td>
<td>環境生物・保全植生研</td>
<td>鈴木健雄</td>
</tr>
<tr>
<td>111</td>
<td>水生昆虫の殺虫剤抵抗性メカニズム</td>
<td>経常</td>
<td>継58～7</td>
<td>環境生物・保全植生研</td>
<td>鈴木健雄</td>
</tr>
<tr>
<td>112</td>
<td>ジニトリアリン系除草剤の土壌中における動態と土壌生物に対する影響解析</td>
<td>経常</td>
<td>継58～7</td>
<td>環境生物・保全植生研</td>
<td>鈴木健雄</td>
</tr>
<tr>
<td>113</td>
<td>鱗翅目害虫の薬剤抵抗性機構の解明とモニタリング手法の開発</td>
<td>経常</td>
<td>継58～7</td>
<td>環境生物・保全植生研</td>
<td>鈴木健雄</td>
</tr>
<tr>
<td>114</td>
<td>アブラムシ類における薬剤抵抗性関連遺伝子の発現制御</td>
<td>大型別枠【生物情報】 (経常)</td>
<td>継58～7</td>
<td>環境生物・保全植生研</td>
<td>鈴木健雄</td>
</tr>
<tr>
<td>115</td>
<td>1 ベンタクロロニトロペンゼン分解菌の探索</td>
<td>経常</td>
<td>継58～7</td>
<td>環境生物・保全植生研</td>
<td>岡崎博吉</td>
</tr>
<tr>
<td>課題番号</td>
<td>[研究問題]</td>
<td>予算区分</td>
<td>研究期間</td>
<td>研究分担</td>
<td>担当者</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>116</td>
<td>2 微生物による農業分解機構および分解遺伝子の解析</td>
<td>一般別枠（安全性向上）（経常）</td>
<td>継3～7</td>
<td>資材動態・除草動態研</td>
<td>石坂 萬</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>高木 和広</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>上路 雅子</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>小川 直人</td>
</tr>
<tr>
<td>117</td>
<td>3 アイソトープの野外利用による施肥効果の動態解明</td>
<td>原子力（野外RIトレーサー）</td>
<td>完元～5</td>
<td>資材動態・多様要素研</td>
<td>加藤 直人</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>樋口 太郎</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>渡辺 久男</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>松永 俊朗</td>
</tr>
<tr>
<td>118</td>
<td>4 土壤環境における微量元素の動態と可溶性</td>
<td>経常</td>
<td>完2～5</td>
<td>資材動態・微量元素研</td>
<td>加藤 直人</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>樋口 太郎</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>渡辺 久男</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>松永 俊朗</td>
</tr>
<tr>
<td>119</td>
<td>5 有機質肥料等外有機物を対象とした動態解明</td>
<td>一般別枠（物質循環）</td>
<td>継4～10</td>
<td>資材動態・多様要素研</td>
<td>加藤 直人</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>樋口 太郎</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>渡辺 久男</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>松永 俊朗</td>
</tr>
<tr>
<td>120</td>
<td>6 作物中の農薬の動態</td>
<td>経常</td>
<td>継5～8</td>
<td>資材動態・殺虫動態研</td>
<td>石井 康雄</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>加藤 直人</td>
</tr>
<tr>
<td>121</td>
<td>7 農薬の気相中における動態解析・捕集法と分析法の確立</td>
<td>科・重点基礎（農業動態）</td>
<td>継5～9</td>
<td>資材動態・農業管理研</td>
<td>鈴木 隆之</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>鈴木 隆之</td>
</tr>
<tr>
<td>122</td>
<td>8 土壌植物間におけるレアメタル類の動態制御技術</td>
<td>公害防止（ハイテク産業）</td>
<td>継5～9</td>
<td>資材動態・微量元素研</td>
<td>渡辺 久男</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>松永 俊朗</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>戸山 弘人</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>岡崎 博</td>
</tr>
<tr>
<td>123</td>
<td>9 土壌中におけるPCNBの動態解析</td>
<td>科・重点基礎（農業動態）</td>
<td>新5～6</td>
<td>資材動態・殺虫動態研</td>
<td>加藤 直人</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>樋口 太郎</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>渡辺 久男</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>松永 俊朗</td>
</tr>
<tr>
<td>124</td>
<td>10 ケイ酸カルシウム施用土壌のケイ酸吸着反応</td>
<td>経常</td>
<td>新5</td>
<td>資材動態・多様要素研</td>
<td>加藤 直人</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>樋口 太郎</td>
</tr>
<tr>
<td>125</td>
<td>11 階水を用いた根係養分環境の計測技術の開発</td>
<td>総合的開発（農業化農業）</td>
<td>新6～8</td>
<td>資材動態・微量元素研</td>
<td>渡辺 久男</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>松永 俊朗</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>戸田 英俊</td>
</tr>
<tr>
<td>126</td>
<td>12 ICP-QMS／安定同位体を利用した施用ホウ素の動態解明</td>
<td>経常</td>
<td>新6～10</td>
<td>資材動態・（科長）</td>
<td>渡辺 久男</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>松永 俊朗</td>
</tr>
<tr>
<td>127</td>
<td>13 ICP-QMS／法によるホウ素、モリブデン等の可溶性測定法</td>
<td>経常</td>
<td>新6～10</td>
<td>資材動態・微量元素研</td>
<td>渡辺 久男</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>松永 俊朗</td>
</tr>
<tr>
<td>128</td>
<td>1 農業の水中分解に及ぼす環境影響要因の解析</td>
<td>経常</td>
<td>継4～6</td>
<td>資材動態・農業管理研</td>
<td>鈴木 隆之</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>小原 裕三</td>
</tr>
<tr>
<td>129</td>
<td>1 暖温帯森林生態系における炭素循環の定量的解析に関する研究</td>
<td>環・地球環境（炭素循環）</td>
<td>完2～5</td>
<td>環境管理・資源環境研</td>
<td>杉本 共之</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>杉本 共之</td>
</tr>
<tr>
<td>130</td>
<td>2 農業生態系における炭素循環の定量的解析に関する研究</td>
<td>環・地球環境（炭素循環）</td>
<td>完2～5</td>
<td>環境管理・環境研</td>
<td>池田 浩明</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>結田 康一</td>
</tr>
<tr>
<td>課題番号</td>
<td>研究課題</td>
<td>予算区分</td>
<td>研究期間</td>
<td>研究分担</td>
<td>担当者</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>132</td>
<td>と動態の解明</td>
<td>原子力（降下放射性核種）</td>
<td>継58～</td>
<td>環境管理・分析法研</td>
<td>駒村美佐子</td>
</tr>
<tr>
<td>133</td>
<td>染獲法に著しく影響</td>
<td>原子力（長半減期放射性核種）</td>
<td>完元～5</td>
<td>環境管理・分析法研</td>
<td>結田康一</td>
</tr>
<tr>
<td>134</td>
<td>土壌－作物系における炭素循環過程の動態解</td>
<td>一般別枠（地球環境）</td>
<td>継2～7</td>
<td>環境生物・植物生態学</td>
<td>小泉博</td>
</tr>
<tr>
<td>135</td>
<td>環境変化に伴う土壌－作物系における炭素循環過程の変動</td>
<td>一般別枠（地球環境）</td>
<td>継2～7</td>
<td>環境生物・植物生態学</td>
<td>小泉博</td>
</tr>
<tr>
<td>136</td>
<td>水田土壌生態系における炭素循環過程の定性的解析</td>
<td>環・地球環境 (炭素循環)</td>
<td>継2～7</td>
<td>環境資源・土壌有機研</td>
<td>早野恒一</td>
</tr>
<tr>
<td>137</td>
<td>植生－土壌系における炭素の動態と変動解析</td>
<td>科・総合研究 (北極圏)</td>
<td>継2～6</td>
<td>環境生物・植物生態学</td>
<td>小泉博</td>
</tr>
<tr>
<td>138</td>
<td>農業生態系における物質循環とエネルギーアニメーションの解明</td>
<td>縄59～5</td>
<td>環境資源・気象特性研</td>
<td>早野恒一</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>施肥が窒素循環に及ぼす影響</td>
<td>継4～6</td>
<td>環境資源・水質生態学</td>
<td>川島博之</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>放射性ヨウ素の土壌蓄積性</td>
<td>原子力（放射性ヨウ素）</td>
<td>継4～8</td>
<td>環境管理・分析法研</td>
<td>結田康一</td>
</tr>
<tr>
<td>141</td>
<td>農業生態系における炭素循環・収支の定性的解析</td>
<td>環・地球環境 (炭素循環)</td>
<td>新5～7</td>
<td>環境管理・資源環境研</td>
<td>松本成夫</td>
</tr>
<tr>
<td>142</td>
<td>冷温帯林生態系におけるサノツカシナムの炭素循環のパラメータ解析</td>
<td>環・地球環境 (炭素循環)</td>
<td>新5～7</td>
<td>環境管理・資源環境研</td>
<td>緒田共之</td>
</tr>
<tr>
<td>143</td>
<td>亜寒帯林生態系における炭素循環・収支の定性的解析</td>
<td>環・地球環境 (炭素循環)</td>
<td>新5～7</td>
<td>環境管理・資源環境研</td>
<td>緒田共之</td>
</tr>
<tr>
<td>144</td>
<td>土壌生態系における微生物群集をめぐる炭素循環の定性的解析</td>
<td>環・地球環境 (炭素循環)</td>
<td>新5～7</td>
<td>環境管理・資源環境研</td>
<td>緒田共之</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td></td>
<td>継3～6</td>
<td>環境資源・土壌有機研</td>
<td>山縣真人</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>微生物利用土壌改良資材の機能</td>
<td>継4～5</td>
<td>資材動態・廃棄物研</td>
<td>阿江健治</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（2）物質循環とエネルギーフローの制御技術の開発

1 土壌中の物質代謝速度と土壌環境要因との関係

2 微生物利用土壌改良資材の機能
<table>
<thead>
<tr>
<th>課題番号</th>
<th>[研究問題]</th>
<th>予算区分</th>
<th>研究期間</th>
<th>研究分担</th>
<th>担当者</th>
</tr>
</thead>
<tbody>
<tr>
<td>147</td>
<td>農村生態系における養分循環のモデル化による新農業システムの評価</td>
<td>一般別枠（物質循環）</td>
<td>水質 4～10</td>
<td>環境管理・資源環境研</td>
<td>松本 咲夫</td>
</tr>
<tr>
<td>148</td>
<td>有機物酸化物のリサイクルにとらえる動態制御技術</td>
<td>公害防止（ハイテク産業）</td>
<td>水質 5～9</td>
<td>環境管理・資源環境研</td>
<td>新井 重光</td>
</tr>
<tr>
<td>149</td>
<td>農POフィルムハウスの環境制御と微気象特性の把握</td>
<td>継続</td>
<td>新 5～8</td>
<td>環境管理・気象特性研</td>
<td>川崎 晃</td>
</tr>
<tr>
<td>150</td>
<td>家畜飼の熱エネルギーの高度利用技術の開発</td>
<td>継続的開発（家畜飼用）</td>
<td>新 6～11</td>
<td>環境管理・資源環境研</td>
<td>川崎 晃</td>
</tr>
</tbody>
</table>

III 農業生態系に関する統合的管理技術の開発

(1) 農業生態系に関する情報の収集・解析・処理システムの開発

(1) 農業生態系に係わる情報の計測手法の開発

<table>
<thead>
<tr>
<th>課題番号</th>
<th>[研究問題]</th>
<th>予算区分</th>
<th>研究期間</th>
<th>研究分担</th>
<th>担当者</th>
</tr>
</thead>
<tbody>
<tr>
<td>151</td>
<td>各種データによる農業環境資源の動態解明手法の開発</td>
<td>継続</td>
<td>延元 5～6</td>
<td>環境管理・隔測研</td>
<td>藤元 也</td>
</tr>
<tr>
<td>152</td>
<td>リモートセンシングによる流域環境の計測</td>
<td>継続</td>
<td>完 2～5</td>
<td>環境管理・隔測研</td>
<td>玉田 康一</td>
</tr>
<tr>
<td>153</td>
<td>植物ストレス情報セシング手法の開発</td>
<td>継続</td>
<td>延元 5～6</td>
<td>環境管理・物質情報研</td>
<td>井上 一之</td>
</tr>
<tr>
<td>154</td>
<td>植物三元計測手法の開発</td>
<td>継続</td>
<td>完 63～3</td>
<td>環境管理・物質情報研</td>
<td>森永 慎介</td>
</tr>
<tr>
<td>155</td>
<td>アイソトープトレーサー法による動的性質の土壌中ならびに土壌・植物間移動の把握</td>
<td>継続</td>
<td>完 62～5</td>
<td>環境管理・分析法研</td>
<td>石田 康一</td>
</tr>
<tr>
<td>156</td>
<td>農業環境研究における原子炉利利用新技術の開発と、利用の拡大に関する研究－環境中トレーサー放出源のアクチバルトレーサー利用法の開発</td>
<td>原子力（農業環境原子炉利用）</td>
<td>水質 63～6</td>
<td>環境管理・分析法研</td>
<td>石田 康一</td>
</tr>
<tr>
<td>157</td>
<td>農耕地における新野外RIトレーサー技術の開発</td>
<td>原子力（野外RIトレーサー）</td>
<td>完 5</td>
<td>環境管理・分析法研</td>
<td>山本 美子</td>
</tr>
<tr>
<td>158</td>
<td>農耕地における新野外RIトレーサー技術の開発</td>
<td>受託（草蓆協会）</td>
<td>完 3～5</td>
<td>環境管理・隔測研</td>
<td>井上 一之</td>
</tr>
<tr>
<td>159</td>
<td>リモートセンシング技術による農業環境把握技術の開発</td>
<td>科・総合研究</td>
<td>水質 4～6</td>
<td>環境管理・隔測研</td>
<td>藤元 也</td>
</tr>
<tr>
<td>課題番号</td>
<td>[研究問題]</td>
<td>予算区分</td>
<td>研究期間</td>
<td>研究分担</td>
<td>担当者</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>160</td>
<td>化</td>
<td>経常</td>
<td>継 4 ～ 8</td>
<td>環境管理・分析法研</td>
<td>駒村 美佐子</td>
</tr>
<tr>
<td>161</td>
<td>全国の土壌中放射性核種の地質学的研究</td>
<td>原子力 [農業環境原子炉利用]</td>
<td>継 4 ～ 6</td>
<td>環境管理・分析法研</td>
<td>渡邉 和一郎</td>
</tr>
<tr>
<td>162</td>
<td>[マイクロ波センサー利用等による作物生育・被害の解析]</td>
<td>緊急開発 [冷害予測]</td>
<td>新 6 ～ 9</td>
<td>環境管理・防除研</td>
<td>齋藤 元也</td>
</tr>
<tr>
<td>163</td>
<td>植物空間構造とスペクトル収支の計測評価法の開発</td>
<td>経常</td>
<td>新 6 ～ 9</td>
<td>環境管理・生物情報研</td>
<td>井上 古雄</td>
</tr>
<tr>
<td>164</td>
<td>ラジオメトリーによる作物生体重情報のリアルタイム遠隔計測手法の開発</td>
<td>総合的開発 [農業生物情報]</td>
<td>新 6 ～ 8</td>
<td>環境管理・生物情報研</td>
<td>森永 慎介</td>
</tr>
<tr>
<td></td>
<td>(2) 農業生態系における情報の収集・統計的解析法開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>農業生態系の構成要素の動態に関する数理的解析法の開発</td>
<td>経常</td>
<td>継 2 ～ 7</td>
<td>環境管理・数理解析研</td>
<td>山田 一茂</td>
</tr>
<tr>
<td>166</td>
<td>農業気象変動シミュレーションモデルの開発</td>
<td>一般別枠 [地球環境] (経常)</td>
<td>継 2 ～ 8</td>
<td>環境管理・数理解析研</td>
<td>山田 一茂</td>
</tr>
<tr>
<td>167</td>
<td>生物情報の数量的分類理論の開発</td>
<td>経常</td>
<td>完 2 ～ 5</td>
<td>環境管理・調査計画研</td>
<td>三重 信宏</td>
</tr>
<tr>
<td>168</td>
<td>計測情報の解析のための統計的方法の開発</td>
<td>経常</td>
<td>継 4 ～ 8</td>
<td>環境管理・調査計画研</td>
<td>三輪 哲久</td>
</tr>
<tr>
<td>169</td>
<td>生物形態の画像情報の統計的解析手法の開発</td>
<td>経常</td>
<td>継 5 ～ 8</td>
<td>環境管理・調査計画研</td>
<td>三重 信宏</td>
</tr>
<tr>
<td>170</td>
<td>生物系統分類のための数量的方法の開発</td>
<td>経常</td>
<td>新 6 ～ 9</td>
<td>環境管理・調査計画研</td>
<td>三重 信宏</td>
</tr>
<tr>
<td></td>
<td>(3) 農業環境情報の処理法と利用システムの開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>農業環境情報のデータベースシステム化と利用技術の開発</td>
<td>経常</td>
<td>継 2 ～ 6</td>
<td>環境管理・情報解析研</td>
<td>二宮 正士</td>
</tr>
<tr>
<td>172</td>
<td>分散型データベースの構築・利用手法の開発</td>
<td>経常</td>
<td>完 5 ～ 5</td>
<td>場面調整・研技情報官</td>
<td>松村 惠雄</td>
</tr>
<tr>
<td>173</td>
<td>遺伝子分子地図の作成と種類的利用のための情報処理システム</td>
<td>パイテック [イネ・ゲノム]</td>
<td>完 3 ～ 5</td>
<td>環境管理・調査計画研</td>
<td>三輪 哲久</td>
</tr>
<tr>
<td>174</td>
<td>小麦粉硬質性の画像解析判定技術の開発と品種間差異の検索</td>
<td>総合的開発 [高品質輪作]</td>
<td>完 3 ～ 5</td>
<td>環境管理・調査計画研</td>
<td>三重 信宏</td>
</tr>
<tr>
<td>175</td>
<td>北極域における殖生変動に関する国際共同研究</td>
<td>科・総合研究 [北極圏]</td>
<td>継 2 ～ 6</td>
<td>環境管理・生物情報研</td>
<td>井上 古雄</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>環境管理・(科長)</td>
<td>秋山 俊雄</td>
</tr>
<tr>
<td>課題番号</td>
<td>研究課題</td>
<td>予算区分</td>
<td>研究期間</td>
<td>研究分担</td>
<td>担当者</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>176</td>
<td>6 農業環境情報の定量的評価法の開発</td>
<td>経常</td>
<td>継4〜8</td>
<td>環境管理・情報解析研</td>
<td>二宮正士</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>生出真里</td>
</tr>
<tr>
<td>177</td>
<td>7 流域の環境因子データベースの構築</td>
<td>経常</td>
<td>継4〜6</td>
<td>環境管理・環境立地研</td>
<td>松森堅治</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>石田憲治</td>
</tr>
<tr>
<td>178</td>
<td>8 LANを用いた画像情報の管理・利用手法の開発</td>
<td>経常</td>
<td>継5〜8</td>
<td>環境管理・情報解析研</td>
<td>浜崎雄雄</td>
</tr>
<tr>
<td>179</td>
<td>9 紫外線(UV-B)のバックグラウンドデータベースの作成</td>
<td>経常</td>
<td>継4〜7</td>
<td>環境資源・気候資源研</td>
<td>遠藤鶴</td>
</tr>
<tr>
<td>180</td>
<td>10 有用植物の病害診断・防止総合システムの開発－宿主植物・病名・病原のデータ整理</td>
<td>ファクトDB</td>
<td>完3〜5</td>
<td>環境生物・特制分類研</td>
<td>横木正幸</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>西山幸司</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>佐藤豊三</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(四国農試)</td>
</tr>
<tr>
<td>181</td>
<td>11 マルチメディア型データベースの構築・管理手法の開発</td>
<td>経常</td>
<td>新6〜9</td>
<td>企画調整・研技情報官</td>
<td>大久保博人</td>
</tr>
<tr>
<td>182</td>
<td>12 農業における経験的判断のモデル化と意図的支援システムの開発</td>
<td>経常</td>
<td>新6〜10</td>
<td>環境管理・情報解析研</td>
<td>生出真里</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>二宮正士</td>
</tr>
<tr>
<td>183</td>
<td>1 作物の気候的生育予測法の確立</td>
<td>経常</td>
<td>継58〜10</td>
<td>環境資源・気象生態研</td>
<td>矢島正晴</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>川方俊和</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(農研センタ)</td>
</tr>
<tr>
<td>184</td>
<td>2 農業気候資源の分布と変動特性の解明</td>
<td>経常</td>
<td>継3〜10</td>
<td>環境資源・気候資源研</td>
<td>米村正一郎</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>横沼正幸</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>清野賢</td>
</tr>
<tr>
<td>185</td>
<td>1 農業生産と農業環境に果たす農用林等植生の機能の解析と評価－空間的相互作用に基づく生物保持機能の評価手法</td>
<td>経常</td>
<td>完62〜5</td>
<td>環境管理・植生動態研</td>
<td>井上任弘</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>原田直樹</td>
</tr>
<tr>
<td>186</td>
<td>2 農村地域におけるアメニティ維持機能の心理的評価手法の開発</td>
<td>経常</td>
<td>継63〜4</td>
<td>環境管理・農村景観研</td>
<td>須藤芳男</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(6)</td>
</tr>
<tr>
<td>187</td>
<td>3 農林地の構造とその機能に対する評価の解剖</td>
<td>経常</td>
<td>継62〜3</td>
<td>環境管理・農村景観研</td>
<td>横張真</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(7)</td>
</tr>
<tr>
<td>188</td>
<td>4 植物群落の多様性と侵入雑草の生育型戦略</td>
<td>経常</td>
<td>継5〜10</td>
<td>環境生物・保全植生研</td>
<td>松尾和人</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>大黒俊哉</td>
</tr>
<tr>
<td>189</td>
<td>5 保水・透水機能に基づく低地土壌の類型化</td>
<td>経常</td>
<td>終5</td>
<td>環境管理・環境立地研</td>
<td>松森堅治</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(62〜3)</td>
</tr>
<tr>
<td>課題番号</td>
<td>研究課題</td>
<td>予算区分</td>
<td>研究期間</td>
<td>研究分担</td>
<td>担当者</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>190</td>
<td>6. 環境保全機能からみた農村空間の地域特徴</td>
<td>経常</td>
<td>新6～8</td>
<td>環境管理・農村景観研</td>
<td>加藤 好武</td>
</tr>
<tr>
<td>191</td>
<td>7. 農村コミュニティ評価法に関する研究</td>
<td>科・総合研究</td>
<td>新5～7</td>
<td>環境管理・農村景観研</td>
<td>加藤 好武</td>
</tr>
<tr>
<td>192</td>
<td>(3) 農業生態系の総合的な評価法の開発</td>
<td>経常</td>
<td>週59～4</td>
<td>環境管理・影響調査研</td>
<td>杉田 健一</td>
</tr>
<tr>
<td>193</td>
<td>2. 農地機能の総合的評価手法の開発</td>
<td>経常</td>
<td>完元～5</td>
<td>環境管理・環境立地研</td>
<td>石田 恵治</td>
</tr>
<tr>
<td>194</td>
<td>3. 中山間地域における環境保全機能の総合的評価手法の開発</td>
<td>特研【中山間保全】</td>
<td>週4～6</td>
<td>環境管理・環境立地研</td>
<td>浜崎 忠雄</td>
</tr>
<tr>
<td>195</td>
<td>4. 近年のわが国食料供給システムにおける養分循環</td>
<td>経常</td>
<td>週5</td>
<td>環境管理・資源環境研</td>
<td>江田 共之</td>
</tr>
<tr>
<td>196</td>
<td>5. 酸性物質の土壌影響評価モデルの開発に関する研究</td>
<td>環境・地球環境</td>
<td>週5～7</td>
<td>環境管理・資源環境研</td>
<td>江田 共之</td>
</tr>
<tr>
<td>197</td>
<td>(3) 農業生態系の総合的な管理計画法と管理技術の開発</td>
<td>経常</td>
<td>完58～5</td>
<td>環境管理・植生動態研</td>
<td>原田 直国</td>
</tr>
<tr>
<td>198</td>
<td>1. 農業生態系における農用林等植生の動態の把握</td>
<td>経常</td>
<td>完元～5</td>
<td>環境資源・水質保全研</td>
<td>井手 任</td>
</tr>
<tr>
<td>199</td>
<td>2. 低コスト・効率的排水処理技術の開発</td>
<td>経常</td>
<td>週2～5</td>
<td>環境資源・水質保全研</td>
<td>守山 彰</td>
</tr>
<tr>
<td>200</td>
<td>3. 帯地からの窒素、りん発生低減技術の開発</td>
<td>経常</td>
<td>週4～6</td>
<td>環境資源・水質保全研</td>
<td>坂西 仁二</td>
</tr>
<tr>
<td>201</td>
<td>4. 農耕地における流動土壌量の計測・分析</td>
<td>経常</td>
<td>週6～9</td>
<td>農資動態・除草動態研</td>
<td>岩間 秀矩</td>
</tr>
<tr>
<td>202</td>
<td>(2) 農村空間の生態的管理のための計画法の開発</td>
<td>経常</td>
<td>週2～6</td>
<td>環境管理・植生動態研</td>
<td>高木 和宏</td>
</tr>
<tr>
<td>203</td>
<td>1. 植生の改善等による個体群管理技術の開発</td>
<td>経常</td>
<td>週2～7</td>
<td>環境管理・植生動態研</td>
<td>上路 助子</td>
</tr>
<tr>
<td>204</td>
<td>2. 農村環境の生物保持機能に</td>
<td>経常</td>
<td>石坂 真澄</td>
<td></td>
<td></td>
</tr>
<tr>
<td>課題番号</td>
<td>[研究問題]</td>
<td>予算区分</td>
<td>研究期間</td>
<td>研究分担</td>
<td>担当者</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>204</td>
<td>着目したビオトープ結合システムの開発</td>
<td>特研（地域資源）</td>
<td>5</td>
<td>環境管理・植生動態研</td>
<td>原田誠三</td>
</tr>
<tr>
<td>3</td>
<td>地域の緑地構造と生物相の対応関係に基づいた評価手法の開発と適用</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>農業生態系の総合的な管理システムの開発</td>
<td>継3</td>
<td>3</td>
<td>環境資源・水質特性研</td>
<td>岡本玲子</td>
</tr>
<tr>
<td>1</td>
<td>衛生習慣を指標とした農業用排水の汚染評価</td>
<td>継続</td>
<td>5</td>
<td>環境資源・水質保全研</td>
<td>大嶋秀雄</td>
</tr>
<tr>
<td>2</td>
<td>汚染物の動態・収支解析のための手法開発</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>農林生態系利用による浅層地下水の水質浄化技術の開発に関する研究・全国的な調査</td>
<td>継3</td>
<td>7</td>
<td>環境資源・水質動態研</td>
<td>山崎慎一</td>
</tr>
<tr>
<td>3</td>
<td>農林生態系利用による浅層地下水の水質浄化技術の開発に関する研究・汚染地下水流入水田における水質浄化機能の評価</td>
<td>継3</td>
<td>7</td>
<td>環境資源・水質動態研</td>
<td>山崎慎一</td>
</tr>
<tr>
<td>207</td>
<td>土壌環境に基づく水保全のための土地利用計画手法の開発</td>
<td>完</td>
<td>5</td>
<td>環境管理・環境管理研</td>
<td>江上幸雄</td>
</tr>
<tr>
<td>5</td>
<td>ため池・湿田の生態系を利用した浄化技術の開発</td>
<td>継続</td>
<td>5</td>
<td>環境資源・水質保全研</td>
<td>竹内誠</td>
</tr>
<tr>
<td>208</td>
<td>農業用水の類型化</td>
<td>継続</td>
<td>4</td>
<td>環境資源・水質特性研</td>
<td>芝野和夫</td>
</tr>
<tr>
<td>4</td>
<td>農林生態系利用による浅層地下水の水質浄化技術の開発に関する研究 - 農業水域における水質浄化機能の評価 -</td>
<td>継続</td>
<td>7</td>
<td>環境資源・水質保全研</td>
<td>戸田正治</td>
</tr>
<tr>
<td>209</td>
<td>地球環境の変化と農業生態系の相互関係の評価及び農業生態系管理技術の開発</td>
<td>継続</td>
<td>5</td>
<td>環境管理・環境管理研</td>
<td>八木一行</td>
</tr>
<tr>
<td>6</td>
<td>土壌層型に基づく水保全のための土地利用計画手法の開発</td>
<td>継続</td>
<td>5</td>
<td>環境資源・水質特性研</td>
<td>鶴田治雄</td>
</tr>
<tr>
<td>210</td>
<td>農業生態系における大気汚染物の動態の解明と評価</td>
<td>継続</td>
<td>4</td>
<td>環境管理・影響調査研</td>
<td>八木一行</td>
</tr>
<tr>
<td>7</td>
<td>農業生態系から発生する亜硝酸水素の動態解明とその制</td>
<td>継続</td>
<td>4</td>
<td>環境管理・影響調査研</td>
<td>鶴田治雄</td>
</tr>
<tr>
<td>課題番号</td>
<td>[研究問題] 研究課題</td>
<td>予算区分</td>
<td>研究期間</td>
<td>研究分担</td>
<td>担当者</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>215</td>
<td>御技術 3 水田からのメタン発生量の解明</td>
<td>環・地球環境 〔メタン等放出源〕</td>
<td>継 2～4 ～(6)</td>
<td>環境管理・影響調査研</td>
<td>八木一行</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>神田健一</td>
</tr>
<tr>
<td>216</td>
<td>4 地域生態系における炭素循環量の定量的把握</td>
<td>環・地球環境 〔炭素循環〕（経常）</td>
<td>継 2～7</td>
<td>企画調整・地球チーム</td>
<td>鶴田誠雄</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>福原道一</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>池田浩明</td>
</tr>
<tr>
<td>217</td>
<td>5 草地のリモートセンシング活用手法確立調査-十勝地方-</td>
<td>受託 〔日本草地協会〕（経常）</td>
<td>完 3～5</td>
<td>企画調整・地球チーム</td>
<td>山本武治</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>今川直明</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>岡本勝明</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>大浦典夫</td>
</tr>
<tr>
<td>218</td>
<td>6 半乾燥・半湿潤地域における砂漠化に及ぼす人間活動の影響評価に関する研究</td>
<td>環・地球環境 〔砂漠化影響評価〕</td>
<td>継 4～6</td>
<td>企画調整・地球チーム</td>
<td>福原道一</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>今川直明</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>岡本勝明</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>大浦典夫</td>
</tr>
<tr>
<td>219</td>
<td>7 地形要因からみた土地荒廃指標の策定</td>
<td>科・重点基礎 〔土地荒廃〕（経常）</td>
<td>継 5～7</td>
<td>環境資源・土壌保全研</td>
<td>岩間秀矩</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>坂西研二</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>阪本多門</td>
</tr>
<tr>
<td>220</td>
<td>8 中山間農地における土地荒廃評価手法の開発</td>
<td>科・重点基礎 〔土地荒廃〕（経常）</td>
<td>半 5</td>
<td>企画調整・地球チーム</td>
<td>福原道一</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>今川直明</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>岡本勝明</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>池田浩明</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>小原洋加</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>藤本毅彦</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>三山正則（退）</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>根本正之</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>大黒俊哉</td>
</tr>
<tr>
<td>221</td>
<td>(2) 地球環境保全のための農業生態系管理技術の開発 1 熱帯林破壊による土壌変動に関する観測研究</td>
<td>海洋・地球 〔熱帯林〕</td>
<td>継 2～6</td>
<td>環境資源・土壌調査研</td>
<td>横沢正幸</td>
</tr>
<tr>
<td>222</td>
<td>2 半乾燥地における植生生態に関する研究</td>
<td>科・総合研究 〔砂漠化〕</td>
<td>継 2～7</td>
<td>環境生物・保全植生研</td>
<td>清野 留</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>課題番号</td>
<td>[研究 問題]</td>
<td>研究課題</td>
<td>予算区分</td>
<td>研究期間</td>
<td>研究分担</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>-----------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>225</td>
<td>3 農業気候資源の変動予測技術の開発</td>
<td>一般別枠 「地球環境」</td>
<td>継 2 ～ 7</td>
<td>環境資源・気候資源研</td>
<td>橫澤正幸</td>
</tr>
<tr>
<td>226</td>
<td>4 降水の酸性化予測と生態系影響評価手法の開発</td>
<td>経常</td>
<td>継元 ～ 10</td>
<td>環境資源・水質特性研</td>
<td>大塚秀雄</td>
</tr>
<tr>
<td>227</td>
<td>5 北極域の植生－土壤圈における炭素の動変解析</td>
<td>科・総合研究「極北圈」</td>
<td>継 3 ～ 6</td>
<td>環境資源・土壤生態研</td>
<td>岡本玲子</td>
</tr>
<tr>
<td>228</td>
<td>6 耕地土壤における微生物相の変動の解明</td>
<td>一般別枠 「地球環境」</td>
<td>継 2 ～ 8</td>
<td>環境生物・土壌生態研</td>
<td>早野達夫</td>
</tr>
<tr>
<td>229</td>
<td>7 害虫の発生変動の解明と予測</td>
<td>一般別枠 「地球環境」</td>
<td>継 2 ～ 8</td>
<td>環境生物・個体群研</td>
<td>芝野和夫</td>
</tr>
<tr>
<td>230</td>
<td>8 被食者－補食系の変動の解明</td>
<td>一般別枠 「地球環境」</td>
<td>継 2 ～ 8</td>
<td>環境生物・個体群研</td>
<td>谷山一郎</td>
</tr>
<tr>
<td>231</td>
<td>9 塩類豊富土壤における微生物相の変動の解明</td>
<td>一般別枠 「地球環境」</td>
<td>継 2 ～ 8</td>
<td>環境生物・土壌生態研</td>
<td>太田健</td>
</tr>
<tr>
<td>232</td>
<td>10 気象衛生ひまわり解析装置によるリアルタイムの地球環境監視手法の開発</td>
<td>経常</td>
<td>継 5 ～ 7</td>
<td>企画調整・地球チーム</td>
<td>橫山和成</td>
</tr>
<tr>
<td>233</td>
<td>11 農耕地に及ぼす海進の影響の解明</td>
<td>一般別枠 「地球環境」</td>
<td>新 5 ～ 8</td>
<td>環境資源・土壤生態研</td>
<td>尾崎一郎</td>
</tr>
<tr>
<td>234</td>
<td>12 土壌の酸緩衡能の評価</td>
<td>環・地球環境 「臨海負荷」</td>
<td>新 5 ～ 7</td>
<td>環境資源・土壤保全研</td>
<td>岩内秀矩</td>
</tr>
<tr>
<td>235</td>
<td>13 環境酸性化の土壌微生物に与える影響に関する研究</td>
<td>環・地球環境 「酸性生態系」</td>
<td>新 5 ～ 7</td>
<td>環境生物・土壌生態研</td>
<td>横山和成</td>
</tr>
<tr>
<td>236</td>
<td>14 植物生態の相所的分化と適応戦略の解析</td>
<td>一般別枠 「地球環境」</td>
<td>新 5 ～ 8</td>
<td>環境生物・個体群研</td>
<td>井村治</td>
</tr>
<tr>
<td>(2)</td>
<td>地球環境の変化が農業生態系の機能・動態に及ぼす影響の解明と評価</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>1 大気環境に及ぼす影響の解明と評価－環境変化に伴う大気－農耕地におけるCO2グス収支の変動予測</td>
<td>経常</td>
<td>新 2 ～ 7</td>
<td>環境資源・気象特性研</td>
<td>原薗芳信</td>
</tr>
<tr>
<td>238</td>
<td>2 大気微量気体の大気・海洋中濃度・組成の変動に関する観測的研究</td>
<td>経常</td>
<td>継 2 ～ 11</td>
<td>環境資源・気象特性研</td>
<td>吉本真由美</td>
</tr>
<tr>
<td>239</td>
<td>3 水田土壤のメタン濃度とメタンフラックスの季節変化</td>
<td>環・地球環境 「地球気候」</td>
<td>継 59 ～ 5</td>
<td>環境資源・大気保全研</td>
<td>宮田 田明</td>
</tr>
<tr>
<td>240</td>
<td>4 環境変化が土壌有機物の消長に及ぼす影響の解明</td>
<td>一般別枠 「地球環境」</td>
<td>継 2 ～ 8</td>
<td>環境資源・土壤生態研</td>
<td>佐野勇夫</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>課題番号</td>
<td>研究課題</td>
<td>予算区分</td>
<td>研究期間</td>
<td>研究分担</td>
<td>担当者</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>241</td>
<td>5 環境変化が土壌浸食に及ぼす影響の解明</td>
<td>一般別枠（地球環境）</td>
<td>継2〜8</td>
<td>環境資源・土壌保全研究</td>
<td>坂 西 研 二</td>
</tr>
<tr>
<td></td>
<td></td>
<td>級別</td>
<td>延59〜5</td>
<td>環境資源・気象生態研究</td>
<td>岩 間 秀 厚</td>
</tr>
<tr>
<td></td>
<td></td>
<td>一般別枠（地球環境）</td>
<td>継2〜7</td>
<td>環境資源・気象生態研究</td>
<td>矢 島 正 晴</td>
</tr>
<tr>
<td></td>
<td>6 高二酸化炭素濃度大気が作物の生理・生態に及ぼす影響の解明</td>
<td>経常</td>
<td>級別</td>
<td>資材動態・農業管理研究</td>
<td>川 方 俊 和</td>
</tr>
<tr>
<td>243</td>
<td>7 CO₂濃度上昇と気候変動に伴う農作物の生長変動予測手法の開発</td>
<td>一般別枠（地球環境）</td>
<td>継2〜7</td>
<td>企画調整・地球チーム</td>
<td>鈴 木 隆 之</td>
</tr>
<tr>
<td>244</td>
<td>8 農業の水田における光分解特性の解明</td>
<td>経常</td>
<td>級別</td>
<td>企画調整・地球チーム</td>
<td>小 原 裕 三</td>
</tr>
<tr>
<td>245</td>
<td>9 永久凍土の融解がツンドラ地帯の物質循環及び水質に及ぼす影響の評価</td>
<td>級別</td>
<td>級別</td>
<td>企画調整・地球チーム</td>
<td>戸 田 任 重</td>
</tr>
<tr>
<td>246</td>
<td>10 小麦の生産力予測技術の開発</td>
<td>一般別枠（地球環境）</td>
<td>継2〜7</td>
<td>企画調整・地球チーム</td>
<td>楊 宗 謙</td>
</tr>
<tr>
<td>247</td>
<td>11 主要穀類等の生産量・生産地域変動予測技術の開発</td>
<td>一般別枠（地球環境）</td>
<td>継2〜8</td>
<td>企画調整・地球チーム</td>
<td>福 原 道 一</td>
</tr>
<tr>
<td>248</td>
<td>12 メタン・氧化酸素素の地球温暖化への寄与率の解明</td>
<td>一般別枠（地球環境）</td>
<td>継5〜8</td>
<td>環境資源・気象生態研究</td>
<td>竹 島 正 晴</td>
</tr>
<tr>
<td></td>
<td>13 水田から発生する含硫ガスの動態</td>
<td>科・重点基礎（イオウ化合物）（経常）</td>
<td>延5</td>
<td>環境資源・大気保全研究</td>
<td>福 原 道 一</td>
</tr>
<tr>
<td></td>
<td>(3) 環境変化に適応した農業生態系確保のための技術開発</td>
<td>一般別枠（地球環境）</td>
<td>継2〜6</td>
<td>企画調整・地球チーム</td>
<td>山 口 武 則</td>
</tr>
<tr>
<td>250</td>
<td>1 農業関連分野の温室効果ガスアンリシス、対策技術検索・個別技術評価に関する研究</td>
<td>環・地球環境</td>
<td>継2〜6</td>
<td>企画調整・地球チーム</td>
<td>山 口 武 則</td>
</tr>
<tr>
<td></td>
<td></td>
<td>級別</td>
<td>延5</td>
<td>環境資源・大気保全研究</td>
<td>菊 川 敬 治</td>
</tr>
<tr>
<td></td>
<td></td>
<td>一般別枠（地球環境）</td>
<td>継2〜6</td>
<td>企画調整・地球チーム</td>
<td>大 浦 典 子</td>
</tr>
</tbody>
</table>
2. プロジェクト研究等分担一覧

● 特別研究
 中山間地域
 水分子動態

● 一般別枠研究
 地球環境
 植物生態系を利用した地球環境変動要因の制御技術の開発
 適性向上
 物質循環

● 大型別枠研究
 生物情報
 生物情報の解明と制御による新農林水産技術の開発に関する総合研究
 生態系
 生態系環境保護の解明と最適制御に関する総合研究
 新需要創出
 新需要創出のためにの生物機能の開発・利用技術の開発に関する総合研究

● 総合的開発研究
 労務化農業
 未来型労務化農業技術確立のために基礎技術開発に関する総合研究
 家畜排泄物
 環境保全のためにの家畜排泄物高度処理・利用技術の確立

● パイオテクノロジー先端技術開発研究
 バイテク植物育種
 バイテク植物育種に関する総合研究
 組換え体高濃度
 組換え体高濃度利用のためのアセスメント手法の開発
 昆虫機能
 昆虫の機能利用と資源化に関する基礎研究

● その他
 冷害予測
 気象・作物・土壌解析による冷害予測手法の開発

● ジエンバンク
 微生物バンク
 微生物遺伝資源利用農林水産物遺伝子源・遺伝育種情報の総合的管理利用システムの整備に要する研究

● 小事項
 ママハモクリバイの防除に関する研究

● 総合モニタリング
 環境保全総合モニタリング手法開発

● 公害防止（国立研究公害防防止等試験研究費：環境庁）
 パイテク産業
 农業生態系におけるバイテク産業関連汚染物質の動態制御技術の開発に関する研究
 野生鳥類
 野生鳥類による農林産物被害防止等を目的とした個体群管理手法及び防止技術に関する研究
 海洋汚染
 海洋汚染利用による海洋汚染水質浄化技術の開発に関する研究
 赤土流し
 南西諸島における海洋へ赤土流しの発生機構の解明と防止技術に関する研究

● 地球環境研究（地球環境研究総合推進費：環境庁）
 土壌汚染
 地球環境における土壌汚染の地球的動態とその影響に関する研究
 酸性降下物
 植物に与える酸性及び酸性化物質の影響に関する研究
 素食増加
 素食増加の増加が植物に及ぼす影響に関する研究
 メタノ等放置源
 メタノ等酸化物質の放出源及びその発生源の解明に関する研究
 炭素循環
 陸上生態系における炭素循環機構の解明に関する研究
 溫暖化対策評価
 地球温暖化防止対策技術評価に関する研究
 砂漠化
 砂漠化・人間環境の相互影響評価に関する研究

● 地球科学（地球科学技術特定研究費：科学技術庁）
 熱帯林
 熱帯林の変動とその影響等に関する観測研究
 地球温暖化
 地球温暖化の原因物質の地球的動態とその影響に関する研究

● 総合研究（地球科学技術振興調整費総合研究：科学技術庁）
 砂漠化機構
 砂漠化機構の解明に関する国際共同研究
 北極域
 北極域における気温暖、水凍、生物相の変動及びそれらの相互作用に関する国際共同研究
 マイクロ波
 マイクロ波センサーデータ利用等によるリモートセンシング高度化のための基礎技術開発
 システムと人間
 システムと人間との調和のための、人間特性に関する基礎的、基盤的研究

● 重点基礎（地球科学技術振興調整費重点基礎研究：科学技術庁）
 飛行性昆虫
 飛行性昆虫の飛行行動性の解明
 奥化メチル
 奥化メチルにおける奥化メチルの動態解明

● 原子力（科学技術庁原子力試験研究費：科学技術庁）
 農業環境原子力利用
 農業環境技術研究における原子力利用技術の開発と利用の拡大に関する研究
 野外R~T~トローサー
 野外R~T~トローサー技術の開発に関する研究
 低等動物放射性核種
 土壌に蓄積する長半減期放射性核種の動態及び解明に関する研究
 立体異性農業
 バイオテクノロジーによる立体異性農業の特異的標識化技術の開発とその利用

● 放射能（科学技術庁放射能調査研究費：科学技術庁）
 降下放射性核種
 土壌及び作物中の降下放射性核種の分析及び解明
 放射性ヨウ素
 放射性ヨウ素の土壌蓄積性及び浸透性の定量的把握
3. 農林水産業特別試験研究費（応用研究）補助金による研究課題一覧

<table>
<thead>
<tr>
<th>研究課題</th>
<th>共同研究者</th>
<th>所担当者</th>
<th>期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>接地境界層における大気微量気体のflux観測と評価に関する基礎的研究</td>
<td>大阪府立大学農学部</td>
<td>気象管理科</td>
<td>平成4～6年度</td>
</tr>
<tr>
<td>プラスミドベクターの宿主選及びコペ－数人の為的改変に関する研究</td>
<td>東京理科大学理工学部</td>
<td>土壤微生物利用研究室</td>
<td>平成6～8年度</td>
</tr>
</tbody>
</table>

4. 科学技術振興調整費による重点基礎研究課題一覧

<table>
<thead>
<tr>
<th>研究課題</th>
<th>参画研究室</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 移動性昆虫の飛行行動特性の解明</td>
<td>環境生態学部</td>
</tr>
<tr>
<td>2. 农耕地生態系における臭化メチルの動態解明</td>
<td>環境生態学部</td>
</tr>
<tr>
<td>3. 水田土壌系における生理活性物質の非持性生物に対する影響評価</td>
<td>情報解析システム研究室</td>
</tr>
<tr>
<td>4. 水田土壌系における生理活性物質の非持性生物に対する影響評価</td>
<td>情報解析システム研究室</td>
</tr>
</tbody>
</table>

5. 所内プロジェクト研究実施課題一覧

<table>
<thead>
<tr>
<th>研究課題</th>
<th>参画研究室</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 植物機能をもつインターネットWWWサーバの開発とそれによる農業環境技術研究所所蔵衛星画像データベースの構築</td>
<td>情報解析システム研究室</td>
</tr>
<tr>
<td>2. 園場における農薬フラックス測定法の開発と評価</td>
<td>農業管理研究室</td>
</tr>
<tr>
<td>3. 中川間耕作放棄水田における環境保全機能の変動評価</td>
<td>情報解析システム研究室</td>
</tr>
<tr>
<td>4. 水田土壌系における生理活性物質の非持性生物に対する影響評価</td>
<td>情報解析システム研究室</td>
</tr>
<tr>
<td>5. 水田における含硫ガスフラックスの季節変化とその季節変化の要因解析</td>
<td>大気保全研究室</td>
</tr>
<tr>
<td>6. 株落光合成のための葉面高強度多点計測の試み</td>
<td>植物生態研究室</td>
</tr>
<tr>
<td>7. カノンピー内における表面温度の測定</td>
<td>気候生態研究室</td>
</tr>
<tr>
<td>8. 大気と植物・土壌間の酸化炭素ガスの交換に関する環境要因の解明</td>
<td>気候生態研究室</td>
</tr>
<tr>
<td>9. 衛星データを用いた1994年夏の干ばつに関する解析</td>
<td>地球環境研究チーム</td>
</tr>
<tr>
<td>10. 作物への可溶性からみた有機体窒素の土壌中での動態</td>
<td>土壤化學研究室</td>
</tr>
</tbody>
</table>
III. 研究成果と展望

1. 地理情報を利用した土壌類型別保水容量に基づく流出モデル

（1）はじめに

地理情報システムでは土壌、地形、土地利用、気象等の環境因子の分布を数値情報として要約することにより、コンピュータによる種々の空間解析や土地評価を可能とする。特に、計画の策定や環境の評価のためには、開発の効果や影響をシミュレーションに基づいて予測し、計画の妥当性を検証することが必要とされる。そのためには、地理情報データベースの構築と予測や評価のためのモデルの構築が有効である。

このようなモデルの一つとして土壌の保水特性、地形、土地利用等の地理情報をもとに小流域における水移動を日単位に計算する流出モデルを開発した。モデルの開発にあたっては、小流域の水保全に関する土地利用計画の策定を支援することを前提とし、土地利用や土壌の変化に対応した流出水量や土壌中の貯水量のシミュレーションを可能とすることを目的とした。

研究全体の流れを図1に示した。まず、地理情報に基づく流出モデルの概念を整理し、流域をグリッドセルで分割してセルを単位として水移動を推定するモデルの構築を試みた。モデルのパラメータの推定と妥当性の検証のために事例流域内で河川流量、地下水位、雨量について1989年4月から1993年9月まで約4年間の連続観測を行なった。

次に、水流出に関連する環境因子の抽出とその類似手法および調査手法の検討を行い、現地踏査、空中写真、地形図等から1/10,000地形図を基図として事例流域（約18km²）の土壌、土地利用、微地形等の主題図を作成し、これらから25m×25m格子の地理データベースを構築した。

そして、開発した流出モデルを利用して、想定される土地利用や土壌の変化に伴う流量と土壌中
Ⅲ．研究成果と展望

の貯留量のシミュレーションを行なった。流出モデルはFORTRANでプログラムを記述し、計算にはパソコン（NEC社、CPU：80286、10MHz）に組み込んだトランスピュータ（INMOS社、CPU：T800、33MHz、8MbyteDRAM）を使用した。

（2）流出モデルの構築

土地利用連鎖という観点から、流域を25m×25 mのグリッドで分割し、個々のセルについて貯留水と流出水を計算するモデルとし、セル間の水移動は図2のようにモデル化した。地表面に到達した降雨（Rt）は地表流出（Fo）または、土壌に浸透（Ps）として貯留（Ss）された後に、地中流出（Fi）として順次下流側のセルへ移動する。水田によっては表面貯留（As）を考慮した。

図2 グリッドセル間の水の移動モデル

この水移動をモデル化するために流域のDEM（Digital Elevation Model）を構築した。DEMから斜面の傾斜方位を計算し、それを地表流、地中流の流出ベクトルとして流域の地形モデルを作成した。加えて、水保全に関係する環境因子の地理情報として土地利用類型、微地形区分、傾斜、土壌類型、土壌深、河川位置、道路位置、揚水機場位置、土壌の保水容量等のオーバーレイを作成した。

セル内部の水移動は図3のようにモデル化した。各セルに表面貯留量と土壌水貯留量の初期値および毎日の降雨量と蒸発・取水量を与え、フローチャートに従って1日単位にセルごとの各成分の量を計算した。

土壌へ浸透した水の流出は、より流出成分と遅い流出成分に分けられ、より流出は粗な非毛管孔隙をとおり、遅い流出は毛管孔隙に貯留され徐々に流出すると考えられる。そこで、土壌のpF0～1.7に相当する孔隙度を非毛管保水容量、pF1.7～2.7に相当する孔隙度を毛管保水容量として、土壌類型ごとに各層の厚さに各孔隙度をかけて保水容量を推定した（表1）。土壌中の貯留

<table>
<thead>
<tr>
<th>土壌類型</th>
<th>毛管</th>
<th>毛管</th>
<th>全</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pF0～17</td>
<td>pF17～27</td>
<td>pF27以上</td>
</tr>
<tr>
<td>紫色森林土BDx011</td>
<td>259.3</td>
<td>147.3</td>
<td>406.5</td>
</tr>
<tr>
<td>紫色森林土BDx021</td>
<td>370.6</td>
<td>198.7</td>
<td>569.3</td>
</tr>
<tr>
<td>熱帯森林土BDx031</td>
<td>505.2</td>
<td>241.0</td>
<td>746.7</td>
</tr>
<tr>
<td>熱帯森林土BDx041</td>
<td>746.7</td>
<td>265.2</td>
<td>1011.9</td>
</tr>
<tr>
<td>熱帯森林土BDx051</td>
<td>942.5</td>
<td>314.6</td>
<td>1257.1</td>
</tr>
<tr>
<td>黒土BDx11</td>
<td>242.0</td>
<td>154.9</td>
<td>396.9</td>
</tr>
<tr>
<td>黒土BDx21</td>
<td>362.4</td>
<td>211.4</td>
<td>573.8</td>
</tr>
<tr>
<td>黒土BDx31</td>
<td>559.3</td>
<td>278.0</td>
<td>838.3</td>
</tr>
<tr>
<td>黒土BDx41</td>
<td>783.0</td>
<td>338.2</td>
<td>1121.2</td>
</tr>
<tr>
<td>黒土BDx51</td>
<td>988.1</td>
<td>396.0</td>
<td>1384.1</td>
</tr>
<tr>
<td>深色黒土BD131H</td>
<td>209.6</td>
<td>94.5</td>
<td>304.1</td>
</tr>
<tr>
<td>深色黒土BD141F</td>
<td>308.6</td>
<td>160.5</td>
<td>469.1</td>
</tr>
<tr>
<td>表層層質薄黒土：A3H</td>
<td>217.7</td>
<td>137.0</td>
<td>354.7</td>
</tr>
<tr>
<td>表層層質薄黒土：A31H</td>
<td>219.0</td>
<td>141.0</td>
<td>360.0</td>
</tr>
<tr>
<td>表層層質薄黒土：A3b2H</td>
<td>213.0</td>
<td>120.0</td>
<td>334.0</td>
</tr>
<tr>
<td>周縁気象台地土：GrU2H</td>
<td>22.3</td>
<td>37.8</td>
<td>60.0</td>
</tr>
<tr>
<td>周縁気象台地土：GrU3H</td>
<td>7.5</td>
<td>10.0</td>
<td>17.5</td>
</tr>
<tr>
<td>周縁気象台地土：GrU4H</td>
<td>14.5</td>
<td>22.5</td>
<td>37.0</td>
</tr>
<tr>
<td>周縁気象台地土：GrU5H</td>
<td>21.3</td>
<td>35.0</td>
<td>56.3</td>
</tr>
<tr>
<td>周縁気象台地土：GrU6H</td>
<td>21.1</td>
<td>30.7</td>
<td>51.8</td>
</tr>
<tr>
<td>周縁気象台地土：GrU7H</td>
<td>25.2</td>
<td>33.6</td>
<td>58.8</td>
</tr>
<tr>
<td>周縁気象台地土：GrU8H</td>
<td>28.0</td>
<td>41.8</td>
<td>70.7</td>
</tr>
<tr>
<td>周縁気象台地土：GrU9H</td>
<td>28.0</td>
<td>34.3</td>
<td>62.3</td>
</tr>
<tr>
<td>周縁気象台地土：GrU10H</td>
<td>32.2</td>
<td>37.4</td>
<td>69.6</td>
</tr>
<tr>
<td>周縁気象台地土：GrU11H</td>
<td>25.0</td>
<td>33.4</td>
<td>58.4</td>
</tr>
<tr>
<td>中期気象台地土：GrU1m</td>
<td>19.1</td>
<td>25.1</td>
<td>45.2</td>
</tr>
<tr>
<td>中期気象台地土：GrU3m</td>
<td>50.5</td>
<td>76.6</td>
<td>121.1</td>
</tr>
<tr>
<td>中期気象台地土：GrU5m</td>
<td>39.4</td>
<td>54.4</td>
<td>93.8</td>
</tr>
</tbody>
</table>

水からの浸出量Qは、地下水通減式

Q=Q0 exp (-at) により日単位に推定した。Q0は初期浸出量、αは通減係数で地下水位観測の結
（3）土壌と土地利用の類型

土壌の保水量に関係する土壌孔隙はP1.7-2.7に相当すると考えられる。そこで、水の移動に関わる土壌の孔隙特性として非毛管粗孔隙（PFO-1.7）、毛管粗孔隙（PFO-1.7-2.7）、全粗孔隙（PFO-2.7）を取り上げ、事例流域の土壌断面を構成する土壌層層別の孔隙特性データを収集・整理した。

土壌の保水量には孔隙特性とともに土壌深が大きく影響する。そこで、微地形区分と傾斜区分との組み合わせにより山地の土壌深を推定する方法を開発し、土壌深と土壌型の組み合わせによる山地土壌の類型化を行った。台地、低地土壌については、年間の最低地下水位までの水保全に有効な土壌深と考え、これを土壌中の埋めの出現状態から推定し、この土壌深と層位配列の異なる土壌続群または土壌・地下水位区分との組み合わせによって土壌を類型化した。さらに、各土壌型に標準となる層位配列を与え、モデル断面を設定した。図4は山地土壌のモデル断面の事例である。

土地利用は土地被覆の違いにより降雨遮断率、蒸発散率、浸透率を介して流出に影響する。そこでこれらの要因の異なる土地利用区分として9種類に類型化した。

（4）流出モデルによる算定

土壌の保水量は徐々に流出して量と考えられるため毛管保水量（P1.7-2.7）を当てるのが妥当であり、これをとに事例流域の保水量の分布は図5のように推定された。流域全体の保水量は187mmで、地形別では山地で200mmを超え、台地は90mm、低地は30mm程度であった。ただし、低地については水田のピークに応じた表面貯留がこれに加わる。
次に，この流出を用いて，事例流域において，現況の土地利用および図6表3に示すように台地上の畑と樹園地（93.2ha）が宅地化すると仮定した場合の2通りについて，1年間（1990.10.1—1991.9.30）の降雨（2170.2mm）を入力として，日流出量および日貯留量を推定した。

流出モデルによる年流出量の推定値は現況土地利用で1253.8mm，変化後の土地利用では1259.9mmととなった。流出量の増加は土壌の浸透能，保水容量の減少に伴う直接流出の増加によると考えられるが，低水期には逆に流出量が減少するため年間の総量では大きな差とならなかった。

計算結果の中から，ある1日（非灌漑期間中で

最小流出量の日）の毛管粗孔隙中（pF1.7-2.7）の貯留量を示すれば現況土地利用では図7，現況と変化後の土地利用との差は図8とされる。台地の畑・樹園地を宅地化したことにより，この日の改変地の面積当たりの全貯留水量は27.6mm，流出水量は0.22mm/日減少すると推定された。

図7 土壌中の貯留量の予測例（1991年2月14日）

図8 台地の畑・樹園地の宅地化に伴う貯留量の変化予測（1991年2月14日）

表3 小桜川流域の土地利用（ha）

<table>
<thead>
<tr>
<th>田</th>
<th>林</th>
<th>树園地</th>
<th>他</th>
<th>荒地</th>
<th>林地</th>
<th>住宅地</th>
<th>用地</th>
<th>その他</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>現況</td>
<td>190.4</td>
<td>80.4</td>
<td>100.6</td>
<td>42.1</td>
<td>1263.1</td>
<td>52.8</td>
<td>70.4</td>
<td>1797.7</td>
<td></td>
</tr>
<tr>
<td>改変後</td>
<td>190.4</td>
<td>35.3</td>
<td>52.4</td>
<td>42.1</td>
<td>1263.1</td>
<td>146.0</td>
<td>70.4</td>
<td>1797.7</td>
<td></td>
</tr>
</tbody>
</table>

（5）土地利用計画への利用

水保全のための土地利用計画策定の手順を図9のように整理した。まず流域の地理情報データベースを構築し，土地利用計画に基づいて土地

図9 水保全のための土地利用計画手法の手順
利用や地形が変化する地域についてはその情報を入力する。さらに、造成や客土、大型機械の導入による圧密などにより土壌の孔隙特性が変化するため、土地改変に伴う新たな土壌類型を設定する。次に、確率雨量や塩水年の雨量などの想定される降雨データを入力として流出モデルにより流量および貯留水の計算を行う。その結果を流域の水保全計画目標に照らして流量と貯留水量を評価し、必要に応じて土地利用計画を修正し再度シミュレーションを行なう。

次に、このモデルを適用する場合とそのための条件は以下のとおりである。この流出モデルでは、土壌の保水容量に基づいて流量の推定を行っている。したがって、流量の変化を用い排水路など土壌以外の影響が大きい低平地の水田や市街地が多く流域への適用には問題がある。複数の土壌類型や土地利用、地形連鎖がある中山間地域などで利用するのが適当である。

他の流域に適用するためには土壌深、孔隙特性に基づく包括的な土壌類型と土地利用類型の設定およびパラメータの検討が必要である。そのためには土壌深の推定方法の確立や土壌情報のデータベースの整備が必要である。また、土地利用計画の策定にあたっては、土地利用変化や地管理方式の大違いに伴う土壌の孔隙特性の変化を明らかにし、土壌類型別に整理する必要がある。

（6）おわりに

土壌深と孔隙特性に基づく土壌類型、および蒸発散と土地被覆に基づく土地利用類型を設定し、それらと標高、斜面方位、河川、道路等の地理データベースを構築した。これらのメッシュ地質情報のもとに流域の流量と土壌中の貯留水を推定する流出モデルを開発した。このモデルにより特定の空間を対象とした計画や評価のためのシミュレーションが可能となった。ただし、流出モデルには土壌からの浸出に及ぼす水路や下流のグリッドセルの影響など改善すべき点もあり、今後の課題である。

また、持続的で安全かつ快適な環境とそれを作るための総合的環境計画が今求められている。農業における環境計画は土地利用や施設の配置・管理および土壌や作物の管理などの操作によって生産、生活、自然環境を良好に維持することが目的である。このための概念や手法については我々は未だ明確な回答を持っていない。

しかし、地理情報システムはこのような環境計画のための効果的な手法の一つとなるだろう。今後、環境計画手法の確立のために以下の研究が必要と考える。

①総合的環境計画の概念、シナリオの構築。
②環境を評価するためのモデルの開発。
③環境に関する地理情報データベースの構築。
④環境因子の調査および分類手法の開発。

文 献

1）古藤田一雄（1988）: 恋瀬川流域の蒸発散量の推定、グリーンシナジー計画成果シリーズ No.9，農林水産技術会議事務局，46-74
2）大貫靖ほか（1991）: 森林総研究波共同試験 地理水流域における保水容量の推定，102回日林論，355-358
（環境立地研究室 松本堅治・浜崎忠雄 [現 土壌調査分類研究室]）

2．植物生体情報の多波長画像計測法

（1）はじめに

環境変動に伴う自然植生の変化および作物生産力へのインパクトをモニタする方法として、リモートセンシング手法は高度化への期待は大きい。そのために、データの空間分解能、時間分解能を高めるとともに、波長分解能の高いセンサを利用して生体情報推定法の高度化を図ることが有効と考えられる。

一方、作物の調査・生育診断手法は栽培管理と作況予測の要となる技術であるが、特に最近、ふたつの新しい観点から、作物診断情報の重要性が高まっている。ひとつは環境負荷の低減化への要
III. 研究成果と展望

1. 多波長画像による水稲および雑草バイオマスの推定

通常の野外条件においては、ビジョン撮像管を検出器とする現在のシステムで解釈に利用できるのは可視から1600nm付近までであり、解析には13波長帯を用いた。分光画像より求めた各波長の反射輝度（相対値、R***nmと表示）は、水稲バイオマス、雑草バイオマス、および水田総バイオマスとそれぞれ図1に示すような関係が認められた。単波長ではR750、R800が特に密接な関係があり、波長間の相関値では、R681/R800、R629/R750、R1198-R1102、1.5(R800-R681)/(R800+R681+0.5)等が密接に関係していた。これら単波長または2波長の演算値とバイオマスの相関係数は水稲で0.85～0.92、雑草で0.75～0.87、水田総バイオマスで0.83～0.92であった。重回帰分析を行った結果、いずれも5～6波長を使うことで、寄与率（R²）が水稲で97%，雑草で89%，水田総バイオマスで94%の推定式が得られた。選択した波長のうち1198nm、951nm、600nm付近は水稲と雑草で共通的であったが、水稲では700、750nm、雑草では1247、1599nmが特異的に含まれていた（図2，図3）。

2. 空中スペクトル画像データによる生育量の面的評価

供試したダイズ圃場のバイオマスの変異は1.8～1170gm⁻²，葉面積指数は0～約4.5の範囲であった。気球から観測した広波長帯のR, G, B,
IRの4バンドとバイオマスならびに葉緑素濃度との関係を調べた結果、バイオマスとIRの間には強い正の相関（r=0.98）があり、RとBとの間には明瞭な負の相関（r=-0.86〜-0.96）があった。葉緑素濃度はGとの間に比較的高い正の相関があったが（r=0.71）、いずれも単独波長では高い推定力は得られなかった。IRとGの比はバイオマスとの間には高い相関が確認された（r²=0.96）。また、これらの4バンドを用いてバイオマスならびに葉緑素濃度を推定する重回帰分析を行ったところ、バイオマスはIRとBによりR²=0.97、葉緑素濃度はGとBによりR²=0.68の推定式が得られた（図4）。平均2乗誤差はそれぞれ71.5gm⁻²と3.0であった。これらの式から、一筆内のダイズ圃場の両パラメタの面的分布を算出した。図5にバイオ
Ⅲ. 研究成果と展望

図4 バイオマス（a）およびクロロフィル濃度（b）の重回帰推定

図5 シスト線虫に侵されたダイズ圃場のバイオマス分布の面的評価（鳥瞰図）

マスの面的分布を鳥瞰図として示した。任意の高度と角度からの表示が可能であり、数値化されたバイオマスやクロロフィル濃度の分布を等高線などにより観察することもできる。

（4）おわりに

可視～赤外領域の広い波長範囲にわたるマルチスペクトル画像を測定することにより、種々の植物生体情報を高精度で面的に評価できる可能性が示された。

バイオマスだけでなく、養分水や病害など生理的ストレスやクロロフィル、窒素、テンプン、リグニンの濃度など成分的な情報を植物個体群レベルでモニタリングするには、高波長分解能かつ面解像度の高いマルチスペクトル画像計測によって特徴量を抽出する方法が有効と考えられる。

現在、高スペクトル分解能画像を広域的に測定できるのはわずか2〜3の航空機搭載システムに限られている。地上あるいは上空からの測定によって、高精度リアルタイムで作物診断情報や地域内植生資源情報をモニタリングするためには、波長分解能と面的解像度の高いマルチスペクトル画像を高速で収集できるシステムの試作と、それによるモニタ手法の開発研究を進める必要がある。

文 献

5) 井上吉雄 1995. 電磁波計測による作物診断情報の遠隔的評価法. 農業技術50: 30-34.

(生物情報計測研究室 井上吉雄)

3. 水稲は水田からメタンを放出するパイプである

(1) はじめに

メタン (CH₄) は、現在大気中に約1.7ppmの濃度で存在する温室効果を有する気体である。近年、この大気メタン濃度が年率0.7~1.1%の割合で急激に増加しつつあり、地球の温暖化を促進している。全世界の各種発生源からの年間のメタン発生量の合計は、1992年には515Tg (Tg=10¹²g) であり、このうち水田からの発生量は60Tgで、全体の12%と見積もられている。水田はメタンの主要な発生源の一つであり、世界の水田増加と大気メタン濃度の増加との関連が指摘されているが、その原因は未だ明らかではない。

水田土壌内でメタンは嫌気性パクテリアによる炭酸還元反応と酢酸のメチル基転移反応の二つの生成経路により生成され、水田土壌内に蓄積する。この水田中のメタンは次の三つの放出経路で大気中に放出される。すなわち、(1)メタンを多量に含む気泡の発生、(2)水田水から田面水への濃度勾配による分子拡散と、さらに田面水から大気への揮散、(3)水稲稲内の通気組織を介した放出である。このうち、大気への主な経路は水稲稲を通って放出されるものであり、放出されるメタンのうち、90%以上が水稲稲体基、残りが気泡や拡散によって土壌表面を通して放出されていると言われている。一方、水稲など水性植物は嫌気的な土壌内に根を張っており、根の呼吸に必要な酸素を大気から根に供給するために茎や根の内部に通気組織と呼ばれる空気の流通する組織を発達させている。大気から根への酸素の移動と根から大気へのメタンの運動は、方向は逆であるか同じ経路である。

ここでは、水田土壌内で生成されたメタンを水稲がどのような機作によって大気中に放出しているのかを筆者らの研究を通じて紹介する。

(2) ガスの流れ: マスフローと分子拡散

水性植物の体内通気組織を介したガス輸送には、ガスの濃度差による分子拡散（窒素と酸素以外の微量なガス成分のみが濃度勾配で動くので空気の重心は動かない：空気の流れはおこらない）と、その濃度差の影響で圧力変化が起こり、大気成分の変化を伴うことなく空気全体の流れがおこるマスフロー（あるいはコンベクションフロー）という二つの主要なプロセスがある。マスフローによる水性植物の空気の輸送として、スイレン、ヨシ、ハスなどが知られている。この植物の特徴としては、葉の表面に極めて微細な孔をもつ若い葉とその微細な孔が崩れ大きくなくなった古い葉が、空気で構成されている地下塊で連結されていることである（図1）。先ず、ガスが拡散によって若い葉の微細な孔を通り葉内にすべりこむ。次に、太陽の日射により葉内部の温度が高まり、ガスが膨張する。すると、葉内の空隙中のガスの圧力が高まり、大気の圧力よりも大きくなる。この高まった圧力は葉組織から葉柄を通じ、地下塊への空気のバルクフローを生じる。地下塊からのガスフローは孔径が大きくなった古い葉へ向かって、古い葉の孔から大気へ放出される。これが熱・浸透圧力化によるマスフローの原理である。

なお、若い葉の微細な孔からすべりこんだガス
分子の平均自由行路が増加するため，一度若葉の気孔内に滞留したガス分子は微細な気孔からは脱気空気中に逃げることができないことがこの原理のミソである．このマスフローのサキュレーションは根に酸素を運ぶとともに，土壤水から根内に入ったメタンを古い気孔から大気へ放出しており，湿地でのメタンの放出に大きく関与している．一方，水稻におけるメタン輸送はどのようなものであるか？水稻はスイレンやハスのような地下塊をもたない形態構造のため，浸透圧力化によって生じるようなマスフローではなく，土壤水と大気間のメタン濃度差をドライビングフォースとする分子拡散であると考えられる．

（3）メタンは水稲の蒸散に伴せて葉身の気孔から放出されるのか？その答えは否だ．

植物における大気とのガスの交換（CO₂，H₂O，大気汚染ガスなど）の出入口は葉の気孔であることは常識であり，研究者の誰もがメタンも同様に気孔から放出されるものと考えていた．しかし，水田において水稲体からのメタンの放出速度（フラックス）の快晴日の中変化を測定すると，ある場合には日中のフラックスが夜間の2倍程度になることもあるが，ほとんど日変化を示さない場合もある．また，日変化を示す時もフラックスの最大ピークは午後から夕方のかけての場合が多い．このことは水稲のメタンの放出は，水稻の蒸散速度や葉の気孔の閉き具合とはあまり関係のないことを示している．そこで，筆者達はメタンの放出に気孔がほどんど関与していないことを，気孔閉鎖作用をもつアブシン酸を葉面に塗布したり，高濃度メタン溶液に水耕栽培した水稻の根を浸し，人工光人工気象室内で明暗処理実験で確認した．

さて，アブシン酸塗布では蒸散速度は1/3程度に減少したのに，メタンの放出速度はほとんど変化しなかった．植物の根の吸水蒸散によって蒸散されている蒸散によって根内に水が入る，その水に溶存しているメタンが放出されるのであるならば，明暗処理により蒸散速度が変化すると，メタンの放出速度は蒸散速度と同様のパターンをとるはずである．結果は蒸散速度とメタン放出速度はまったく異なったパターンを示した（図2）．

図1 Nuphar luteaのthermo-osmotic pressurizationによるガスのマスフローのモデル（Schütz, 1991）．ガスの流れは温度が葉内の温度が大気より高くなっている場合に若葉から老葉へと地下塊を通して起こる．

Ti：葉温，Ta：気温，Pi：葉内の圧力，Pa：大気の圧力
透入するのであろうか。そこで、水を介さないメタンの移動としては気体分子として根内に透入する考え、水稲の根が気相のメタンを吸収できるかどうかを調べた。水耕栽培した水稻根の水をよくとり、高濃度のメタンを含む気相を根に流し、水稻地上部から放出されるメタンフラックスを測定した。その結果、予想通り根による水の吸収がないにもかかわらず、メタンは水稻の根に透入するとともに地上部に輸送され、放出されていることがわかった（図3）。図3にはメタンフラックスが水溶液中のメタン濃度に比例することを併せて示した。

図3

高濃度メタンを含有した水溶液中に水稻の根を浸したり、あるいはメタンガスの気相に置き、濃度を変化させた時の茎葉から放出されるメタンフラックスの変化。

（4）メタンは水稻の茎から放出される

メタンの放出には葉の気孔はほとんど関与していないと前に述べたが、それではメタンは水稻地上部のどこから放出されるのか。水稻根を高濃度メタン溶液に浸し、水稻の葉と茎を支えている葉鞘の包み重なった稈とよばれる茎に別々に小さなチャンバーを被せ、メタン濃度を測定すると、葉身を入れたチャンバー内のメタン濃度はわずかに増加したが、茎を入れたチャンバー内のメタン濃度が著しく増加した。このことより、メタンは茎から放出されていることがわかった。さらに、図4のように水稻に細長いチャンバー（直径3cm、長さ50cm）を被せ、葉の先端の方からポンプで空気を導入し、細いパイプ（直径1mm、長さ60cm）で葉身や葉鞘の根付近の空気を採取すると、根に近い根付近からのみメタンが放出されることが確認された。これらの結果から、メタンは葉身の気孔からではなく、主に葉鞘から放出されると結論された。

次に、メタンは葉鞘のどこから放出されるのかを明らかにするために、根を切断した水稻を水中に沈め、切断面から注射針を茎の部分に差し込み、空気を圧入し、気泡がどこから出るかを観察した。その結果、気泡は茎の2か所から発生し、(1)稈から葉身が出るその根元の葉鞘部分である葉舌と稈との間から大きな気泡と(2)根に近い稈の一番外側の葉鞘表面から小さな無数の気泡であった（図5）。この(1)の稈と葉舌の間からでは、注意深く外側の葉鞘をはがしてゆくと、そのつぶね（節板）付近から大きな気泡が発生していることがわかった。(2)の気泡が発生している葉鞘表面を走査型電子顕微鏡で観察すると、写真1のような微小な孔のあることを見いだした。また、空気を圧入した時と同様に、硫酸鋼溶液を押し込み、青い溶液が葉鞘表面ににじみ出した後、風乾し、X線マイクロ
III. 研究成果と展望

図5 空気圧入による気泡の発生部位。水稲の根を切断し、
水稲を水中に沈め、酪酸に注射針を差し込み、空気を圧入して、空気泡の発生するところを観察した。
細かい泡が葉鞘表面から、また大きな泡が葉鞘と葉鞘の間の節板付近から発生した。

した後の葉鞘表面の走査型電子顕微鏡写真。ヘッジノン放出口と見られる微小な孔が存在していた部分
に硫酸銅の結晶が認められる。

（5）根圏から大気への水稲体内を介したメタン
輸送機構の仮説

以上の実験結果から、我々は水稲によるメタン
の輸送機構を次のように推定している。まず最初に、
根の周囲の土壌水と根の破生通気組織（細胞
の崩壊によって生じる空隙）内の濃度勾配により、
根の周囲の土壌水中のメタンは根の表面水に拡散
し、根の表面細胞の細胞壁あるいは細胞質内の水
に移動する。次に、メタンは根の細胞から根の皮
層（水稲では普通5〜8層の細胞が並び、細胞間
隙が発達する）に移動し、皮層内でガス化し、根
内の破生通気組織や葉鞘内の通気組織を通って地
上部に移動する。最後に、ガス化したメタンは茎
の中の葉鞘内側の節板付近から最外側の葉鞘
表面の微小な孔から大気に放出される。なお、
蒸散に伴って一部のメタンは葉身の気孔より放出
される。このような、メタンの輸送経路の概略を
図6に示した。
図6 水稲体内を介した大気へのメタン輸送経路

(6) 水田からのメタンフラックス(放出速度)の季節変化のモデル化

水田に水を引き込み浸水した時から、収穫までの水稲栽培期間の間、水田からのメタンの放出量は季節変化をする。水稲の生育期間を前半と後半に分けると、日本のような温帯域のメタンの発生は一般に、水稲の生育が盛んな後半に多く発生する。このメタンフラックスの季節変化は、土壌中でバクテリアにより生成されるメタン量(濃度)とそれを輸送する土稲体の輸送能力が関係するはずである。しかし、これまで、これらの関係を数学的に明らかにしたものはなかった。そこで、測定データが得られる土壌水中のメタン濃度、メタンフラックス、水稲体の大きさなどからこれらの関係をモデル化することを試みた。

筆者らは水稲はメタンを放出するパイプで、土壌水中のメタン濃度と大気中のメタン濃度の濃度差の濃度勾配による分子拡散で移動すると考えると、水田からのメタンフラックス(放出速度)はガス拡散抵抗モデルで解析できると考えた。さらに、電気のオームの法則(電流=電圧×コンダクタンス)に例えると、土壌水中のメタン濃度(Cs)を電圧、水稲体のコンダクタンス(抵抗の逆数で通し易さを示す、D)とすると、メタンフラックス(F)は電流である(F=Cs×D)。なお、大気中のメタン濃度をPa、メタンの水への溶解度のヘンリ一定数をHとすると、電圧である濃度差は正しくは(Cs−Pa/H)であるが、土壌水中の単位のメタン濃度に比べ、ppm単位の大気中のメタン濃度は無視できるので、(Cs−Pa/H)≒CsであるのでF=Cs×Dとなる。

水稲のコンダクタンス(伝導度、D)はメタンが通過する根や茎の断面積や移動距離など物理的に求められるものであるが、実際にこれらを測定することはできないので、ここでは実測値であるメタンフラックス(F)を土壌水中のメタン濃度(Cs)で除して求めた。水稲の大きさを表す指標としては、葉面積、個体重量、草丈、茎数などが考えられるが、メタンは茎から放出されるので、茎当たりのコンダクタンスとして表すのが適していると考えている。実験室での高濃度メタン溶液に水耕栽培した水稲の根を浸して、メタンフラックスを測定したデータから、茎当たりの水稲のコンダクタンスはおよそ6.0cm^3h^{-1}shoot^{-1}であった。この値と土壌水中のメタン濃度および稲の茎数よりメタンフラックスを計算する(F=Cs (6.0×23×Sn)/1000)。なお、Snは水稲1株の茎数、23は1m^2当たりの水稲株数であり、Fの単位はmg m^{-2}h^{-1}、Csはμg ml^{-1}である。すると、計算値が実測のフラックス値とその季節パターンを再現できる場合があるが(図7 A)、年次により、あるいは稲ワラなどの有機物を施用した場合、実測のフラックス値と大きく異なる部分もあった(図7 B)。この解析に苦労しているときに、ふと、水田における栽培期間中の水稲のコンダクタンス(F/Cs)と気温あるいは地温との間に密接な相関があることを見ていた(図8)。そこで、温度をモデルに組み込むことにし、茎当たりの水稲のコンダクタンスを気温あるいは地温の回帰式で表し、係数の6.0のかけはりにその回帰式を代入すると、メタンフラックスの季節変化をかなりよく説明できるようになっ
III. 研究成果と展望

図7 水稲体内をメタンが通過する通りやすさ（コンダクタンス）を6.0cm⁻²h⁻¹shoot⁻¹と固定し、定数から拡散モデルで計算されたメタンフラックスと、1994年に化成肥料区（A）と稲ワラ施用区（B）で実測されたメタンフラックスの経時変化。計算によるメタンフラックスは次式で計算された：
\[F = Cs \times 23 \times Sn / 1000 \]
ここでFはメタンフラックス（mg m⁻²（land）h⁻¹）、Csは土壌中のメタン濃度（μgml⁻¹）、Snは水稲1株の葉数で23は1 m⁻²あたりの株数である。

図8 1基あたりのコンダクタンスと1993年と1994年の2年間の化成肥料区（A）と稲ワラ施用区（B）の深さ5 cmにおけ
るメタンフラックスを測定した時の地温（℃）との関係

図9 水稲体内をメタンが通過する通りやすさ（コンダクタンス）を気温の関数として、定数から拡散モデルで計算された
メタンフラックスと、1994年に化成肥料区（A）と稲ワラ施用区（B）で実測されたメタンフラックスの経時変化。
計算によるメタンフラックスは次式で計算された：化成肥料区 F = Cs(23×Sn×0.308exp(0.126T)/1000, 稲ワラ施用区 F = Cs(23×Sn×0.178exp(0.123T)/1000 ここでFはメタンフラックス（mg m⁻³（land）h⁻¹）、Csは土壌水
中のメタン濃度（μgml⁻¹）、Snは水稲1株の葉数で23は1 m⁻²あたりの株数、Tはメタンフラックスを測定した時の
気温（℃）である。
それでは何故、茎当たりの水稲のコンダクタンスが温度に依存して変化するのであるか。それを実験的に確かめるため、フラスコに入れた高濃度メタン溶液に水稲を植え、このフラスコを恒温水槽に沈め、水温を15～30℃まで変化させ、溶液中のメタン濃度とメタンフラックスから計算されるコンダクタンスの変化を調べた。すると、茎当たりの水稲のコンダクタンスは水温の変化に追随し、水温の上昇について増加し、30℃では15℃に比べ、約3～4倍にもなった（図10）。茎当たりのコンダクタンスが水温に依存して変化する理由はわからないが、外周溶液中のメタンが根に侵入する過程が律速になっており、水温により根の表面細胞の細胞膜の性質が変化して、その侵入速度が水温の増加とともに増加するのではないかとの推測をもっている。このメタンの水稲体内的コンダクタンスの温度依存性は、メタンフラックスの季節変化ばかりでなく、日変化をもまた説明できるものと筆者らは考えている。

このように、メタンの水稲体内を介した輸送現象は説明づけられるようになったが、まだ一つ説明できないことがある。それは、土壌内に稲が稲を施用すると、稲がメタン生成菌を基質となり、稲施用区で土壌水中のメタン濃度とメタン放出量が稲無施用区に比べ共に極

![図10 高濃度メタン水溶液の水温変化とコンダクタンスの変化。高濃度メタン水溶液に入れたフラスコを恒温水槽に浸し、水温を制御した。水溶液の温度変化に追随してコンダクタンスが変化する。](image)

（7）おわりに

筆者らは水田からのメタンの放出の大部分は水稲を介したものであり、メタンの放出口が茎にあり、かつ、放出速度は塩分濃度に依存していることを明らかにし、水稲体を介した水田土壌内から大気へのメタン輸送経路の仮説を提出するとともに、その輸送をガス拡散抵抗モデルを用いてモデル化した。その輸送モデルでは、細かい部分ではまだ多少問題が残っている部分もあるが、大略に関しては説明できるものとなった。しかし、水田からのメタンの発生に関しては土壌内での生成・分解、輸送および浸透水による下方へ移動など様々な過程がある。特に、土壌はメタン生成の場であるばかりでなく、メタン分解の場（メタン酸化菌による炭酸ガスへの酸化）で、生成したメタンの60～90％が放出される前に分解されると考えられている）である。両者は同時に起こっており、生成と分解のそれぞれを定量化することは困難である。水田からのメタンの発生メカニズムを明らかにするためには、この問題が最も重要であり、今後、水田土壌内におけるメタンの生成・分解モデルを構築するとともに、メタンの生成・分解、輸送、溶脱の各過程モデルを総合したメタン発生モデルを構築する必要がある。それにより、水田からのメタン発生量を正しく評価することができ、
また、メタン発生量を削減する手法の開発が図られた。

（8）あがき

筆者がメタンに関する研究に手を染めたきっかけは、1987年の春頃であったと記憶している。現在も農耕地からの温室効果ガスの発生量評価に関して世界のリーダーとして活躍している国際農林水産業研究センターの植行環境資源部長（当時農環影響調査研究室長）にメタンの分析法に関し意見を聞かれたことがある。筆者が東京都公害研究所（現東京都環境科学研究）大気部に所属していたためである。その際、同氏のメタンに対するさまざまな意図があると感じられた。その後、メタンに関する情報を多く与えられ、ついには1988年度重点基礎研究「大気メタンの動態」の仲間に引き込まれた。当時、筆者は大気汚染物質、特にオゾンとPAN（Peroxyacetyl nitrate, CH₃COOONO₂）の植物影響を長年に渡って研究しており、植物毒物質ではないメタンにはほとんど興味を持っていなかったが、おつき合いとこの重要な基礎研究に名を連ねた。翌年から始まる重点基礎研究の予備的な調査をしようと思い、12月頃より当時大気保全研究室に在席していた原薰芳信主任研究官（現気象特性研究室長）と高濃度メタン溶液に水耕栽培した水稲の根を浸し、メタンが何分後に、またフラックスはどの程度かどの測定を開始した。この当時は、単純に水に溶けているメタンが蒸散とともに大気中に放出されるものと考えていた。しかし、驚いたことに、実測した時のメタン放出速度は水溶液中のメタン濃度と蒸散速度から計算したメタン放出速度より極めて大きかった。「その理由は？」の問いに「？？？」。予備的段階であり、その時はあまり深くは考えなかった。

翌年度重点基礎研究が開始され、重点基礎ポストドクトリアルフェローとして1988年8月から南子 茂氏（現山梨県環境局）が研究に参加し、果的に水稲からのメタン放出の研究を開始した。折しも原薰芳信氏は大気保全研究室から気象特性研究室長に転出されたため、筆者と南子 茂氏とでこの研究にあたることになった。この間、尾和直人肥料動態科長（当時多量要素動態研究室長）からは水稲霧状内のメタン濃度の測定法を各教授頼む、水稲霧状内のメタン濃度を測定すると非常に濃度であるとともに、根の近い霧状内の方がその上の霧状内よりも高いことがわかった。一方、アプシシン酸塗布実験、暗喫処理実験と実験を重ねるつれ、メタンは葉身の気孔以外のところから放出されなければならない。つまり、気孔以外のどこかにメタンの放出口があるはずであるという結論になった。そして、葉身と葉鞘にそれぞれチャンバーを被せてフラックスを測定した実験から南子 茂氏は「メタンの放出口は葉鞘ではないか」と指摘した。しかし、確たる証明が得られなかったまま、南子 茂氏の非常勤職員としての6か月間の雇用期間が終了してしまった。一人となった筆者は、水稲霧状に注射筒で空気を圧入し、どこから気泡ができるかを調べたり、メタンフラックスが水溶液中のメタン濃度に比例すること、根が気相中でもメタンを吸収することなどを明らかにした。そして、当時の多量要素動態研究室におられた伊藤 治主任研究官（現国際農林水産業研究センター環境資源部）からご教授いただいた高崎義電子顕微鏡で葉鞘表面を観察し、ついにメタン放出口と思われる細かい孔を見いだした。初めてその孔を見た時の驚きと、自信のなさからおもわず松田 泉主任研究官（現発生抑制動態研究室長）に確認を求めた。松田さんの「確かに孔ですよ」との光輝いた言葉を耳にし、ようやく終わったと思った。折しも1988～1989年当時は南極のオゾンホールがマスコミを驚かしていいた時期であり、伊藤 治主任研究官はこれにちなんでこのメタン放出口の孔をメタンホールと名づけてくれた。

これらの結果を勇んでアメリカ植物生理学会誌のPlant Physiologyに投稿した。が、待つこと4カ月、厳しい審査意見とともに掲載不可の手紙が届いた。しかし、Editorの大変興味深い論文であり、科学的実験を追加し、再投稿するようにとの指示にわずかな救いを見いだした。松田 泉氏か
らは水稻の雛腔に金属溶液を注入し、その孔の周辺に金属が存在することをX線マイクロアナライザー付走査型電子顕微鏡で証明するように助言を受けていたことを思いだし、その実験および観察を行った。また、その後、大気保全研究室に新人として配属された細野達夫氏の助力も得て新たな様々な実験を行い、データを追加し再投稿した。初投稿から1年3か月後の1990年7月、メタンが水稲の葉から放出されることが初めて世の中に知られることになったのである（Plant Physiology, 94, 59-66 (1990)）。さらに、水田からのメタン発生量の評価を主力に研究を行っていた当時の陽捷行資材・生態管理科長、八木一行影響調査研究室研究員と大気保全研究室長であった筆者との3名の連名による「水田におけるメタン発生量の評価とその放出機構に関する研究」で、1991年財団法人「環境調査センター」と「日刊工業新聞社」主催、環境庁後援の「環境賞」を授与され、その最優秀研究として「環境庁長官賞」も合わせて受賞したところとなった。

現在、水稲体内を介したメタン輸送を明らかにするために、土壌水中のメタン濃度、水稲体、水稲からのメタンフラックスの三者の関係をガス拡散抵抗モデルでモデル化しつつある。その初期的アイデアはPlant and Soil, 161, 195-208 (1994)に掲載されているが、その後さらにモデルを日進月歩で改良している。この問題では、細野達夫氏と筆者の東京都公害研究所（現東京都環境科学研究所）時代からのおよび研究仲間である青木一幸氏の助力によるところが大きい。青木一幸氏は化学者であるとともに電気や物質輸送の物理に造詣が深く、筆者らの実測データを理論的に解析し、かつメタン輸送の様々なアイデアを提供してくれており、Plant and Soil掲載論文ばかりでなく、Plant Physiology掲載論文に関してもその助力によるところが多い。また、影響調査研究室の鶴田治雄室長と八木一行研究員には、水田からのメタン発生に関して彼らが掘り起こした問題点の提供を常に受けている。さらに、陽捷行国際農林水産業研究センター環境資源部長からは、1993年10月のフランスのディジョンと1994年3月のイギリスのペッドフォードで開催されたそれぞれ日本－ECと日－英の「メタンとN2O」のワークショップにおいて日本側講演者リストに加えても言った。このように、筆者らの水稲体内を介したメタン輸送に関する研究では、多くの方々の有益な助言や指導を受けつつ着実な研究の深化が進んでいる。筆者の予測では、水田からのメタン放出の日変化と季節変化の説明、稲ウラ無施用区と稲ウラ施用区での水稲のコンダクタンスの違いの理由などは、間もなく細野達夫氏の手によって輸送モデルの完成とともに明らかにされるであろう。また、それが細野達夫氏の博士論文の骨子となるであろうと信じている。

（大気保全研究室 野内 勇 [現研究交流科]）

4．三種類の天然素材からなる新規土壌凝集劑の合成

（1）はじめに

沖縄本島をはじめ石垣島、西表島など南方諸島の沿岸海域において土砂の海洋流出が発生している。これらの沿岸海域は、世界でも有数のサンゴ礁域を形成しており、流出土砂はサンゴの死滅やそれにともなう魚介類の減少など沿岸海域生態系の破壊の一因になっている。

海洋流出を起こしている問題土壌は国頭（くにがみ）マージョとよばれる食性の高い赤・黄色土である。国頭マージョは、沖縄本島においては、島の北部に卓越しているが、そこは中部南部に比べて標高が高く、傾斜地に富み、しかも、年雨量の平均が約2,300mmと降雨量も多い。

このような自然条件下で、国頭マージョの降雨による侵食・海洋流出は、それが顕在化する以前にももちろん認められていた。しかし、その当時は自然界的自己浄化作用が働いた。台風の通過時などに波に洗われる流出土砂は外洋へと運び去られたのである。ところが、近年、森林の開発、農地造成による土壌構造の脆弱化、食性移動物とされる
バイナップルの植栽、水田の減少などさまざまな要因が加わることによって、侵食はますます加速され、自然界の自己浄化機能を越える土砂が流出し、海洋流出が顕著化した。

土砂流出を軽減させるために、マルチング、カバークロップの導入、等高線栽培の励行、有機物の増施、土壌改良資材の投入、ミクマックスイレッジ等による栽培様式、栽培管理の改善など営農的な対策や、超深耕による下層土の透水性の改善などの土木工学的な対策が行われているが、種々の問題を含む抜本的な解決策は見出されていない。

そこで、土砂流出防止対策として、当研究室は三種の天然素材から成る新規土壌凝集剤を開発した。

（2）団粒形成促進剤の現状と問題点

乾いた土壌団粒に降雨などにより急速に水が浸み込むと、団粒中に封じ込められた空気が圧縮され、土壌凝集力の弱まった時点で破壊する。団粒の破壊が、表土の目ざましを起す。その結果、表面流去水や流亡土が発生する。団粒の粒子間結合には、有機物や菌系などによる凝集・架橋作用などが関係しているが、この作用を人工合成物で代替させようとするのが団粒形成促進剤である。

地力増進法に基づく政令指定土壌改良資材には、種類ごとに、原料、用途、施用方法などが表示されている。これらのうち、用途（主たる効果）が、「土壌の団粒形成促進」と表示されているものに、ポリビニルアルコール（PVAまたはポバールともよばれる）とEB-a（Errosion Balancer-agriculture）があり。

PVAについては「処理後比較的短時間に土壌の耐水性団粒を増加させ、分散率を低下させることから、粘土土壌においては団粒形成促進による土砂流出防止効果が期待できる」との沖縄県農試報告（平成3年）がある。EB-aについても、施用により土壌の透水性が増大し、表面流去水や流亡土が減少することが認められている。

このようにPVA、EB-aは侵食抑制効果は認められるものの、次のような問題点が指摘されてい
H₂O, SO₂が入りできる四角いトンネルがあり、四つの辺の中央（鉄2棟接合面）にOHがある。

有機酸：シリンガ酸（図-2）は代謝中間物として植物体内に存在する。森林中にも植物遺体に由来するフェノール酸の一つとして存在する。実験には市販のシリンガ酸を用いた。

粘土：市販のモンモリロナイトを用いた。

図-2 シリンガ酸

2）合成
蒸留水3.5ℓに50gのモンモリロナイトを懸濁させ、攪拌しながら塩化鉄(III)水溶液500ml(FeCl₃・6H₂Oとして107g)を滴下した。滴下終了後の懸濁液のpHは1.5前後に低下した。1N水酸化ナトリウム水溶液を用いてpHを5前後に調整することによって、β-FeOOHの結晶をモンモリロナイトの表面に析出させた。これにシリンガ酸水溶液1ℓ（1.25g/ℓ）を添加し、粘土表面のβ-FeOOH表面にシリンガ酸を吸着させて懸濁状態の土壌凝集剤を得た（乾燥物量87g）。

β-FeOOH結晶を合成し、X線回折で同定した。土壌凝集剤およびその関連複合体など（β-FeOOH, β-FeOOH+シリンガ酸複合体, 粘土および粘土+β-FeOOH複合体）のDTA曲線の比較から、上述の方法で得た土壌凝集剤は、粘土+β-FeOOH+シリンガ酸の複合体であることを確認した。

3）機能
β-FeOOH結晶は図-1のab面が粘土表面と平行に析出すると考えられる。フェノール酸の一つであるベロヒドロキシン安息香酸のゲーター（α-FeOOH）への吸着は配位子交換反応による強い吸着であることが知られている。これと同様に、β-FeOOHへのシリンガ酸の吸着も、トンネル周辺のOHとシリンガ酸の-COOHとが関係する配位子交換反応であろうと考えられる。この時吸着されたシリンガ酸のフェノール性OHは、外側に水素原子を向けた状態でβ-FeOOH結晶面から一定距離の平面に並ぶことになる。フェノール性OHと土壌粒子表面の酸素原子との間に水素結合が形成されて土壌の凝集が起こると考えられる（図-3）。

図-3 新規土壌凝集剤と土壌粒子の反応構造（概念図）

4）凝集効果
表-1に、新規土壌凝集剤の国頭マージに対する

表-1 新規土壌凝集剤の国頭マージに対する凝集効果

<table>
<thead>
<tr>
<th>添加量 (wt%)</th>
<th>粒径区分</th>
<th>重量 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.05mm以上</td>
<td>6.87</td>
</tr>
<tr>
<td></td>
<td>0.05〜0.03</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td>0.03〜0.02</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>0.02mm以下</td>
<td>0.31</td>
</tr>
<tr>
<td>0.25</td>
<td>0.05mm以上</td>
<td>9.22</td>
</tr>
<tr>
<td></td>
<td>0.05〜0.03</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>0.03〜0.02</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>0.02mm以下</td>
<td>0.10</td>
</tr>
<tr>
<td>0.5</td>
<td>0.05mm以上</td>
<td>9.58</td>
</tr>
<tr>
<td></td>
<td>0.05〜0.03</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>0.03mm以下</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.00</td>
</tr>
</tbody>
</table>
る凝集効果をビペット法によって検定した結果を示す。1ℓのメスシリンダーに10gの試料を入れて水分散させた。無添加試料では、粒径0.05mm以上の成分が6.9gであったが、0.25wt%の凝集剤を添加することにより9.2g、0.5wt%で9.6gとなり凝集効果が認められた。写真-1に凝集のようすを示す。懸濁液のpHは4.8であったが、この場には分散性を高めるためにいずれの試料にも同量の水酸ナトリウム溶液を加えpHを5.3に調整した。写真2～4に、それぞれ無添加土壌(2)、新規土壌凝集剤0.25wt%添加土壌(3)、市販土壌改良資材0.25wt%添加土壌(4)の電顕写真（3,500倍）を示す。

写真-1 新規凝集剤の国頭マージに対する凝集効果
（右より凝集剤無添加、0.25wt%添加、0.5wt%添加、添加後5分間静置）

写真-2 無処理
写真-3 新規土壌凝集剤
写真-4 市販土壌改良資材

写真2-4 土壌凝集剤添加による土壌粒子の粒径変化（3,500倍）
2：無添加、3：新規土壌凝集剤0.25wt%添加、4：市販土壌改良資材0.25wt%添加の場合

5）団粒形成促進効果

上述の0.25wt%添加で凝集させた国頭マージを濁過、乾燥後、水中ふるい分け法により耐水性団粒分析を行ったところ、耐水性団粒形成促進効果は認められなかった。粘土粒子を接合させて凝集が起こることをみても、水中ふるい分け法用の組ふるいの中で最小の目的の開きの0.1mmふるいに残るような大きな団粒までははならなかったと考えられる。3倍量添加で効果が現れはじめ、5～10倍量添加することによってはっきりとした効果が認められた。しかし、実際には場に施用する場合のことを考えると、深さ10cmまでの土壌を対象にするとして、1アール当たり125～250kgの凝集剤が必要となり、また均一に混和しなければならないことになる。

そこで、もっと実用的な方法として、水中ふるい分け法によって団粒形成促進効果が検定できるような粒径にするための補助製品を検討した。その過程でアルギン酸が、新規土壌凝集剤とよく反応することが判明した。アルギン酸は褐藻類から抽出される海藻多糖類で、ワカメやコンブなどに含まれている。新規土壌凝集剤を表面散布し、乾燥を待ってアルギン酸ナトリウムの希薄溶液を散布することによって、耐水性団粒が形成することが室内実験から明らかになった。粗孔隙率、耐水性団粒の持続性などについて検討を進めている。
（4）おわりに

ここでは、モンモリノライト（粘土）+β型含水酸化鉄＋シリンガ酸（有機酸）＝新規土壌塩集剤について述べた。三種類の原料のうち、粘土および有機酸については種々の選択が可能である。また、β型含水酸化鉄と有機酸だけでも凝集剤が合成できること。

今後、土砂流出防止、人工床土の調整、代かき排出時の懸濁水流出防止など農業生産や、下水汚泥、集落排水処理など環境問題における環用目的に用いた凝集剤の合成法について検討する。

沖縄県下のほ場 (2.5m×40m、傾斜度 3°) で実証試験を行っている。
（土壌コロイド研究室 高橋義明・樫井奈弘・牧野知之）

5. 食料の生産と水質汚濁

（1）はじめに

食料の生産と消費に伴う窒素負荷の発生については、いくつかの検討が行われており、ここでは、それぞれをまとめ、現代における世界とわが国の食料供給システムの問題点を水質汚濁との関わりにおいて解説する。言うまでもなく、窒素は閉鎖性水域の富栄養化、地下水の硝酸態窒素による汚染と密接に関係している。食料は水と共に人的生命に欠かせないものであるが、食料の生産により水が汚れると言うことはなんとも皮肉な現象である。ここでは、わが国の窒素収支を中心に食料生産と水質汚濁の関係を考察するが、環境との調和が叫ばれる今日、本考査は人間と環境の調和をはなしにか関わる重要な視点を与える。

（2）食料生産と窒素負荷

次の二つの要因は、現代における食料の生産と窒素負荷の関係を大きく規定している。

1）窒素肥料投入量と収穫量

図1 には人口と耕地面積の変遷を示す。人口の急速な増加に比べ、耕地面積は殆ど増えていない。耕地は有史以来森林を伐採して得てきた。森林の保護に対する国際世論の高まりを考えれば、今後耕地が飛躍的に増加するとは考えられない。一人を支えるための耕地面積は今後も減少して行く。

<table>
<thead>
<tr>
<th>年代</th>
<th>人口</th>
<th>耕地面積</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>5.0</td>
<td>1.2</td>
</tr>
<tr>
<td>1960</td>
<td>5.8</td>
<td>1.3</td>
</tr>
<tr>
<td>1970</td>
<td>6.5</td>
<td>1.4</td>
</tr>
<tr>
<td>1980</td>
<td>7.2</td>
<td>1.5</td>
</tr>
<tr>
<td>1990</td>
<td>7.9</td>
<td>1.6</td>
</tr>
</tbody>
</table>

図2 人口1000万人以上（1990）の国65カ国における単位面積当たりの窒素肥料投入量と作物吸収量の関係 (キューバとマレーシアは相関を求める際除外)
ある⑨。多くの窒素肥料を投入することにより，より多くの収穫を得ることが出来る。ここで問題は，収穫量が窒素肥料の投入に対して増減している点にある。多くの肥料を投入すれば，より多くの収穫物を得ることができるが，より多くの窒素を環境に放出することになる。

2）生活水準と蛋白質摂取量

図3は一人あたりのGNPと蛋白の消費量の関係を別にブロットしたものである。一人当たりのGNPが増大するにつれ蛋白質の摂取量が増え，かしながら，食生活の変貌は，一方では物質食環

かえ，環境に大きな負荷を強いることになった。

わが国の医療・健康の面では大きな成果を挙げた戦後の食生活改善は，物質循環と人間生活の調和と言う観点では問題を有している。

1）蛋白質供給量

一人当たりの蛋白質供給量の変遷を窒素量に換算し図4に示す。わが国においては1955年以降，蛋白質供給量がほぼ一貫して増加傾向を示している。特に動物性蛋白質の増加は著しく，これに対し植物性蛋白質は減少傾向を示す。蛋白質の供給量は1955年に窒素として12.6 [g cap⁻¹ d⁻¹] であったもの，1992年には15.2 [g cap⁻¹ d⁻¹] と増加している。生活水準において窒素排出原単位は12 [g cap⁻¹ d⁻¹] とされるが⑩，蛋白質供給量より推定される値もほぼこれに一致する。なお，供給量の一部は食前に廃棄または処理となり，その全てが摂取される訳ではない。動物性蛋白質供給量は，窒素として2.6から7.3 [g cap⁻¹ d⁻¹] と，27年間の間に2.8倍になった。

（3）わが国の食料供給と窒素収支

ここに述べた二つの要因を念頭にわが国の食料供給を考える⑪。わが国の食生活は第二次大戦後，いわゆる洋風化が進み，大きな変貌を遂げた。し

図3 一人当たりの国民所得と蛋白質摂取量（窒素換算）の関係

図4 戦後わが国における蛋白質摂取量（窒素換算）の変遷

2）わが国の窒素収支

空中窒素の固定がなく他の地域よりの移入もない場合は，その地域において窒素循環を維持することは出来ない。沿岸漁業がほそそと行われ，食料の輸入や化学肥料の投入がない江戸時代まで
は、人間はほぼ自然に近い窒素循環の中に位置していた。これが大きく変化始めたのは、沖合い漁業が盛んとなり漁獲高が増え、かつ食料の輸入が行われた明治以降である。大正末期からは化学肥料の投入も始まった。

1992年現在における食料供給に伴うわが国への窒素の流入と国内でのフローを図5に示す。図5中の矢印は量を視覚的に表せるよう努めたものであるが、これにより人間に供給される量とは同様の食料が家畜に供給されていることが解かる。

図5 窒素の流れを用いて表したわが国の食料供給・消費過程（1992年）

3）施肥効率と輸入量の変遷

農耕地における窒素投入量と収量の関係を図6に示す。わが国における窒素肥料使用量は1955年において既に5.3×10⁶[ty⁻¹]であり、その後増加し1974年には8.5×10⁶[ty⁻¹]を記録している11）。それ以後は減少に転じ、1992年の使用量は6.1×10⁶[ty⁻¹]となっている。収穫量はほぼ一貫して減少し、収穫物中の窒素も1955年には3.1×10⁵[ty⁻¹]であったものが、1992年には2.7×10⁵[ty⁻¹]にまで減少している。収穫物中窒素量の投入肥料量に対する比率は、1955年に投入負荷量の58.5%であったが、1974年には32.6%まで減少し、1992年では44.5%程度にまで上昇している。1955年の割合が高かったことはこの時代には化学肥料以外の肥料が多く使われていたことを示し、1974年にこの割合が低くなることは化学肥料が多用されたことを示す。現在、この割合が少し高まっていることは、環境に留意した減肥型及び有機栽培農業が増加したことを作示している。

図6 戦後わが国における全化学肥料投入量と全収穫量の変遷

図7 食料・飼料の輸出入に伴う窒素の移動
Ⅲ．研究成果と展望

4）食料供給・消費と環境の調和

食料供給に伴い何らかの形で環境へ放出される窒素量の変遷を図8に示す。環境へ放出される窒素量は1955年には7.7×10^6 [ty⁻¹]であったの
が、1992年には1.7×10^8 [ty⁻¹]までに2.2倍に増
加している。総耕作土壌供給量は先に述べたように1.7倍に増加しており、環境に放出される窒素量の増加は供給量の増加より大きい。これは、動物性
蛋白質の供給が家畜によるためであり、わが国は
一部の肉を輸入したり、また動物性蛋白質の供給
の約半分を水産物に依っているため、この程度の
増加で済んでいる。動物性蛋白質の増加を家畜の
飼育のみによる場合には、発生する負荷はより大
きくなる。一人当たりの値も、23.4 [gcap⁻¹d⁻¹]
であったものが、37.3 [gcap⁻¹d⁻¹]にまで1.6倍に
増加している。その内訳は1992年で見たとき、生
活系より6.9×10^6 [ty⁻¹]（全体の40.6％）、廃棄物
として3.0×10^6 [ty⁻¹]（17.7％）、家畜糞尿として
3.7×10^5 [ty⁻¹]（21.6％）、農耕地より3.4×10^5
[ty⁻¹]（19.8％）となっている。

図8 わが国における食料生産・消費過程で発生する窒素負荷

生活系からの負荷が最も大きいが、現在これは
下水道などに集め処理するとしている。しかし、
生活系の負荷、特に糞尿は、江戸時代に行っていたように農地還元することも可能である。1992年
においては、6.1×10^6 [ty⁻¹]の化学肥料が用いら
れているが、生活系より発生する窒素量はこれを
上回っている。原理的には、生活系より発生する
窒素を全て農地に還元することにより、化学肥料
を全く用いないことも可能である。空中窒素を固
定し化学肥料を生産するためにエネルギーを要す
うこと、脱窒過程で亜硝酸窒素が発生する現象の
制御が難しいこと、脱窒を効率良く行うためには
新たなエネルギーを必要とすることを考えると、
富栄養化対策を排水処理のみに頼ることには疑問
がある。

また、家畜からの窒素は輸入飼料を用いた飼育
により生じたものであるから、肉を直接輸入すれ
ば、これは生じない。このように考えれば、生活
系由来の窒素は再利用が可能であり、また家畜を
介した負荷もなくなる。農耕地からの負荷3.4×10^5
[ty⁻¹]と廃棄物による負荷3.0×10^6 [ty⁻¹]、計6.4×10^6 [ty⁻¹]が、現在の食生活を維持する上
で生じる最低限の窒素量となる。

わが国の農耕地面積は4,993,000ha（1992年）であ
る123。農耕地における窒素固定速度の推定は難し
く、信頼すべきデータは少ないが、わが国のよう
に温帯の比較的肥沃な耕地では30 [kg ha⁻¹y⁻¹]程
度13とされる。これに基づくと、わが国の農耕地
において自然に固定される窒素量は1.5×10^6
[ty⁻¹]となる。わが国の耕地は江戸初期には現在
に近い面積となるため、江戸時代にはこれに規
定された窒素が食料供給システムを循環していた
と考えられる。ちなみに、農耕地において自然に
固定される窒素の全てが作物に移動し、また窒素
供給原単位を12 [gcap⁻¹d⁻¹]とすると、わが国で
自然循環の上に生存できる人口は3.4×10^7人とな
る。これは奇しくも江戸時代末期の人口に相当す
る。

現在の豊かな食生活を1億2千万人あまりに供
するためには1.7×10^6 [ty⁻¹]にも及ぶ窒素が環境
に何らかの形で放出されている。これはわが国の
農耕地で自然に固定される量の11.3倍にも及び、
地下水硝酸塩汚染、湖沼、内湾の富栄養化の遠因と
なっている。もちろん、環境中に放出された窒素
がすべて負荷になるわけではない、農耕地や側溝
にて脱窒されているものも多い。環境にさほど悪
影響のない負荷量をにわに定めることは難しい
が、1955年には地下水硝酸塩汚染や栄養養化現象が
深刻化していないことを考えると、7.7×10⁶
[t−1]程度が一つの目安になる。これは、先ほ
ど示した生活系負荷の農地への還元と、輸入飼料
による畜産に代わり肉を直接輸入することにより
実現が可能である。

（4）結言
食生活の向上は広く受け入れられてきた。しか
し、1億2千万人に及び人々を豊富な食料を供
給することは、わが国の窒素循環を大きく変え,
地下水硝酸汚染、湖沼・内湾の栄養養化の遠因を
作ることとなった。排水中窒素に対する脱窒技術
等により栄養養化を防止する技術を開発すること
が一つの方向であることは言うまでもないが、物
質循環を考慮した循環型社会の構築を考えること
も必要であろう。来世紀、食生活の向上が開発途
上国にまで及ぶ際には、物質循環を無視した技術
のみの対応では限界がある。飼料の供給が可能で
ある地域で畜産を行い家畜畜尿をリサイクルさせ
ること、また、人間より排出される畜尿を積極的
に農耕地還元する技術とそれを可能とする社会シ
ステムの建設が、今後の水環境問題を考える場合
には重要であろう。

文献
1) 三輪春太郎、小川吉雄（1988） 集中する窒素
をわが国の土は消化できるか。科学、58, pp. 631-638.
2) Miwa E. (1990) Global Nutrient Flow and
Degradation of Soils and Environment,
Transactions 14th International Congress
3) 川島博之（1993），東京湾流域における窒素の
流れ－栄養養化と食料、農業－ 用水と廃水,
35, pp.790-794.
4) 川島博之（1993），流域と湾内での窒素の動
き，: 小倉紀夫編，東京湾－100年の環境変
遷－，pp.123-137，恒星社厚生閣
5) Kawashima H., M.J. Bazin & J.M. Lynch,
The World Protein Supply and Nitrogen
Fertilizer in the 21st Century, Global Envi-
ronmental Change, (submitted).
6）川島博之，わが国における食料供給と窒素循
環，環境科学会誌，（投稿中）
7）川島博之，東京湾流域よりの窒素負荷の変遷,
沿岸海洋学会誌，（投稿中）
8) Samuel Tisdale & Werner Nelson (1975)
Soil Fertility and Fertilizers, Third Edit-
tion, Macmillan Publishing Co., Inc. New
York, p.4.
9）農林水産省大臣官房調査課，食料需給表，農
林統計協会，平成４年度まで.
10) 國松孝男，村岡浩爾（1989）河川汚濁のモデ
ル解析，技報堂，p.12.
11) 農林水産省肥料機械課監修（1994まで）ポケッ
ト肥料要覧，農林統計協会．
12) 農林水産省統計情報部（1994）第69次農林水
産省統計表，農林統計協会．
Microbiology and Biochemistry, Academic
(水質動態研究室 川島 博之 [現地球環境
研究チーム])

6. 中国內蒙古半乾燥地域における過放牧
による砂漠化過程の特性

（1）はじめに
中国北部半乾燥地域の草原地域では近年、人口
増加にともない羊毛や肉生産の需要が高まったた
め、土地面積あたりの家畜の放牧頭数が上昇の一
途をたどっている。その結果、放牧地では過放牧
の状態が続き、各地で砂漠化が顕在化している。
とりわけ砂地草原では、植生が破壊されると砂丘
の再活動が引き起こされるため、その実態解明と
合理的な放牧管理技術の確立が緊急の課題となっ
ている。
そこで著者らは、過放牧による砂漠化が問題と
なっている内蒙古自治区奈曼の砂地草原において、
中国科学院蘭州沙漠研究所の協力を得て、放牧強度を異なる試験区を造成し、1992年より放牧試験を開始した。本報告では、同試験区における調査結果に基づき、緑羊の過放牧にともなう植生退行過程を主として地形条件との関連から検討する。

(2) 放牧試験区の概要と調査方法

中国内蒙古自治区奈曼は北京の北東約500km、
カルチン砂地の東縁に位置する。年平均気温は6
〜 7℃、年降水量は約370mmであるが、降水量の
70％は6〜9月の夏季に集中している。また、春
先には6m/secの北西季節風があり、砂漠化を進
行させる大きな要因のひとつとなっている。

1991年秋に、沙漠研究所・奈曼沙漠化研究站近
傍の、ほぼ平坦な放牧地に牧柵を設置し、200
m×260mの試験区を建設した。放牧圧は軽放牧圧
(2頭/ha)，中放牧圧(4頭/ha)，重放牧圧(6
頭/ha)および禁牧区の4段階に設定した。各処理
区の面積はそれぞれ200m×75m，禁牧区のみ200
m×35mである。試験は毎年5月中旬から9月中旬
までの4ヶ月間にわたって行い、放牧時間は昼
間放牧とした（写真1）。

写真1 放牧試験区（左側が重放牧区、右側が中放牧区）

試験開始後は、定期的に現存量の測定および
フェノリシックの観測を行うとともに、8月下旬に
トランスシート法による詳細な調査を行った。1処
理区あたり200mのラインを25m間隔で3本（禁牧
区は面積の関係上2本）設置し、各ラインに沿っ
て、斜面測量器を用いて簡易地形測量を行うとと
もに、10mごとに1m×1mのコドラートを設定
して群落高、各出現種の自然高（H, cm）および
被度（C, %）を測定した。各コドラートの優占度
（DR）については便宜的に、DR=Σ（H+C）/
2，すなわち出現種の優占度の総和を使用した。
なお本報告では、試験開始2年目の1993年の調査
結果を使用した。

(3) 結果

植生調査によって、軽〜重放牧区で各60地点、
禁牧区で40地点、合計220地点のコドラートのサン
プルが得られた。全出現種は41種であった。ま
ず、植生の量的変化を把握するため、処理区間で
積算被度、群落高、優占度を比較した。その結果、
すべてについて処理区間で有意な差が認められ
（P<0.001），放牧圧が高まるにつれて植物量は
減少する傾向を示した。しかし、軽放牧区と中放
牧区の差は有意ではなかった（表1）。

表1 コドラート単位でみた被度、群高、優占度の中央値
およびKruskal-Wallis検定の結果

<table>
<thead>
<tr>
<th>n</th>
<th>総算被度（%）</th>
<th>群落高（cm）</th>
<th>優占度</th>
</tr>
</thead>
<tbody>
<tr>
<td>重放牧区</td>
<td>60</td>
<td>47.0a</td>
<td>15.0a</td>
</tr>
<tr>
<td>中放牧区</td>
<td>60</td>
<td>93.1b</td>
<td>30.0b</td>
</tr>
<tr>
<td>軽放牧区</td>
<td>60</td>
<td>79.2b</td>
<td>35.0b</td>
</tr>
<tr>
<td>禁牧区</td>
<td>40</td>
<td>123.2c</td>
<td>60.0c</td>
</tr>
</tbody>
</table>

p < 0.001 < 0.001 < 0.001

n：コドラート数a,b,c：5%水準でのScheffe法による多重比較の結果

試験区内はほぼ平坦な地形であるが、地形測量
の結果、最大で3m前後の高低差があり、細かな起
伏があることが確認された。そこで、各コドラー
トごと前後5mの範囲での平均傾斜、比高さを計
算し、それらの値と上記の植物量との対応関係を
調べた。ここでは比高と優占度との関係をとりあ
げる。図1は、各処理区ごとに、探索的データ解
析の手法に基づいて比高の値によってコドラートを
4グループに文字値分割（letter cut）し、平行
箱型図（Box plot）に要約したものである（渡部
（他 1985）の処理区内でのグループ間の差を検定した結果（Kruskal-Wallis検定）、重仮区から順に、P = 0.06、0.0003、0.21、0.84であった。中仮区では、比高の大きなグループで値が有意に減少する傾向がみられるとともに、比高の小さいグループでも値が低い地点のあることが外れ値（outside value）の出現によって確認された。

図 1 平行箱型図による比高の関係。
P：Kruskal-Wallis検定による有意確率。
a、b：5％水準でのScheffe法による多重比較の結果、★：外れ値

次に、仮牧値による植生の質的変化をみるため、全コドラートを対象にTWINSPAN（Hill 1979）によって群落区分を試みた。TWINSPANは、種の出現の有無だけでなく優越度の程度を加味した分類手法である。TWINSPANによる分割過程と、分割されたスタンド群を特徴づける種（pseudospecies）を図 2 に示した。第 1 分割では、Kummerowia stipulacea, Artemisia scoparia, Aneulorepilidium dasystachysの存在によって区分される 1 N のスタンド群と、Pennisetum centrisiacum, Agriophyllum squarrosum の存在によって区分される 1 P のスタンド群に区分された。同様にして、第 2 分割でさらに 4 つのスタンド群に区分された。これらのスタンド群の出現割合を処理区ごとにみると、全般的に仮牧値の増加とともに、Salsola collina, Lespedeza davurica にによって区分される 3 N が減少し、Artemisia scoparia, Aristida adscensionis, Euphorbia humifusa によって区分される 2 N が増加するという傾向が認められた。さら、地形要因との関係を把握するために、スタンド群の分布割合と比高との関係を処理区ごとに整理した（図 3）。比高の値によるコドラートのグループ化は、図 2 と同様の手法によって行った。これをみると、仮牧区および中仮牧区では、Agriophyllum squarrosum, Tribius terrestris で区分される 3 P のスタンド群が比高の大きいグループで高い出現頻度を示すことがわかった。

図 2 TWINSPAN（Hill 1979）による分割過程とスタンド群を特徴づける種（pseudospecies）
とが明らかになった。現地の観察では、家畜の踏圧によって平坦部では土壌の緊密化が進行するのに対し、傾斜のある場所では土壌表面が攪乱される傾向が認められた。

これらのことから、放牧インパクトによる裸地化のプロセスは一様ではなく、微地形条件のような立地特性と密接に関連していることが示唆された。すなわち、重放牧区程度の放牧圧が加わると、平坦部では植被が著しく減少する一方で、土壌の緊密化によって風食がある程度抑制されると考えられる。これに対し傾斜部では、軽〜中放牧程度の放牧圧でも土壌表面の攪乱によって流動砂丘化が生じやすくなると推察される。したがって、同地域の適正放牧圧を考える際には、こうした立地間の差異を考慮する必要があると判断された。

放牧にともなう組成変化については、家畜の嗜好性との関連が認められた。すなわち、放牧圧が高まるにつれ、アカザ科の一部やマメ科など、家畜の嗜好性の高い種が減少する一方で、Aristida adscensionisのように粗い芒を有する種などが家畜の喫食をそれほど受けずに残されるという傾向を示した。また、Euphorbia lamiflora、Tribulus terrestrisのようなはふく型の種も残されていたことから、家畜の喫食や踏圧の影響と関連した植物の形態的特徴も組成変化に影響を及ぼすことが示唆された。さらに、量的な変化の場合と同様に、地形条件との関連も認められた。すなわち、軽〜中放牧区の比較の大きい地点で、Agriophyllum squarrosum、Triburus terrestrisを識別種とする群落タイプが特異的に出現した。この地点は、上記で裸地化が進みつつある地点と対応している。また、Agriophyllum squarrosumは流動砂丘の指標植物とされている。こうしたことから、Agriophyllum squarrosumを含む同群落タイプの分布域は、流動砂丘化の潜在的な危険域を示していると考えられる。

（5）おわりに

本放牧試験の結果、過放牧にともなうバイオマス減少および種組成変化のパターンがある程度明らかになった。同地域で砂漠化を引き起こさないような持続的な放牧活動を行うためには、微地形条件のような立地特性を考慮するとともに、Agriophyllum squarrosumに代表される指標植物を活用するなど、きめ細かな土地利用計画に基づいた利用を図っていく必要があると考えられた。

現在も蘭州沙漠研究所の協力を得て、試験を継続しており、今後は全試験期間の調査結果に基づいて、植生構造の年変化や年降水量との対応等を解析したうえで、植生過程のプロセスおよび適正放牧圧をより詳細に把握する必要がある。また、植生のみならず、土壌劣化・地形変化等との相互作用を解明し、総合的な土地荒廃のメカニズムを明らかにしていく必要がある。

文 献

渡部 洋・鈴木規夫・山田文康・大塚雄作 (1985) 探索的データ解析入門、朝倉書店。

（保全植生研究室 大黒俊哉・根本正之）

7. 3-クロロ安息香酸分解プラスマドの再編成

（1）3-クロロ安息香酸分解菌Alcaligenes eutrophus NH9株と分解プラスマド

一部の微生物の持つ特殊な分解能を利用して化学物質による環境汚染を除去・防止する技術（バイオメディエーション技術）を開発するためには、分解の機構を酵素や遺伝子のレベルで明らかにすることが不可欠である。3-クロロ安息香酸（3-CBA）は芳香族塩素化合物の一種で、細菌によるPCB分解の中間産物である。パクテリアによるPCB、2,4-D等の芳香族塩素化合物の好気的分解の主要な経路は、これらの化合物がクロロカテ
コール類に変換される前の半の過程と、このクロロカテーテール類が開環脱塩素を経て分解される後半の過程からなる。この後半の過程は、芳香族塩素化合物を最終的に無害なものに変えるために非常に重要である。

土壤から分離されたAlcaligenes eutrophus NH9株は、3-CBAを唯一の炭素源かつエネルギ源として生育する。NH9株の3-CBA分解能は、栄養培地での植え継ぎにより容易に脱落するなどから、分解能に関与する遺伝子の少なくとも一部は、プラスミド上にあると推定された。NH9株からプラスミドの抽出を試みたところ、2つの大型のプラスミドが検出された（図1、レーン1）。3-CBA分解能が欠失したほとんどの株（レーン2～5、7、8）では、このうちの1つ（pENH91、78kb）が脱落していたことから、分
解遺伝子群はこのプラスミド上にあると考えられた。

pENH91については自己伝達性を調べたところ、ドナー細胞当たり10^{-4}の頻度で他の細胞に伝達した。また、pENH91は、菌体内でpKT230及びpPSA842（IncQグループ）とは共存できなかった。これらのことからpENH91は伝達性プラスミドであり、プラスミド不和合性グループは、IncPであると考えられた。

（2）分解遺伝子のクローニング

pENH91のDNAライブラリーをコスミドベクターによって作成し、得られた個々の組換えプラスミドを、NH9株の3-CBA資化能欠損株に導入して、分解能の回復を指標として分散遺伝子を持つ陽性クローンの選抜を行った。この結果、約200個のクローンから8個の陽性クローンが得られた。これらの組換えプラスミドの解析及びサブクローンングの結果、分解遺伝子群はpENH91上の9.2 kb SacI断片内にあることが判明した（図2）。

このDNA断片に対して、既に知られている3-CBA分解菌Pseudomonas putida AC866株のクロロカテーテール分解遺伝子群をプロープとしてハイブリダイゼーション実験を行ったところ、相同性が認められたことから、pENH91の分解遺伝子群はクロロカテーテール分解を行う遺伝子群であると考えられた。

図2　NH9株のプラスミド上の分解遺伝子群の領域の制限酵素地図

白抜き塗印はダイレクトリピートで、矢印の向きは内部に見られるオープンリーディングフレームの向きに合わせた。制限酵素名の略称は：B, BamHI; Bg, BglII; EI, EcoRI; Ev, EcoRV; K, KpnI; N, NheI; S, SacI

（3）分解遺伝子群の欠失と両端のダイレクトリピート

図1のレーン6の株では、pENH91に相当するプラスミドの脱落は起こっていないにもかかわら
まず、CBA分解能を失っていた。そこでこの株からプラスミドを抽出して、制限酵素地図を作成したところ、このプラスミド（pENH91d5）では分解遺伝子群を含む12.5kbの領域が欠失していることが判明した（図2、図5(a)(b)レーン3：欠失を示したハイプライジゼーション実験の結果の一例）。DNA断片の欠失は相同的配列間の組換えによると考えられる。DNA断片の両端には同じ高の配列があることが推察された。ハイプライジゼーション実験により、図2の断片Aが断片Cと、また断片Bが断片Dとそれぞれ同じ配列を示すことが判明した。以上のことから、欠失した12.5kbの領域の両側付近には相同な配列が順向きに存在し（図2；ダイレクトリーブDR1、DR2と命名した）、pENH91d5における欠失はこの相同配列を介した相同組換えによるものであると考えられた。

図3 NH9株のIS様断片（DR1、DR2）とIS21の末端の逆向き繰り返し配列

左右の逆向き繰り返し配列内部の一致していない塩基に*を付した。NH9株のIS様断片及びIS21内の配列は大文字で示し、IS様断片外の配列は小文字で示した。図の左右は図4と合わせており図2とは逆になっている。

（4）ダイレクトリーブの塩基配列

ダイレクトリーブの一方、DR2の塩基配列を決定したところ、両端には16bpの逆向き繰り返し配列（inverted repeat）が見られた。DR1についても部分的に塩基配列を決定したところ、両端のinverted repeatを含めてそれぞれ内側約300bpまでDR2の塩基配列と完全に一致した（図3）。このことは、DR1、DR2が転移因子の一種である挿入配列（IS）であることを示唆している。

DR2の長さは、両端の逆向き繰り返し配列を含めて2521bpであり、内部には4つのオープンリーディングフレーム（ORF）が見出された。これら
のORFA1，A2，Bでそれぞれ，82.9%，79.6%，80.7%，またIS21のIstA，IstBでそれぞれ，62.6%，60.9%であった。DR2に関するこれらの値は，Alcaligenes屬，Pseudomonas属などの土壌細菌の遺伝子の平均的な値に近いものである。一方，DR2のORFuのコドンの3番目の塩基のGC含量は41.4%であり，このことは，ORFuが真のORFでない可能性が高いことを示唆している。

IS21のアミノ酸配列と相対性を示すアミノ酸配列をもつ挿入配列（様）断片は他にもいくつか発見されており，このIS21グループの挿入配列は広範な種の菌株に存在していることが明らかになってきている。NH9株のDR2は，IS21グループの中では，分解遺伝子群とともに発見された初めての例である。

（5）分解遺伝子群の重複

NH9株を3-CBA液体培地で，約2週間ごとに1年間にわたって植え継いだ株（NH9A）について，分解遺伝子群の転移や組換え現象が起こっているかどうかを調べた。

pENH91の分解遺伝子領域の中の5.8kbBam HI-BglII断片をプロープとして，NH9株，NH9A株それぞれのプラスミドDNAと全DNAに対するハイブリダイゼーションのパターンを調べた。その結果，NH9株では，得られたバンドは1本であったのに対し（図5，レーン1，4），NH9A株のプラスミドでは新たに10kbの断片が出現しており，この断片もプロープと強くハイブリダイズした（レーン2，5）。このことから，プラスミド上に新たに出現したこの10kb断片には分解遺伝子群が含まれていると推察された。さらに制限酵素サイトの解析や詳細なハイブリダイゼーション実験の結果，NH9A株のプラスミド（pENH91A）では，図6に示すように，ダイレクトドライビットを介した相対組換えによって，分解遺伝子群の重複が起こっていることが判明した。分解遺伝子の重複が起こった株と親株との間の分解能の違いは，通常の方法では検出できなかったが，分解遺伝子のコピー数が増えることで，分解能や3-CBA耐性がわずかでも増加していると推察される。

図5（a）NH9株と変異株のプラスミドDNA. 全DNAの制限酵素EcoRI消化によるパターンと，（b）分解遺伝子をプロープとした場合のサザンハイブリダイゼーションのパターン

レーン1，pENH91；2，pENH91A；3，pENH91d5；4，NH9株の全DNA；5，NH9A株の全DNA，Mはサイズマーク

図6 DR1，DR2を介した相対組換えによる分解遺伝子群の重複

pENH91上のハッチをつけた断片をプロープとしてハイブリダイゼーションに使用した。

（6）まとめ

分解遺伝子をはさんでいる2つのダイレクトドライビットが挿入配列（IS）様の構造をもつ断片であることから，NH9株の分解遺伝子群はトランスポゾン様構造をとっているといえる。しかしながら，分解遺伝子群の変異をもたらすトランスポゾン様構造としての転移は観察されていない。一方，他の分解菌においても，クロロカテコール分解遺伝子群
Ⅲ. 研究成果と展望

は、欠失、増幅等を起こしやすいことが報告されているが、そのようなDNAの再編が起こるメカニズムについては不明であった。本研究では、以上に述べたように2つのIS様断片を介する組織組換えにより、分解遺伝子群の欠失、増幅が起こることが明らかになった。クロロカテール分解遺伝子群の組換え現象にIS様断片が関与していることが示されたのは初めてである。自然環境でも、芳香族塩化物の分解に重要な役割を果たすクロロカテール分解遺伝子群の再編成や伝達に、この様な組換え現象や伝達性プラスミドが関与していると考えられる。また、野外で実際に分解菌を働かせる場合には、分解遺伝子の欠失等の再編成が高頻度で起こらないようにすることが望ましいと考えられる。

（土壌微生物利用研究室 小川直人）

8. コナガの飛翔行動特性

（1）コナガという虫

コナガはアブラナ科野菜の重要害虫で、中温帯のほぼ全域に分布する。本種は成虫の体長が1cmに満たな小さな蛾であるが、北欧や北米では南部の温暖な地域から長距離移動してくる例が多数報告されている。日本でも、本種が暖冬でできないと考えられている東北地方北部や北海道で、毎年早春から初夏に多数の飛来虫が確認されており、東シナ海上の定点観測でも多くの捕獲が報告されている。ところが、このような長距離飛翔行動を引き起こす要因や長距離飛翔に適した個体の生理・生態的特徴はほとんど研究されていなかった。ここではまず、（2）〜（4）で実験室レベルでフライトミル（飛翔行動測定装置）によって調査した本種の飛翔能力と飛翔行動特性の概略を説明する。

コナガは長距離移動性昆虫であるとともに、多くのタイプの薬剤に対して高い抵抗性を発現させており、農業害虫としても第一級の難防除害虫である。最終に（5）で、効果的な防除のための基礎的知見として実施した、成虫の標識虫・放逐実験による圃場での移動分散行動の実態について報告する。

（2）飛翔能力の季節間差異

コナガは小さな蛾であるが、1年を通して見ると休薆にははっきりとした季節間差異があり、冬から早春に羽化した個体が最も大きく、真夏に羽化した個体が最も小さい。この傾向は雌雄共通で、最大個体（1月）と最小個体（8月）の前翅長には約1.4倍の差が見られた。月々に採集した野生雄成虫の前翅長と飛翔時間の関係を見ると（図8-1）、r=0.7968で有意な相関関係が得られ、前翅長の長い個体は長時間飛翔できる潜在能力を持っていることがわかった。飛翔速度は前翅長の間に有意な相関を示すのはほぼ一定であることから、前翅長の長い大型成虫は長時間・長距離の飛翔行動ができるということ。この傾向は雌成虫でも同様であり、さらに大型虫は小型虫に比べて寿命、産卵数も優れていることが確認されている。

図8-1 野生雄成虫の前翅長と飛翔時間の関係（図中の数字は採集月を示す）

（3）飛翔能力の違いを生じさせる原因

成虫の体長に観察する季節間差があり、これが飛翔能力と強く相関していることから、長距離の移動飛翔行動に適する個体を発現させる要因として、
成虫サイズが最も重要であると考えられた。すなわち、幼虫期に低温条件で飼育した成虫は長距離飛翔を示唆するような飛翔行動を示す、あるいはこのような飛翔行動に適したなんらかの形態的特徴を持っているのではないかと考えたのである。しかし、成虫の行動に関与するであろう幼虫期の環境条件は温度だけではない。そこで、いくつかの温度条件（10, 15, 20, 25, 30℃：日長はすべて16L 8D）、日長条件（24L, 16L, 8L, 0L：温度はすべて23℃）で飼育した個体のサイズと飛翔能力を比較した。また、飛翔能力が親世代の形質の影響を受ける可能性を検証するため、大型虫と小型虫をそれぞれ親世代として、異なる温度条件（10, 20, 30℃：日長はすべて16L 8D）で幼虫期間飼育した個体のサイズと飛翔能力も比較した。これらの実験ではすべて雄成虫を用いて測定した。

成虫サイズ、および飛翔能力とはっきりした関連を示したのは温度条件の違いだけであった。すなわち、低温条件で飼育した個体ほど前翅長が長く、長時間飛翔できる能力を示した（図8－2）。

示された図8－2は、幼虫期の飼育温度と飛翔時間の関係を示している。幼虫期の日長条件は成虫サイズや飛翔能力にまったく影響を与えず、全明（24L）や全暗（0L）でも正常な個体が出現したのには驚きさえ感じた。また親成虫のサイズも親世代の形質に影響せず、たとえ小型の親でも低温で飼育すれば大型で高い飛翔能力を持った個体が生まれ、逆に大型の親でも高温で飼育すると小型で飛翔能力の劣った個体が生じてきた。

これらの実験結果と野外での状況から、コナガの成虫サイズと飛翔能力を決定しているのは幼虫期の温度条件だけと考えては間違いないそうである。ところが、長距離の飛翔行動に適した個体と言う観点で見ると、低温で育った大型虫がこのような飛翔行動に適していると結論することはできなかった。なぜなら、異なる温度条件で飼育された個体の成虫サイズは、総飛翔時間とは正の相関を示すものの、長時間（ここでは2時間以上）の連続飛翔行動をとる個体の出現頻度とは有意な相関を示さなかったからである。また、成虫形態の点で、胸部と生体体も前翅長と正比例するので、相対翅長や翼荷重は前翅長の違いに関わらずほぼ一定であり、移動性昆虫で一般に考えられているような、長翅型とか翼荷重の軽い型といった長距離の飛翔行動に適した成虫形態はまったく検出されなかったからである。

雄成虫の繁殖と飛翔行動の関係から、本種の長距離移動に適する要因を検出することも困難であった。移動性昆虫では一般に生理的に未知のステージや交尾・産卵活動前に活発な飛翔行動を示す種が多いと考えられている。大型虫と小型虫を用いた実験から、飛翔時間と連続飛翔個体頻度は交尾雌より未交尾雌の方が高くなる傾向が認められた（図8－3）。しかし、いずれの雄成虫もはっきりとした繁殖前期をはずらず、羽化直後に交尾・産卵できること、制約的に飛翔させた交尾雌でも、飛翔後すぐに産卵行動を再開することなどから、本種が繁殖活動前に積極的な飛翔行動を示すタイプの種であるとは考えられなかった。

（4）長距離移動に適した個体

どうもすっきりと「大型虫の方が長距離の飛翔行動に適している」と説明できない。そこで最も基本的な生物的形質である成虫寿命と、これに関連した日齢別の飛翔能力を改めて調べてみることにした。実験は15℃で飼育した大型虫と25℃で飼育した小型虫を用いて行なった。未交尾成虫の平均
寿命は雌雄とも大型虫の方が3倍以上も長く（図8−4）。大型虫は羽化後約20日齢まで雌雄とも高い飛翔能力を持続することができた（図8−5）。

また、強制的に飛翔させた交尾虫の飛翔後の産卵量は飛翔しないで産卵した雌の場合より減少するが、その程度は大型虫の方が小型虫よりも少しなかった。

飛翔能力の比較においてはっきりとした結論は得られなかったが、成虫寿命、日齢別飛翔能力、飛翔後の繁殖活動に与えるダメージなどを合わせて考えると、大型虫の方が潜在的に高い飛翔能力を持っているとともに、生命が強く、長距離飛翔行動とその後の繁殖行動にも有利であると結論することができた。すなわち、本種では従来考えられていたような“移動飛翔に適応した型”は生じないが、長距離移動に耐える能力の高い個体が季節的に出現するのである。本種の長距離移動の観察例は、そのほとんどが北半球の春から初夏に集中している。この時期は野外で大型の成虫が出現する比較的気温が低い時期であり、このことときの結果を間接的ではあるが支持している。

（5）圃場での移動行動

前述したように、コナガは農業害虫としても第一級の難防除害虫である。薬剤に対する抵抗性発見を抑えるために、複数種の薬剤を計画的に循環使用するローテーション防除法や、薬剤に頼らず性フェロモン剤を使った交信撲滅法による防除など、生産現場では本種の被害を少しでも減らすために、ありとあらゆる対策を講じていると言って
も過言ではない。どのような防除法を用いる場合でも、よい効果を得るためには、圃場で本種がどのような飛翔行動をとっているのかを知ることは重要であろう。最後にこの観点から実施した野外での標識虫放逐・再捕獲実験の結果を紹介し、本種の圃場での飛翔行動について考えてみたい。

標識虫放逐・再捕獲実験は1991年10月（秋実験）と1992年6月（夏実験）に小規模なキャベツ、ブロッコリー畑が点在しているつくば市内の農家圃場で行ない、蛍光色素によって標識した雄成虫を、性フェロモントラップによって捕獲した。結果の概要を表8-1にまとめた。放逐総数に対して再捕獲された割合（総再捕率）は秋実験の方が高かったが、総捕獲個体のうち、放逐が行なわれた圃場の周辺で再捕獲された割合は夏実験の方がはるかに高く（19.8％と5.9％）、平均飛翔距離も615mで秋実験の2倍以上であった。これは夏実験ではある圃場に存在する雄成虫のうち、少なくとも0.5％以上の個体は、数百m離れた圃場へ飛翔していることを意味し、圃場間での飛翔行動は夏の方が秋よりはるかに活発であった。両実験でのこのような差異は、主に気温による影響が大きいと考えられ、最低気温が15℃以下になると、成虫の飛翔行動は著しく抑制された。野外で同様の実験を雌成虫について行なうことは技術的に困難であるが、実験室レベルでは、雌も雄ともほぼ同じ程度の飛翔能力を示すことから、気温の高い時期には、雌も雄とも同様にかなり活発に圃場間を飛び回っているものと考えられる。

前記述べたローテーション防除法や交信攪乱法を用いる場合、一軒あるいは少数の農家が狭い範囲で実施しても、周辺の圃場からコナガが活発に侵入してくれるのでは十分な防除効果は期待できないであろう。特にコナガの飛翔行動が活発になる気温の高い時期に、この種の防除法を実施する場合、少なくとも1～2kmの範囲を対象として、地域内の農家が計画的な共同防除を行なう必要があるものと考えられる。

文 献

岡田利承（1987）植物防護，41:555-558.

（昆虫行動研究室 白井洋一）

表8-1 コナガの標識虫放逐・再捕獲実験

<table>
<thead>
<tr>
<th></th>
<th>秋実験</th>
<th>夏実験</th>
</tr>
</thead>
<tbody>
<tr>
<td>再捕獲調査期間</td>
<td>10.16-10.27</td>
<td>6.20-6.29</td>
</tr>
<tr>
<td>放逐総数（Mo）</td>
<td>2,400</td>
<td>3,300</td>
</tr>
<tr>
<td>放逐圃場での再捕数（RA）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[RA/Mo]</td>
<td>111</td>
<td>60</td>
</tr>
<tr>
<td>[RA/Mo]</td>
<td>[4.6%]</td>
<td>[2.1%]</td>
</tr>
<tr>
<td>周辺圃場での再捕数（RB）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[RB/Mo]</td>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>[RB/Mo]</td>
<td>[0.3%]</td>
<td>[0.5%]</td>
</tr>
<tr>
<td>総再捕率（RA+RB）/Mo</td>
<td>4.9%</td>
<td>2.6%</td>
</tr>
<tr>
<td>再捕獲個体のうち、周辺圃場で捕獲された割合</td>
<td>5.9%</td>
<td>19.8%</td>
</tr>
<tr>
<td>RB/（RA+RB）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB圃場の平均飛翔距離（最大－最小）</td>
<td>286m</td>
<td>615m</td>
</tr>
</tbody>
</table>

9. 土壌殺菌剤PCNB分解微生物の分布と性質

（1）はじめに

アブラナ科野菜の根腐病はPlasmodiophora brassicaeに起因する土壌伝染性の難防除病害である。近年、野菜の産地化が進み、本病の被害面積が拡大して問題になっている。その回避策として、輪作、抵抗性品種の導入、石灰窒素の施用、苦土石灰による土壌pHの矯正、圃場の衛生管理の強化などが奨励されている。しかし、産地では、作り
慣れた作物であることや代替作物の収穫性あるは経験面積などの関係で耕作限年分の短縮や連作は珍しくない。そのため一般には薬剤防除を柱にして、これに精薬の防除を取り入れた栽培体系がとられている。防除薬剤はPCNB（ペンタクロロニトリロペンゼン）剤が長年使用されてきたが、最近、新しく開発されたフルアジナメ素剤およびスルファミド剤が一部で使用され始めている。

PCNB剤はハクサイ、キャベツなどのアブラナ科野菜の根こぶ病やジャガイモのそう病、黒さ病などの防除に使用される土壌殺菌剤で、図1に示した化学構造を持つ有機塩素化合物である。有機塩素化合物は一般に化学的に安定で環境中で分解され難しいことから、近年、DDT、BHC、PCB（ポリ塩化ビフェニル）などによる環境汚染問題になっている。本剤についても有機塩素化合物でしかも施用量が比較的多いために環境に対する影響が懸念されてきた。しかし、微生物による分解を受け難いとされる有機塩素化合物も土壌、底質、污泥などに長期間曝されると、それを分解する微生物の現れることが経験的に知られていた。近年、そうした微生物が発生する遺伝的組みの解明やその機能を環境浄化に利用することに人々の関心が集まっている。しかしながら、PCNBの微生物分解に関してはほとんど研究されていない。

（2）調査圃場の概要

PCNB剤の使用量はその地域におけるハクサイ栽培面積と関係があると考えられる。それで、調査圃場は普通畑面積に対するハクサイ作付面積の比率の違いによって以下の4地区から選んだ。

結城地区は結城市とその周辺の町、阿見・牛久地区は土浦市、阿見町、牛久市、鉢田地区は鉢田町とその一帯の町村、鹿島・波崎地区は大野村、鹿島町、波崎町である。平均2年の各地区のハクサイ作付面積比率は、順にそれぞれ43%、6%、1%、0.5%である。結城地区は古産地で県内のハクサイ作付面積の7割弱を占めている。阿見・牛久地区は昭和40年代後半に栽培が始まった比較的な新しい産地である。鉢田地区はメロン、トマト、サツマイモなどが中心でハクサイは少なく、鹿島・波崎地区はビーマン、春キャベツなどが中心でハクサイはほとんど栽培されていない。

PCNB剤は8月下旬から9月上旬にハクサイを定植する前に毎畝に10アール当たり30%粉剤20〜25kgを土壌に混混和処理される。処理時の土壤中のPCNB濃度は乾土換算で40〜70ppmと推定される。

結城地区の土壌は平均3年11月13日に3圃場および平成4年10月3日に14圃場から採取した。阿見・牛久地区の土壌は平成4年12月12日に11圃場から採取した。鉢田地区の土壌は平成3年11月14日に2圃場および平成4年9月20日に12圃場から採取した。鹿島・波崎地区の土壌は平成4年7月14日に10圃場から採取した。このうちハクサイが栽培されていた圃場の数は結城地区が16圃場、阿見・牛久地区が9圃場、鉢田地区が6圃場で、鹿島・波崎地区にはなかった。

（3）PCNB分解微生物の生態分布

土壤のPCNB分解活性は、塩類溶液中にPCNBおよび栄養源として少量の土壌を加えた液体培地に被試験土壌を接種して26℃で14日間振盪培養後、培養液中に残存するPCNB量から求めた。実験誤差を考慮して、被試験土壌を接種していない対照
区よりも20%以上PCNBが減少した場合に分解活性が存在し、分解微生物が生息していると判定した。図2に分解活性を有する土壌を接種した場合の分解経過の1例を示した。PCNBは7日間で50％、14日間で85％分解された。各圃場から採取した土壌は先ず液体培地に接種して分解活性を調べた。さらに、活動が低下しているPCNB分解菌を賦活化する目的で、土壌に1,000ppm相当量のPCNBおよび所定量の殺菌剤を加えて26℃で静置培養し、1、2、4、6、12カ月後に液体培地に接種して分解活性を調べた。

図3に土壌の採取地点と土壌にPCNBを加えて培養して分解微生物の生息の有無を調べた結果を示した。

結城、阿見・牛久の両地区では、採取時またはPCNBを加えた静置培養中に供試した全ての土壌にPCNB分解活性が現れて、PCNB分解微生物が両地区の圃場に広く生息していることが明らかになった。一方、鈴田、鹿島・波崎の両地区では、採取時に分解活性がある土壌はなかった。PCNBを加えた静置培養においても分解活性が認められた土壌は鈴田地区で14点中5点、鹿島・波崎地区で10点中1点に留まった。また、この培養で分解活性が発現するまでに要した時間は、結城地区が最も短く、阿見・牛久地区がこれに次ぎ、鈴田地区は長かった。

これらの結果は、PCNB分解微生物の生息の有無および活動の低下した分解微生物が再び活動を始めて、分解活性が検出可能になるのに要する時間が各地区のハクサイ作付面積比率との間に相関のあることを示していた。なお、PCNB使用歴のない当研究所内の畑土壌では、PCNBを加えて12カ月間静置培養後にも分解活性は現れなかった。

（4）ハクサイ畑のPCNB残留量と消失速度

表1にハクサイ畑から採取した土壌のPCNB残留量とそれにPCNBを加えて静置培養した時にPCNB分解活性が現れるのに要した時間を示した。

PCNB使用量が多いと推定される結城地区では全ての土壌から0.3~80ppmのPCNBが検出された。阿見・牛久地区では33%の土壌から7.8~107ppmのPCNBが検出され、鈴田地区では
III. 研究成果と展望

50％の土壤から0.05～19ppmのPCNBが検出された。当初に予測した通り、ハクサイ作付面積比率の高い地区のハクサイ畑においてPCNB剤の検出率および残留量が高い結果が得られ、ハクサイ作付面積比率とその地区のPCNB剤使用量の間に相関のあることが確認された。

土壤中のPCNB残留量には使用量の多寡とともに分解微生物も関係していると考えられる。表1に示した通り、多くのハクサイ畑の土壤にPCNB分解微生物が存在していた。しかし、分解微生物の活性状態は土壤によって様々である。土壤およびその残留量が0.6ppm以下の土壤には採取時に分解活性がある土壤はなかった。これはPCNBが分解微生物の分解活性の発現に直接関わっていることを示すものと考えられる。

PCNB分解活性のない土壤の中には、表1に示す通り、施用時の推定濃度を上回る残留量が検出された土壤が2点あった。分解微生物が活動中の土壤では、最も高い残留量が23ppmで、他はそれ以下であった。これは分解微生物が土壤中のPCNBの消失に大きな役割を果たしていることを示すものである。

表1 ハクサイ畑土壤のPCNB残留量とPCNBを添加した静置培養時の分解活性発現所要時間

<table>
<thead>
<tr>
<th>採取日</th>
<th>採取地</th>
<th>PCNB残留量*</th>
<th>活性発現所要時間**</th>
<th>採取日</th>
<th>採取地</th>
<th>PCNB残留量*</th>
<th>活性発現所要時間**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991.11.13</td>
<td>結城町-1</td>
<td>80ppm</td>
<td>1月</td>
<td>1992.12.12</td>
<td>阿見・牛久地区（PCNB作付面積比率6%）</td>
<td>0ppm</td>
<td>1月</td>
</tr>
<tr>
<td>1992.10.3</td>
<td>総合町-1</td>
<td>1.5</td>
<td>採取時</td>
<td>阿見町-1</td>
<td>0</td>
<td>6月</td>
<td></td>
</tr>
<tr>
<td></td>
<td>総合町-2</td>
<td>4.5</td>
<td>採取時</td>
<td>阿見町-2</td>
<td>107.2</td>
<td>1月</td>
<td></td>
</tr>
<tr>
<td></td>
<td>総合町-3</td>
<td>2.3</td>
<td>採取時</td>
<td>阿見町-3</td>
<td>0</td>
<td>4月</td>
<td></td>
</tr>
<tr>
<td></td>
<td>総合町-4</td>
<td>0.9</td>
<td>採取時</td>
<td>阿見町-4</td>
<td>0</td>
<td>4月</td>
<td></td>
</tr>
<tr>
<td></td>
<td>三和町-1</td>
<td>20.3</td>
<td>採取時</td>
<td>阿見町-5</td>
<td>0</td>
<td>1月</td>
<td></td>
</tr>
<tr>
<td></td>
<td>三和町-2</td>
<td>0.3</td>
<td>1月</td>
<td>阿見町-6</td>
<td>9.2</td>
<td>採取時</td>
<td></td>
</tr>
<tr>
<td></td>
<td>三和町-3</td>
<td>5.4</td>
<td>1月</td>
<td>牛久町</td>
<td>0</td>
<td>1月</td>
<td></td>
</tr>
<tr>
<td></td>
<td>総合町-4</td>
<td>0.6</td>
<td>1月</td>
<td>阿見町-7</td>
<td>7.8</td>
<td>採取時</td>
<td></td>
</tr>
<tr>
<td></td>
<td>総合町-5</td>
<td>12.2</td>
<td>採取時</td>
<td>青田地区（PCNB作付面積比率1%）</td>
<td>0</td>
<td>6月</td>
<td></td>
</tr>
<tr>
<td></td>
<td>総合町-6</td>
<td>15.4</td>
<td>採取時</td>
<td>隆山町</td>
<td>0</td>
<td>4月</td>
<td></td>
</tr>
<tr>
<td></td>
<td>三和町-2</td>
<td>0.3</td>
<td>1月</td>
<td>旭村-1</td>
<td>0</td>
<td>4月</td>
<td></td>
</tr>
<tr>
<td></td>
<td>八千代町-1</td>
<td>2.9</td>
<td>採取時</td>
<td>旭村-2</td>
<td>0.2</td>
<td>なし***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>八千代町-2</td>
<td>10.9</td>
<td>採取時</td>
<td>茨城町-1</td>
<td>0</td>
<td>なし***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>八千代町-3</td>
<td>12.9</td>
<td>2月</td>
<td>茨城町-2</td>
<td>19.0</td>
<td>4月</td>
<td></td>
</tr>
<tr>
<td></td>
<td>八千代町-3</td>
<td>12.9</td>
<td>2月</td>
<td>茨城町-3</td>
<td>0.05</td>
<td>なし***</td>
<td></td>
</tr>
</tbody>
</table>

*: 乾燥当たりの濃度、検出限界: 0.05ppm。
**: 静置培養条件: 土壌50gに75%PCNB水和剤67mgおよび殺菌水50mlを加えて26℃に静置。
***: PCNBを加えた12ヶ月の静置培養期間に分解活性が現れなかった土壤。

土壤の採取時に分解微生物の活動が分解活性として検出される土地、土壤にPCNBを加えて静置培養して1ヶ月あるいは6ヶ月培養後に、初めてその活動が分解活性として検出される土地などである。したがって、現在活動中の分解微生物、すなわち採取時に分解活性があった土壤に重点をおきながら、分解微生物とPCNBの関係を考えたい。

採取時にPCNB分解活性が認められた土壤は、結城地区が63%、阿見・牛久地区が22%、鉾田地区にはなかった。それらの土壤のPCNB残留量は0.9～23ppmの範囲に点在していた。一方、分解微生物が生じていない、PCNBが検出されない土壌およびその残留量が0.6ppm以下の土壤には採取時に分解活性がある土壤はなかった。これはPCNBが分解微生物の分解活性の発現に直接関わっていることを示すものと考えられる。

PCNB分解活性のない土壤の中には、表1に示す通り、施用時の推定濃度を上回る残留量が検出された土壤が2点あった。分解微生物が活動中の土壤では、最も高い残留量が23ppmで、他はそれ以下であった。これは分解微生物が土壤中のPCNBの消失に大きな役割を果たしていることを示すものである。

阿見・牛久地区および鉾田地区ではPCNBが検出されない土地が9点あった。このうちの8点の土壤ではPCNBを加えた静置培養中に分解活性が現れた。これはそこに生息する微生物に圃場の過去のPCNB剤使用歴が刻まれていたと考えることができる。

（5）PCNB分解微生物の性質

地理的および耕種的に異なる圃場から採取した土壤の中から、採取時またはPCNBを加えた静置培養でPCNB分解活性を示した25点の土壤を接種試料として分解微生物の性質を検討した。

接種培養性試験は次の方法で行った。すなわち、
塩類溶液にPCNBおよび栄養源として少量化した土壌を加えた液体培地に前述の土壌を接種し14日間振盪培養した。この培養液1 mlを新しい液体培地に接種して14日間培養後に、PCNBの分解量を測定して、分解している場合はこの操作を繰り返した。供試した25点の土壌のうち1回目の植え継ぎで20%の土壌がPCNB分解活性を示し、2回目の植え継ぎでは88%の土壌が分解活性を示した。残り3点のうち2点の土壌は繰り返し植え継ぎを行っても分解活性を失わなかった。しかし、全般的にPCNB分解微生物は培地上で分解活性を失い易く、分解にプラスマドの関与していることが示唆された。

分解微生物の分解活性にPCNBの関与が推定されたことから、分解活性に対するPCNBの影響を前述の25点の土壌のうち1回目の植え継ぎで分解活性を保持した20点の土壌について調べた。試験はPCNBを抜いた前述の液体培地に土壌を接種して14日間振盪培養し、その培養液1 mlをPCNBの入った液体培地に接種して14日間培養後にPCNBの分解量を測定した。供試した20点の土壌のうち90%の土壌は分解活性を失い、残り10%の土壌は不明瞭であったが、活性の発現にPCNBが関与していることが強く示唆された。

農薬を分解する微生物の中には農薬だけを炭素源として生育できる微生物と他の炭素源がないと農薬を分解できない微生物がある。本実験で確認したPCNBを分解する微生物は炭素源である土壌を培地上で接種した場合、PCNBを分解できないので、後者に属していると考えられる。

PCNB分解活性の確認された土壌を前述の液体培地中に接種して14日間振盪培養し、培地中に加えたPCNBの約80%が分解されたが、培養液中に分解産物は検出されなかった。一方、同じ土壌をポリベプトン、グルコースの入ったリングB培地に接種して培養すると、培養液中のPCNBはほぼ化学量論的にベンタクロロアミリン（PCA）に変換された。しかしながらPCAは多くのハクサイ細胞の土壌からほとんど検出されず、この変換に関与する微生物は圃場におけるPCNB剤の消失に重要な役割をしていないように見えた。

（6）おわりに

茨城県下のハクサイ畑を対象に実施したPCNB分解微生物の生態調査から、PCNB剤の使用量が分解微生物の発生や分布、活動に関係していることおよび分解微生物が本剤の土壌中における消失に大きな役割を果たしていることを明らかにした。

一般に微生物は有機塩素化合物を分解しないとされているが、そうした異物に長期間曝された場合、適応的にそれを分解する能力を代謝系の中に取り入れる機構のあることがわかった。PCNB分解微生物についても長期間PCNBが連用された結果、微生物の持つそうした機構が働いて分解微生物が発生したものと考えられる。

微生物による芳香族塩素化合物の分解には2つの主要な経路が知られている。一つは酸化的に脱塩素、水酸化された後、ベンゼン環がジオキシゲナーゼによって酸化的に開裂される経路で、他の一つは嫌気的に脱塩素される経路である。前者にはプラスマドが関わっていることが知られている。本報で取り上げたPCNB分解微生物は、好気的培養条件で分解すること、培地上で分解活性を失い、プラスマドの関与が示唆されること、培養液からPCAや脱塩素された分解産物が検出されないことなどから、前者であろうと推定される。

土壌殺菌剤は作物の栽培中は土壌中に残留して病原菌から作物を保護し、収穫後は速やかに分解して環境に負荷をかけないことが望まれる。難分解性のPCNB剤は環境への影響が懸念されてきたが、連用地帯には分解微生物が広く生息していた。さらに、本剤分解微生物はPCNBが消失することと活性を失い、再活性化に時間を必要とした。本微生物のこうした性質をうまく利用すれば、PCNBの土壌中における動態制御も夢ではないと考えられる。

（殺菌剤動態研究室 岡崎 博）
10. 高速液クロ/ICP質量分析法を用いた植物中Cd-γECペプチド複合体の状態分析

（1）はじめに

カドミウム（Cd）のストレスを受けた植物体内では、Cdと複合体をつくるペプチドが生成されることが知られている。このペプチドの構造は、一般的な植物で（γ-Glu-Cys）n-Gly（n=3）（Glu：グルタミン酸（E）、Cys：システイン（C）、Gly：グリシン（G））であり、マメ科では（γ-Glu-Cys）n-β-Ala（Ala：アラニン（A））、イネ科では（γ-Glu-Cys）n-Ser（Ser：セリン（S））も生成される。これらのCdストレスを受けた植物に共通する構造はγ-Glu-Cys（γEC）であるので、ここではγECペプチドと呼ぶ。γECペプチドは、Cdと複合体をつくることでCdの解毒や恒常性維持に関与していると推定されているが、Cd-γEC複合体の構造と機能については不明の点が多い。

一方、最近、微量元素の状態分析法として、高速液体クロマトグラフィー（HPLC）/誘導結合プラズマ質量分析法（ICP-MS）が注目されている。これは、試料溶液中の元素を存在状態別にHPLCで分離後、HPLCに直結したICP-MSで元素特異的に検出する方法であり、高性能分離と微量・迅速・高感度分析という特徴がある。

そこで本研究では、Cdストレスにより植物体内に生成されるCd-γECペプチド複合体の分子量に関する情報を得るために、コマツナおよびイネを水耕栽培してCdストレスを与えた。植物抽出液をサイズ排除（SE）-HPLC/ICP-MSを用いて分離分析した。さらに、複合体を構成するγECペプチド組成を逆相HPLCにより分離分析した。そして、コマツナとイネでの結果を比較しながら、Cd-γECペプチド複合体の構造を検討した。

（2）SE-HPLC/ICP-MSによるCd-γECペプチド複合体の分析

通常の水耕で生育させたコマツナとイネ幼植物をCd50μMを加えた水耕で数日間栽培後、植物体全体からトリス-塩酸抽出液を調製した。抽出液を、サイズ排除カラムを装着したHPLC装置で分離し、紫外検出器の出口を通じたICP質量分析装置でCdを検出し、有機物と結合したCdのクロマトグラムを測定した。図1に、コマツナ抽出液のSE-HPLC/ICP-MSクロマトグラムを示す。

図1 コマツナ抽出液のSE-HPLC/ICP-MSクロマトグラム

cps:counts s⁻¹, Abs280:吸光度（280nm）

紫外検出のクロマトグラムから、保持時間5分で高分子成分が溶出し始め、12分以降、種々の低分子が溶出することが理解できる。Cd検出のクロマトグラムでは、Cdストレスを受けた場合、保持時間6.4分にごく小さなピークが出た後、8分頃から徐々にCd強度が大きくなり、10.8分を中心に大きなピークが、11.6分に肩状の小さなピーク、そして12.3分にごく小さなピークがみられた。10.8分のピークは、紫外検出のクロマトグラムでも観測された。それに対してCdストレスを受けなかった場合（対照）、12.3分のごく小さなピークを除いてこれらのピークは観測されなかった。イネでは、
Cd50μMの場合（図2）、保持時間6.5分にピークが出た後、ベースに戻らずCdが検出され続け、11.2分を中心とした幅の広いピークが検出され、12.3分に最大のピークがみられた。コマツナの10.8分、11.6分、イネの11.2分を中心にピークが、Cd-γECペプチド複合体によって考えられる。

メタロチオネイン標品のピークと比較すると、コマツナおよびイネのCd-γECペプチド複合体のピークは幅広であり、ときにイネで顕著であった（図2）。このことから、Cd-γECペプチド複合体のある程度の推定は可能である。SE-HPLC/ICP-MSクロマトグラムからCd-γECペプチド複合体の分子量を推定すると、コマツナの場合、保持時間10.8分のピークが0.6万、イネの場合、11.2分のピークが0.6万を中心に分布していた。それによってコマツナとイネでは主なピークを比較した場合、コマツナのCd-γECペプチド複合体のほうが分子量が大きいといえる。

（3）逆相HPLCによるγECペプチドの分析

Cd-γECペプチド複合体を構成するγECペプチド組成を知るために、γECペプチドを逆相HPLCにより分離分析した。図3に、コマツナおよびイネから抽出したチオール化合物の逆相HPLCクロマトグラムを示す。

図2 Cdストレスを受けた植物抽出液のSE-HPLC/ICP-MSクロマトグラム
水耕法中Cd濃度50μM、メタロチオネイン：市販品（ウマ腎臓）、5μg mL⁻¹。イネ、メタロチオネインは、検出をそれぞれ5倍、3倍に拡大して示した

の分子量は、メタロチオネインのように一定ではなく、ある程度の範囲に分布していると考えられた。また、SEクロマトグラムの保持時間からタンパク質の正確な分子量は必ずしも求められないが、
クロマトグラムには、コマツナおよびイネでCdストレス（Cd50μM）を受けた場合、保持時間10〜15分の間に対照にはみられないチオール化合物が検出された。これらが、Cdストレスを受けて生成されたγ-ECペプチドであると考えられる。コマツナとイネとでは、これらピークの保持時間が異なっており、異なるγ-ECペプチドが生成されることを示している。生成された主なγ-ECペプチドはコマツナでは（γ-Glu-Cys）n-Gly、イネでは（γ-Glu-Cys）n-Serである可能性が高いと考えられる。

コマツナとイネとで複合体を構成するγECペプチドの構造が異なることが、両者間でCd-γECペプチド複合体の分子量の差が生じた理由の一つと推定される。

（4）Cdストレスの強度変化がCd-γECペプチド複合体形成に及ぼす影響

コマツナについて、水耕液中Cd濃度を対照（Cd無添加）、0.1、1および10μMの4段階においてストレスを与えて、植物中のCd-γECペプチド複合体をSE-HPLC/ICP-MSで分離分析した。

図4に、Cdストレスの強度変化がコマツナ中Cd-γECペプチド複合体形成に及ぼす影響を示す。水耕液中のCd濃度が大きくなると、Cd-γECペプチド複合体の生成量は明らかに増加した。Cd-γECペプチド複合体由来のピークは、Cd10μMの場合、保持時間10.8分に大きなピーク、11.6分に肩状の小さなピークが、そしてCd1μMの場合、Cd10μMと同じ10.8分にピークが観測された。Cd0.1μMでは、保持時間10.1分、11.0分そして11.7分にCd-γECペプチド複合体由来と思われるピークが重なり合っているが観測された。このことから、コマツナでは、低いCdストレス（0.1μM）では、高いCdストレスの場合（≥1μM）とは分子量が異なるCd-γECペプチド複合体が生成されることが示された。また、これまで植物のCd-γECペプチド複合体はCd濃度数μM程度のストレスにより生成されるとは知られていたが、Cd0.1μMという低濃度でもコマツナはCd-γECペプチド複合

図4 Cdストレスの強度変化がコマツナのCd-γECペプチド複合体形成に及ぼす影響
Cd0.1μM、対照は縦軸を10倍に拡大して示した。

結合体を生成していることが示された。これは、SE-HPLC/ICP-MS法が高感度であることにより得られた結果である。

（5）おわりに

本研究ではSE-HPLC/ICP-MSを用いることにより、コマツナおよびイネのCd-γECペプチド複合体の分子量分布について詳細な知見が得られた。今後、本分析法をCdストレスを受けた種々の植物中のCdの状態分析に適用して、生成するCd-γEC複合体の分子量分布についての知見を深めていくことにより、植物のCdストレス対応機構におけるCd-γEC複合体の役割解明がより進展することが期待される。

また、高速液クローIHP質量分析法は、高感度な元素の状態分析法であることが確認された。そこで、本法をCd以外の元素へも適用することで、種々の微量元素の植物中での存在状態と機能の解明が進展するものと考えられる。
文献

5) 松永 俊朗・渡辺 久男, 日本土壌肥料学雑誌, 印刷中。
 (微量元素動態研究室 松永俊朗, 渡辺久男)
IV. 研究成果の発表及び広報

平成6年度中に発表された研究成果をつきのとおり四つに分類した。

1. 機関誌
 （1）農業環境技術研究所で刊行した機関誌
 （2）他機関で刊行した機関誌

2. 学会（誌）発表
 （1）学会誌
 （2）学会発表

3. 公刊図書

4. その他
 なお、この研究成果は、それぞれ組織内に研究部別とし、部別ごとに筆頭著者のアルファベット順に掲載した。

又、「学会発表」は、研究部別とし学会ごとにまとめた。
さらに、共同研究および共同論文については、筆頭著者の所属におきまえた。
（※印は所属の一部、配列から除外）

5. 広報
 （1）新聞記事
 （2）テレビ・ラジオ等

1. 機関誌

（1）農業環境技術研究所で刊行した機関誌

1）農業環境技術研究所報告
 第11号（1994.6）

和田 耕児：イネ苗立枯症研究に関する研究

吉松 信一：日本産および台湾産Mythimna属（繭翅目・ヤガ科）の分類学的再検討（英文）

2）農業環境技術研究所資料
 第16号（1995.3）

原創 芳信・吉本 真由美・宮田 明・内田 洋平・George L. Vourliitis*・Walter C. Oechel*：Micrometeorological Date and their Characteristics over the Arctic Tundra at Barrow, Alaska during the summer of 1993

第17号（1995.3）

農耕地塩分分類委員会：農耕地塩分類 第3次改訂版
第18号（1995.3）

山口 武則・大浦 典子・山川 修治・竹澤 邦夫・福厚 道一：エコトロン 一施設の概要と研究例 一

3）平成5年度農業環境技術研究所年報（1995.3）

池田 浩明：衛星リモートセンシングを利用した農業生態系の汚染状況の推定

八木 一信・勝田 治雄・神田 健一*：水管理による水田からのメタン発生制御

山村 光司：日本の輸入植物検疫における病害虫侵入阻止率の推定

河合 正晴：水稲病害の地域モニタリング

水崎 悠雄：農耕地塩分類の改訂

戸田 任重・竹内 誠：農業灌漑用水における硝酸態窒素の消失

小泉 博：フィンランドの耕地塩分から放出される二酸化炭素の季節変化

岡部 郷子・島山 重光：クバコモザイクウイルスの土壌粒子による吸着とその要因

井上 活・森本 信生：地球温暖化が害虫発生に及ぼす影響の予測

鈴木 健・遠藤 正造・瀧 宏司・加野 安彦：ワタアブラムシの殺虫剤抵抗性発現機構

加藤 直人・検口 太重・駒村 美佐子：32Pラジオアイソトープの野外利用技術の開発と土壌有効態リン酸の評価

4）農業環境技術研究成果情報 第10集（1994.9）

結田 宗一：ヨウ素の土壌－土壌溶液間栄養を及ぼす土壌水分等環境因子の影響

宮田 明・原野 芳信・吉本 真由美：メタンフラックスの微気象学的測定法

三土 正則他：農耕地塩分類委員会委員：農耕地塩分類の改訂

谷山 一郎・太田 健・長見 敬・岩間 秀矩・坂西 研二・斎藤 多門：耕作放棄による粘土質農田の土壌特性及び保水保全機能の変化

戸田 任重・竹内 誠：農業灌漑用水における懸濁浄化機能の定量的評価

加藤 直人・小山 雄生・駒村 美佐子：ラジオアイソトープ 32Pの野外利用による土壌有効態リン酸の評価と安全性の確認

渡辺 久男：放射光発光／X線吸収分析法による水稲生
農業環境技術研究所年報 平成6年度

6）農環研ニュース
 第26号（1994.7）
 昆野 俊明：農業害虫の殺虫剤抵抗性に対する酸化酵素系P-450の役割

第27号（1995.3）
 川島 博之：21世紀の食料需給と環境問題

7）農業環境技術研究所主催のシンポジウム・研究会の講演要旨

8）農業環境技術研究所刊行のその他資料等
 平成5年度原子力成果（1994.9）
 結田 康一：異種形態要素トレーサ法の開発と利用—ヨウ素の大気から土壤への降下・土壤中浸透の長期追跡法の確立—
 草場 進*・ 太田 健・ 谷山 一郎：底質の移動に対するアクチバブルトレーサ法の適用
IV. 研究成果の発表及び広報

太田 健・草場 敬・谷山 一郎：レアメタルの放射化分析法の開発と応用

上路 稚子・黒田 勝・長谷川 正人：バイオテクノロジーによる立体異性農薬の特定的標識化技術の開発

加藤 直人・橋口 太重・駒村 美佐子・小林 義之・新美 洋：農耕地における新野外 R I トラッサー技術の開発に関する研究

加藤 直人・橋口 太重：原子炉による農業資材の直接標識化技術の開発とその利用

（2）他機関で刊行された機関誌

企画調整部

○著書 滋藤 誠：パソコン用研究案内システムの開発「第 3 回農林水産情報研究会講演集」農林水産省農林水産技術会議事務局（1994.11）

○ 濱野 義：Impacts of climatic warming on Japanese agriculture「The Potential Effects of Climate Change in Japan」国立環境研究所（1994.5）

○田中 慎久・濱野 義：京都府メッシュ気候計の利用に関する研究 第 2 報 特定年月日の気温データのメッシュ化「京都府農業総合研究所報告」京都府農業総合研究所（1994.10）

環境管理部

○井上 吉雄・芝山 道郎・森永 慎介・秋山 健：植生環境の変動に関する研究「総合研究（北極圏における気候・水準・生物圈の変動及びそれらの相互作用の評価に関する国際共同研究）第 1 期成果報告書」科学技術庁（1994.4）

○芝山 道郎・森永 慎介・井上 吉雄・秋山 健・Hame Tuomas*・Salli Arto*・Marjaana Alonen*・Anssi Lohi*：植生環境の変動に関する観測研究フィンランンド北部自然植物の反射スペクトル計画北極総合シンポジウム論文集科学技術庁（1994.7）

○石田 恵治：健全な生活活動を支える農地の多目的的環境保全機能「アーリーマン」44(4)：24-25（1994.4）

○今川 俊明・岡本 勝男・福原 道一：Inter-Annual Variations of Land Cover in and around Maroua, Northern Cameroon.「Geographical Reports of To-kyo Metropolitan University」30：106-116（1995.3）

○網沢 敏弘・織田 健次郎：近畿地域農業関係試験研究機関におけるＮ別気象観測データベースの作成と利用プログラムの開発「中国農業試験場研究資料」24（1995.3）

○駒村 美佐子・結田 康一：土壤ならびに作物中之降放射性核種の分析的研究「平成４年農林水産関係放射能調査研究年報」1-1, 1-2（農林水産省技術会議事務局（1994.11）

○原田 信・Li, Shenggong*・Shen Jianyou*：Seasonal Changes of Albedo and Micrometeorological Conditions of Vegetation in a Semi-Arid Area In Inner Monogolia, China 「JARQ」 JIRCAS（国際農研）（1994）

○三枝 信宏：系統分類学における定点的観察の動向：形態情報と分子情報の利用「生物分類への統計的アプローチ（統計数理研究所共同研究報告 67）」文部省統計数理研究所41-45（1995.3）

○三輪 光久・三枝 信宏・鴻鶴 保雄：小麦粉鉱砕性の画像解析判定技術の開発と品質間差別の検索「総合的開発研究 小麦を主体とする水田作物群の高品質化及び生産性向上技術の開発（品質劣化を研究成果報告（前期）」農林水産技術会議事務局・農業研究所センター（1994.12）

○戸田 任重・八本 一行・楊 宗典・竹内 誠：Measurement of Methane and nitrous oxide emissions from the peatlands in northern Quebec, Canada「Proceedings of the NIPR Symposium on Polar Biology」7：237-242（1994）

○山本 博道：穂実粒重変動の数値化手法の開発「総合的開発研究 小麦を主体とする水田作物群の高品質化及び生産性向上技術の開発（品質劣化）研究成果報告（前期）」89-90（農林水産会議事務局・農業研究所センター（1994.12）

○結田 康一：Overview and dynamics of iodine and bromine in the environment 1. Dynamics of iodine and bromine in soil-plant system 「JARQ」28(2)：90-99（1994）

○結田 康一：Overview and dynamics of iodine and bromine in the environment 2. Iodine and bromine toxicity and environmental hazards 「JARQ」28(2)：100-111（1994）

○結田 康一：放射性ヨウ素の土壤蓄積性と浸透性の定量的把握「第36回環境放射能調査研究成果論文抄録集」科
農業環境技術研究所年報 平成6年度

学術便箋（1994.12）

環境資源部
○騒田 充生・神田 和也・健二*・浅川 征男・柏渕 昌昭*：
釧路湿原における水質変動解析「湿原生態系保全のため
のモニタリング手法及び農用地からの影響緩和方策の確
立に関する研究」45-52農林水産技術会議事務局研究成果
297（1995.3）
○小牧 伸*・加藤 英孝：吸着性陰イオンを用いた黑ボク
畑圃場への正味の浸入水量の推定「九州農業研究」
(1994.7)
○戸田 任重*・竹内 誠：Nitrogen Mineralization
Characteristics of Peats collected from Northern
Peatlands 「Proceedings of The International Arcti-
ca Science Symposium」D-97～D-104 Science and
Technology Agency Japan Marine Science and
Technology Center（1995.1）
○M. YAMOTO*・H. KOFUJI*・津村 昭人・山崎 慎一・
結田 康一・駒村 美佐子：Temporal Feature of
Global Fallout 237Np Deposition in Paddy Field
through the Measurement of Low - level 237Np by
High Resolution ICP-MS 「Radiochimica Acta」64:
217-222（1994）
○早野 恒一・渡辺 克二*・浅川 菊*：西南暖地の堆肥
および化学肥料長期連用土田の塚壌微生物とその活性—
水稲と小麦の根圏及び非根圏の比較—「九州農業試験場
報告」28(3)：139-155（1995）

環境生物部
○門田 任生・田中 麗悟・邦二*：Pseudomonas 属細菌の核酸
レベルでの多様性的解析「平成5年度流動研究及び国内
12）
○小泉 博：北極域の植生—塚壌系における二酸化炭素の
動態「北極圏総合研究シンポジウム」215-220科学技術
（1994.7）
○澤田 宏之：Agrobacterium 属細菌の系統および分類
に関する研究「果樹試験場報告 特別報告 第5号」1-
110（1994.2）
○白井 洋一・矢野 栄二：Hibernation and flight abili-
ty of the cabbage webworm in Japan 「JARQ」28
(3)：161-167 JIRCAS（1994.7）
○鳥山 重光・高橋 真実・佐藤 義孝*・清水 巧*・石
浜 明*：Nucleotide sequence of RNA 1, the largest
genomic segment of rice stripe virus, the proto-
type of the tenuiviruses 「Journal of General Viro-
logy」74(3)：3569-3579 The Society for General Mi-
crobiology（1994.12）
○那須 英夫*・松田 泉・金谷 元*・畑本 求*：イネも
み枯細菌病害感染種子に対する温湯消毒の効果「岡山農
試報告」13：1-6（1995.1）
○森本 信生：地球温暖化における昆虫発生変動の予測
「農林水産技術会議だより」155：1-3（1994.10）
○森本 信生：モデルの実証は研究の目的を果たせなかった
こと？「農林水産技術会議だより」155：4（1995.10）

資料動態部
○岡崎 博・高橋 隆夫*・高橋 章夫*・下長根 鴻*・小
泉 信三*・斎藤 道彦：群馬・茨城両県におけるコムギ
のフサリウム毒汚染と薬剤防除の効果「関東東部病虫
研究会年報」関東東部病虫研究会（1994.11）
○岡崎 博・下長根 鴻*・高山 隆夫*・高橋 章夫*・小
泉 信三*・斎藤 道彦：コムギの刈取り後のフサリウム
毒汚染の有無について「関東東部病虫研究会年報」関
東東部病虫研究会（1994.11）
○加藤 直人・Fardean J. C.*・Zapata F.*：Evaluation
of the residual effect of P fertilizers on plant P
nutrition using isotopic techniques 「Nuclear tech-
niques in soil-plant studies for sustainable agricul-
ture and environmental preservation」International
Atomic Energy Agency（IAEA）189-196（1995）
○渡辺 俊夫・桑水 俊朗：レアメタル類の動態と生体機
能への影響の解明—土壤環境における分布とその変
動—「先端技術産業に係わる環境汚染物質の拡散予測と
モニタリング手法の開発に関する研究」農林水産技術会
議事務局（1994.11）
○渡辺 俊夫・桑水 俊朗：レアメタル類の動態と生体機
能への影響の解明—作物における吸収と生体機能への影
響—「先端技術産業に係わる環境汚染物質の拡散予測と
モニタリング手法の開発に関する研究」農林水産技術会
議事務局（1994.11）

2．学会（誌）発表

（1）学会誌

企画調整部
○池田 浩明・大崎 俊哉・根本 正之：Shoot morpho-
logical response to interactions between Dactylis
glomerata and Veronica persica 「Ecoscience」1
(4)：329-332 Universite Laval（Canada）（1994）
○池田　浩明：踏みつけと雑草群落の種構成「関東雑草研究会報」6:3-9 (1995)
○原田 二郎: Weed management for sustainable agriculture towards the 21st century 「韓国雑草学会誌」14別2:7 (1994)
○大平 和幸*・山田 實*・枙図 二郎・松村 雄・芦戸 俊彦*: CMV 外被タンパク質遺伝子を導入したペチュニア組換え体系统的隔離群における安全性の評価「育種学雑誌」44別2:52 (1994)

環境管理部
○秋山 俊：衛星リモートセンシング技術の農業利用研究－広域的作物資源分布と生育状態の定量的把握－「生物環境調節」32(3):505-514 (1994)
○秋山 俊：書評「平成の大凶作」「システム農学」10(2):232 (1994)
○井手 任・枙図 直朗・守山 弘：孤立二次林における種子供給が下層植生に与える影響「造林雑誌」57(5):199-204 (1994)
○井上 吉雄・桜谷 哲夫*・芝山 孝郎*・森永 慎介：Remote and real-time sensing of canopy transpiration and conductance - comparison of remote and stem flow gauge methods in soybean canopies as affected by soil water status 「日本作物学会誌」63(4):664-670 (1994)
○遠藤 勇：NAPLPS 画像のオンライン表示と作画手法「農業情報研究」3(1):13-29 (1994.3)
○齋藤 元也・秋山 俊・山田 俊義*・美濃 伸之：ランドサット TM データと既存地理情報を利用した東北タイの農業生産力評価「システム農学」10(1):1-10 (1994)
○二宮 正士・末川 隆・池崎・江渡 浩一郎*・山本 謙治*・南大 宏*・小泉 宏*：探索機能を持つ WWW 画像データベース「Lotus in Japan (日本農業)の構築」「農業情報研究」3(2):109-125 (1994)
○江渡 浩一郎*・山本 謙治*・南石 光明*・二宮 正士：WWW 対応した青果物況情報データベース「NAPASS for Wed」の開発 既存データベースを利用した探索機能の実現と探索結果の視覚化「農業情報研究」3(3):127-141 (1994)
○二宮 正士：農業インターネット内圏 1 インターネットって何「農業情報利用」13:18-23 (1994)
○三中 信義：生物学哲学の新展開「山崎鳥類研究所研究報告」27 (1994)
○三中 信義：Morphology Digest：数理形態学電子ニュースの紹介「Biological Morphometrics」3(4):76-81 (1994)
○三中 信義：書籍紹介：「生長法則の探究」 'Biological
Morphometrics』3(4):82-83(1994)
□三中春信：形態測定学者の本棚2：近現代の形態学「Biological Morphometrics」3(1):10-12(1994)
□三中春信：形状輪郭の数学「Biological Morphometrics」3(2):30-35(1994)

農業環境技術研究所年報　平成6年度

環境資源部
□岩間秀岳：持続的農業と土壌保全－特にわが国傾斜地の持続的草地利用について－「システム農学」10:139-148(1994)
□岩間秀岳・飯塚省作・金井幸男・久保田徹：Effects of ozone on dry matter partitioning and yield of Japanese

○小林 晴夫*・塚本 修*・鳥谷 均・五十嵐 大造*・柏木 良明*・黒瀬 義雄*: 地気象学研究−観測と理解−農業気象 50(2): 129-133 (1994)

○鳥谷 均・内藤 玄一*・小林 文明*・佐々木 保徳*・村治 能孝**・遠藤 菊郎*: ヘリコプターとソンデによる観測データの整合「天気」4108: 669-677 (1994)

○野内 勇・小林 和彦: Effects of enhanced ultraviolet-B radiation with a modulated lamp control system on growth of 17 rice cultivars in the field「農業気象」51(1): 11-20 (1995)

○細野 達夫・野内 勇: 人工酸性雨が数種の農作物の生長・収量および光合成速度に及ぼす影響「農業気象」50(2): 121-127 (1994)

環境生物部

○岩川 望*・水久保 隆之*: A simplified procedure of transferring nematodes to glycerol for permanent mounts 「日本線虫学会誌」24(2): 75 (1994)

○岡部 郁子・島山 重光: Scanning electron microscopic observations of tobacco mosaic virus adhering to soil particles 「日本植物病理学会報」61(1): 44-
植松 清次*・大久保 博人・鈴井 孝仁*・中村 璩弘*：Phytophthora cryptogea を含む 3 種の疫病菌によるキ
ンセンカ疫病（新称）「日本植物病理学会報」60(3)：324 (1994)

植田 敬士・志賀 正和*：コクヌストモドキ卵による数
多クサケゴウの累代飼育・増殖法「日本応用動物昆虫
学会誌」39(1)：51-58 (1995)

鈴木 茂*・別宮 有紀子*・小泉 博：Efflux of car-
bon dioxide from snow-covered forest floors 「Ecological Research」9：343-350 (1994)

齋藤 修：カスタンの低温耐性「北日本病虫研報」45：
158-159 (1994)

齋藤 修：札幌市の野外と無加温ハウスにおけるカナダ
の越冬実態「北日本病虫研報」45：160-162 (1994)

武内 真理子*・澤田 宏之・小柳津 広志*・横田 明*：
Phylogenetic evidence for Sphingomonas and Rhi-
zomonas as nonphotosynthetic members of the al-
pha-4 subclass of the Proteobacteria 「International Journal of Systematic Bacteriology」44(2)：308-
314 (1994)

澤田 宏之：根朽がんじゅ病菌の系統および分類に関す
る研究「日本植物病理学会報」60(3)：279 (1994)

澤田 宏之・家家 洋之*・松田 泉：PCR detection of
Ti and Ri plasmids from phytopathogenic Agto-
bacterium strains 「Applied and Environment Micro-
biology」61(2)：828-831 (1995)

白井 洋一・中村 あゆみ*：Dispersal movement of
male adults of the diamondback moth on crucifer-
ous vegetable fields, studied using the markrecap-

本間 政史*・宮坂 蕃*・鈴木 文彦・羽柴 輝良*：
Expression of the linear DNA plasmid pRS64 in
the plant pathogenic fungus Rhizoctonia solani
「Molecular General Genetics」245：265-271 (1994)

対馬 誠也・成松 千寿*・水野 明文・本村 龍介：
Cloned DNA probes for detection of Pseudomonas
glumae causing bacterial grain rot of rice 「日本植
物病理学会報」60(5)：576-584 (1994)

対馬 誠也・長谷部 亮*・河本 征臣*・Carter John
P.*・宮下 清貴・横山 和成・Pickup R. W.*：Detection
of genetically engineered microorganisms in
paddy soil using a simple and rapid "nested" poly-
merase chain reaction method 「Soil Biol. Biochem.」
27(2)：219-227 (1995)

鳥山 重光・鈴木 善彦*・後藤 裕児*・小島 誠*：
Effects of salts on RNA polymerase activity and
conformation of filamentous nucleoproteins of rice
stripe virus「日本植物病理学会報」60(5)：555-562
(1994)

松村 雄：Development of Tabanus nipponicus
（Diptera, Tabanidae）Confirmed by Laboratory-
Rearing 「Applied Entomology and Zoology」30(1)：
57-65 日本応用動物昆虫学会 (1995)

松本 直幸：ICPP 報告(1) 犬び虫の利用による糸状菌
病の防除「バイオコントロール研究会レポート」4：24-
27 日本植物病理学会 (1994)

水野 明文・対馬 誠也・門田 育生・西山 幸司：A
cloned DNA probe for detection of Pseudomonas
gladioli 「日本植物病理学会報」61(1)：22-26 (1995)

水野 明文・野津 祐三・門田 育生・西山 幸司：
Curtobacterium flaccumfaciens pv. flaccumfaciens の
粗菌体タンパク質を抗原としたモノクローナル抗体の作
製「日本植物病理学会報」61(1)：69-74 (1995)

豊田 剛己*・宮下 清貴重・木村 眞人*：Introduction of a
chitinase gene into pseudomonas stutzeri A 18 isolated from the surface of chlamydospores of fusarium oxysporum F. SP. raphani 「Soil Biol. Biochem.」26(3)：413-416 (1994)

矢野 児二：統合型農業と害虫防除「システム農学」10
(2)：191-198 (1994)

横山 和成・平工 美由紀*・井之本 晃*：Evaluation of
richness of soil bacterial communities in sup
presive soil by analyzing diversity of carbon
sources utilization pattern 「Plant pathology and
Biotechnology—Proceedings of 2nd Hangzhou Inter-
national Symposium on Plant Pathology」122
(1994)
資料動態部
○松本 宏*・富永 達*・住吉 正*・黒 暁明*・石垣 眞澄："Weed Science" 第41巻1および2号の内容総合
「雑草研究」39(2)：65-70 (1994)
○松本 宏*・富永 達*・住吉 正*・黒 暁明*・石垣 眞澄："Weed Science" 第41巻3および4号の内容総合
「雑草研究」39(2)：130-136 (1994)
○上路 靖子：第8回国際農薬化学会議に出席して「雑草
研究」39(3)：183-185 (1994)
○上路 靖子・大井 正典*・小田中 芳次*・高木 和広*・若林 猛*・佐藤 清*：Fate and behavior「日本農薬学
会誌」19特別号：63-76 (1994)
○清野 義人*・遠藤 正造：トピロウカ抵抗性種の吸
汁困難性の検討「九州病害虫研究会誌」40：152-153
(1994)
○尾和 尚人：Microbial material and soil amend-
ment in Japan 「International Seminar on the Use of
Microbiological and Organic Fertilizers in Agricultural
Production」1-8 (1994)
○毎野 安彦・福田 孝*：A Relationship between the
Chemical Structure of Organophosphates and Inse-
sensitivity of Acetylcholinesterase in the Diamondback
Moth. * Plutella xylostella L. (Lepidoptera: Ypo-
nomeutidae)「Appl. Entomol. Zool.」29(4)：595-
597 (1994)
○毎野 安彦：第8回国際農薬化学会議の内容解説 (Resi-
stance)「日本農薬学会誌」19特別号：S 344-S 345
(1994)
○鈴木 健・出・弘司：Acetylcholinesterase of the cot-
ton aphid. * Aphis gossypii Glover (Homoptera: Aph-
ididae) I. Three clone-types possessing acetyl-
cholinesterases of low and high sensitivity to pirim-
icarb, and the mixture. 「Applied Entomology and
Zoology」29(2)：300-303 (1994)
○高木 和広：ECの国際共同研究(STEMプログラム)に
参加して「土と微生物」44：89-90 (1994)
○高木 和広：10 D-1 下層土圏での農薬の運搬と挙動
「日本農薬学会誌」19特別号：S 373-S 375 (1994)
○牧口 太重：特種農業における有機肥料・資材の利用
「システム農学」11：68-78 (1995)
○松永 俊朗：土壤分析 - 土壤養分 - 「ぶんせき」236：
634-640 (1994)
○松永 俊朗：近赤外光光による土壤分析「第10回非破
壊計測シンポジウム」147：154 (1994)
○南 宇一・安東 順男*：Analysis of blast disease re-
sistance induced by probenazole in rice「日本農薬学
会誌」19(2)：79-83 (1994)

（2）学会発表
企画調整部
日本計量生物学会1994年度年会・統計科学合同研究集会
(1994. 4)
○竹澤 邦夫・山口 武則：ターボ・アルゴリズムを用い
t回帰
日本写真測量学会平成6年度年次学術講演会 (1994. 5)
○岡本 勝男・福原 道一・岡野 千春*：ランドサット
TMデータによる小麦畑面積と収量の推定
第15回世界土壤会議 (1994. 7)
○誂田 共之・平田*：Nutrient Cycling Considerations
for Sustainable Agriculture
日本農業気象学会シンポジウム (1994. 7)
○山川 修治：1993年と過去の冷害害に関する総観気候
的比較検討
15th International Congress of Soil Science (1994. 7)
○新藤 純子・妙田 共之：Soil response model to ac-
id deposition-Prediction of change of soils with
variable charges-
日本作物学会東北支部第37回講演会 (1994. 8)
○原田 二郎：秋田県大曲市におけるムラサキ科の帰化雑
草
○原田 二郎：Zungsonitiporn S.*・Sangtong T.*・森田
弘彦*：北部タイ高地に繁殖するキク科の帰化雑草
International Congress of Ecology (1994. 8)
○別宮 有紀子*・池田 浩明・小泉 博・木村 充*：Car-
bon balance in early stages of secondary succession
○池田 浩明：Species diversity and coexistence in
weed communities along a trampling gradient
日本草原学会 (1994. 9)
○池田 浩明・岡本 勝男・福原 道一：ランドサット
TMデータを用いたマメ科牧草と荒廃草地の判別
韓国生態学会 (1994. 10)
○清野 篤・内崎 善兵衛*：Impacts of global climate
change on net primate productivity and distribu-
tion of terrestrial vegetation
第75回農業土木学会九州支部 (1994. 10)
○岡本 勝男・清野 勝男*：ランドサットによる赤土流出
状況の把握について
環境科学学会1994年会 (1994. 11)
○新藤 純子・妙田 共之：酸性降雨物の臨界負荷量推定
法の検討
システム農学会 春季シンポジウム (1994. 11)
○竹澤 邦夫：重みつき回帰を用いたオメの収量予測
日本農業気象学会関東支部1994年度例会（1994.11）
○大浦 典子・山口 武則：高温・高 CO₂濃度条件下における水稲の生育および収量－エコトロンを用いた92年度の調査結果－
○山口 武則・大浦 典子：高温・高 CO₂濃度条件下における水稲の生育および収量－エコトロンを用いた93年度の調査結果－
IUAPPA Regional Conference on Air Pollution and Waste Issues (1994.11)
○池田 浩明・岡本 勝男・福原 進一：Estimation of carbon budgets in croplands using Landsat TM data

○竹澤 邦夫：Acquisition of fuzzy rules using turbo algorithm

Fifth International Conference, ENVIROSOFT 94 Development and Application of Computer Techniques to Environmental Studies (1994.11)
○竹澤 邦夫：Acquisition of fuzzy rules using turbo algorithm

日本草地学会（1995.3）
○池田 浩明・岡本 勝男・福原 進一：ランドサット TMデータを用いた広葉草本種の判別

日本地理学会春季大会（1995.3）
○山川 修治：1993～94年の天候異変に関する総観気候学的研究の一考察

1995年度日本土壤肥料学会（1995.4）
○岡本 勝男・福原 進一：ランドサット TMデータによる沖縄北部サンゴ礁の赤土砂堆積評価（第2報）土地利用形態の及ぼす影響についてー
○下田 共之・木浦 卓治：集水域の水保全管理機能評価のための複合タンクモデル試作システム

環境管理部
日本写真測量学会平成6年度秋季学術講演会（1995.5）
○齋藤 元也・美濃 伸之・安田 嘉純：リモートセンシングデータの利用－草理地形年次変化の把握－
日本農業気象学会1994年全国大会（1994.6）
○山田 一茂：気温のメッシュ化について－地形因子の検討－
International Conference on Statistics in Industry, Science and Technology (1994.7）
（「理工学における統計的方法」国際会議）
○三輪 哲久：Statistical Inference on non-centrality parameters and Taguchi’s SN rations

日本SASユーザーミーティング（1994.7）
○二宮 正士・古田 信也・生出 眞里：SASによる葉形等の桝円形フーリエ形態解析

日本農業土木学会（1994.7）
○石田 恵治：冲縄県南西部における耕作放棄と畦畔の損耗

自然環境復元シンポジウム（1994.7）
○守山 弘・原田 直男・井手 任・飯島 博：フクロウの食餌内容に基づいて想定した農村ヒトロープの形態

第15回世界土壤科学大会（1994.7）
○濱田 慎一：Content of iodine bromine and chlorine on the soil-plant systems in the world

日本作物学会（1994.8）
○井上 吉雄・Moran M. Susan：遠隔分光計測と簡易機構モデルに基づく個体群のポテンシャル的な蒸散量、実際に蒸散量およびストレスの評価
○佐々木 次郎*・井上 吉雄・森永 慎介：水稲の倒伏予測への分光反射計測の利用
○大川 浩史*・井上 吉雄・森永 慎介：分光反射測定による水稲収量の推定に関する基礎的検討
○井上 吉雄：作物生理生態情報の遠隔計測手法に関する研究

第13回国際質量分析会議（1994.8）
○山崎 慎一・津村 昭人：Ultimate detection limits obtained high resolution ICP-MS

第4回国際プラズマ質量分析会議（1994.9）
○山崎 慎一・津村 昭人：Determination of ultra-trace elements in rain water by high resolution ICP-MS

日本写真測量学会平成6年度秋季学術講演会（1994.10）
○齋藤 元也・美濃 伸之・安田 嘉純：リモートセンシンググランドトールス用分光放射計の作成
○齋藤 元也・平野 聡・美濃 伸之・中谷 幸広*・今岡 啓治*：フィリピン・ルソン島域のMOS-1／MESSRデータベース化と土地利用解析
○美濃 伸之・齋藤 元也：草理管理へのリモートセンシングデータの利用－草理地形年変数マップの作成－

日本育種学会第86回講演会（1994.10）
○二宮 正士・高橋 信夫*・大森 宏*・高野 泰*・鶴崎 保雄*・生出 眞里：稲円フーリエ解析によるサイズDF、葉形評価とダイアレル分析
○岩田 洋佳*・根角 博久*・鶴崎 保雄*・二宮 正士：稲円フーリエ記述子を用いたカンキツ葉形質の評価
日本の分析学会第43年会（1994．10）

山崎 優一 津村 昭人 二重収束型ICP-MSにおける環境汚染試料の分析41雨水中の超微量元素の分析

1994年度日本土壤肥料学会関東支部会（1994．10）

今川 俊明 福原 道一 耕作放牧棚田における土壌環境の経年変化 1 衛星データを用いた耕作放牧棚田の抽出

岡野 千春 福原 道一 岡本 勝男 田中 圭一 増田 欣也 衛星データを利用した1993年冷却湿による

文部省科学研究費総括研究A研究集会「実験計画の統計推測とその応用」（1994．11）

三輪 哲久 非心度およびSN比に関する統計的推測システム農学会1994年度秋季シンポジウム（1994．11）

江渡 浩一郎 山本 講治 南石 晃明 二宮 正士 耕作機能をもつWWW 魚果物市況情報データベース

"NAPASS for Web"の開発：WWW の機能を利用したインターネットベースと探索結果の視覚化

二宮 正士 田藤 鼠・尾良 佳紗利 江渡 浩一郎 山本 講治 南石 晃明 三冬 藤沼 元也 松本 康夫 耕作地域における有機物現存量とフロー量

の評価に関する研究

実流 伸之 田飼 保雄 耕作機能をもつWWW 画像データベースの構築

第35回大気汚染学会（1994．11）

鴻田 治雄 太田 正雄 ‘94 IGAC 調査結果沖縄および八方尾根におけるアルテヒド類の測定

環境科学会1994年会（1994．11）

鴻田 治雄 太田 正雄 平野 耕一郎 加藤 善徳 矢本 てるみ・石坂 隆・吉野 乗 雨雲の関係における雲水・雨水・大気中の化学成分の測定

プラスマ分光分析研究会第34回記念講演会（1994．11）

山崎 慎一 高解能ICP 質量分析装置の特徴と問題点

日本動物行動学会第13回大会（1994．12）

三輪 信雄 アーツストラップに基づくノンパラメトリックな誤差推定

山際鳥類研究所セミナー（1994．12）

三輪 信雄 ミトコンドリアDNAのシーケンスによるツグミ類の系統分析：分析手法について

農業情報利用研究会（1995．1）

大森 宏・高橋 信夫・高野 泰・二宮 正士 斎尾 乾二郎 作物品種変質における遺伝子型×環境交互作用

用のファジイパターンの抽出

大森 宏・高雄 信夫・高野 泰・二宮 正士 斎尾 乾二郎 作物品種変質における遺伝子型×環境交互作用

国際北極圏総合シンポジウム（1995．1）

Salli Arto*・芝山 道郎*・Hame Tuomas*・Alainen Marjaana*・森永 慎介 上井 古雄・秋山 倫 Spectral properties of subarctic ground vegetation during the growth period—preliminary results of a 1994 experiment in the northernmost Finland

第26回微生物学会シンポジウム（1995．2）

山崎 俊一 信宏・分子データに基づく系統樹作成：形質進化

International Workshop on Land Use System for Combating Land Degradation in East Asia（1995．2）

今川 俊明：Land Degradation and Desertification Evaluation using Satellite Data.

KARRN 協会講演会（1995．3）

二宮 正士 農業情報ネットワーク農村情報発信1995年度日本土壤肥料学会仙台大会（1995．3）

岡野 千春 今川 俊明 福原 道一 リモートセンシング/GISを用いた砂漠化評価手法—中国人モンゴル自治区奈曼旗の解析例

加藤 好武・吉永 秀一郎 土地の潜在的乾湿区分図の作成—仙台図柄の例

松本 成夫 祐田 共之 農地土壤の分子解析からみた農村の有機物動態の評価—山地畜産地域の有機物フローの評価

山崎 慎一 津村 昭人 土壌の元素組成に関する研究（第6報）

鴻田 慎一 津村 昭人 土壌の要素組成に関する研究（第3報）

わ爾田 康—大気中ヨウ素の土壌への蓄積量と浸透性（第1報）土壌中ヨウ素の分布と水分環境

日本農業科学工業会第42回大会（1995．3）

内藤 明弘・佐川 博志・遠藤 鼠・山本 博道・小川 慎男：新形質稲の用途適正の検証

日本地理学会（1995．3）

加藤 好武・鴻田 慎一・小森谷 祥明 中口 毅博 西根 宽：メッシュデータによる国土・環境保全機能の

定量化

日本生物地理学会第50回年次大会（1995．4）

三輪 信宏 農業図上での祖先復元と形質進化仮説の検証

日本育種学会第87回講演会（1995．4）

大森 宏・高橋 信夫・高野 泰・二宮 正士 斎尾

IV. 研究成果の発表及び広報
乾二郎*: 遺伝子×環境交互作用におけるファジー手法の適用ならびに既存手法との比較
○岩田 洋住*・根角 博久*・鶴岡 保雄*・高野 泰*: 植物フリーリ記述子によるカンキツ葉形質の環境変異及び遺伝子型×環境交互作用の評価
○渡 正敏*: 植物形態情報の画像処理によるオーム品種特性の解析
○生出 真里・二宮 正士・高橋 信夫: 理ネ状を直接入力とするニューラルネットワーク変数判別モデル
○二宮 正士・高野 泰*: 植物フリーリ法による水稲稲形評価とそのQTL解析
○中村 洋*・三中 信宏: パキスタン探索収集小麦・大麦系統の特性評価

日本農薬学会 (1995.4)
○菅 重史*・平田 豊*・塚内 秀紀*・三中 信宏・久野 勝治*: 本間 憲*: RAPD分析によるクマの品種評価
農村計画学会学術研究発表会 (1995.4)
○加藤 好正・横張 真・小森谷 祥明*: 農林地の持つ国土保全機能評価の全国マップー環境保全機能からみた農村空間の地域類型化・その１
○横張 真・加藤 好正・小森谷 祥明*: 農林地の居住適性機能評価の地域性-環境保全機能からみた農村空間の地域類型化・その２

環境資源部
日本気象学会1994年春季大会 (1994.5)
○高村 康男*・小林 隆久*・島谷 均: 都市域での上向き赤外放射と地表温度分布の観測
○遠藤 辰雄*・坪木 和久*・木村 龍治*: 遠藤 隆雄*: 鳥谷 均: 大和 政彦*: カナダ北部極における気温形成機構に関する予備調査
○松川 岩志*・遠藤 功雄*: 菊地 勝弘*: 火災 辰雄*・坪木 和久*・木村 龍治*: 鳥谷 均: カナダ北部極ケ ンプリッジベイにおける気温の形成過程
○大和 政彦*・田中 浩*・坪木 和久*・木村 龍治*: 遠藤 辰雄*・遠藤 功雄*: 山下 晃*・鳥谷 均: カナダ北部極気エアロソル観測(II)

日本農業気象学会 (1994.6)
○野内 勇・細野 達夫: 水田からのメタンフラックスの季節変化と水稲品種および栽培密度の影響
○畠司 定雄*: 宮原 智行*・吉本 真由美: 農業POフィルムハウスの環境の差異が作物の生育に及ぼす影響
○原嶋 智美*・宮田 剛: W. C. Oechel*・G. Voulitis*: 北極域ツンドラのCH4フラックスとCO2収支
○細野 達夫・野内 勇: 一年間の人工酸性雨散水がスギ苗の生長に及ぼす影響
○宮田 剛*・原嶋 智美*・吉本 真由美: 非分散赤外分析計による水稲群落上のメタンの濃度勾配の測定とフラックスの評価
○吉本 真由美・原嶋 智美*・Oechel*: 北極域ツンドラの熱収支特性
○原嶋 智美*・吉本 真由美: 農POフィルムのCO2放出放射特性

15th World Congress of soil Science Transactions (1994.6)
○浜崎 慎雄・Paningbatan Eduardo P. Jr.: 土壌分布パターンの上層土壌の解析

1994 Western Pacific Geophysics Meeting (1994.7)
○加藤 英孝・Clothier, B. E.*・Green, S. R.*: Chloride and nitrate transport involving anion adsorption during unsteady water flow in an andisol

6th International Congress of Ecology (1994.8)
○細野 達夫・野内 勇: Effect Of simulated acid rain on rice

Joint meeting on Global Atmospheric Chemistry (1994.9)
○原嶋 智美*・吉本 真由美・宮田 剛: Oechel W. C.*・Voulitis G. L.*: CO2 budget of coastal Arctic tundra at Barrow in 1993 summer
○宮田 剛*・原嶋 智美: Nicrometeorological measurements of methane flux over agricultural vegetation and an estimation of methane emission in Tsukuba, Japan

CACC/P/IGAC (1994.9)
○大和 政彦*: 田中 浩*・坪木 和久*・木村 龍治*: 遠藤 辰雄*・遠藤 功雄*: 鳥谷 均: Physicochemical properties of Arctic aerosols

日本土壤肥料学会九州支部会 (1994.9)
○内村 潔*・加藤 英孝: 鳥山 光昭*: 神野 明子*: 施肥により強酸性化した黒ボク・黒ニグへの浸漬過程における紫イオンの移動

International Conference: Landscape degradation in Mediterranean-Type Ecosystem (1994.10)
○原嶋 智美*・Oechel W. C.*・Hastings S. J.*・Voulitis G. L.*: CO2 flux over chappar vegetation of different ages

日本気象学会1994年秋季大会 (1994.10)
○千葉 修*・内藤 眞一*・小林 文明*: 鳥谷 均: 都築 信明*: 落合 健*: ヘリコプターによって観測された海風後部の構造について

日本土壤肥料学会関東支部大会 (1994.10)
日本中世共同研究砂漠化機構シンポジウム（1995. 3）

○ 何 進毅*・原野 芳信・李 勝功*・趙 巴林*：The characteristics of Micrometeorology of a film-bottomed paddy built at sandy land in Naiman, Inner Mongolia, China.

○ 李 勝功*・原野 芳信・何 進毅*・趙 巴林*：Changes of Micrometeorology due to the establishment of Artifical Artemisia Vegetation of Duaises in Naiman, Inner Mongolia, China.

○ 李 勝功*・原野 芳信・何 進毅*・趙 巴林*・大黒 俊哉・根本 正之：Changes in the micrometeorology of a semiarid grassland caused by different grazing intensities in Inner Mongolia, China.

環境生物部

日本後進学会（1994. 3）

○山本 屋*・藤井 育・瀬戸 裕之：大腸菌のgenomeよりクローニングされた生育阻害遺伝子の解析

日本-China International symposium on the study of the Mechanism of Desertification (1995. 5)

○大黒 俊哉・根本 正之・周 紅雲*・徐 賢*・劉 新民*：Ecological characteristics of three native species, grown in semi-arid grassland in Eastern Inner Mongolia, China.

○徐 賢*・根本 正之・周 紅民*・大黒 俊哉・趙 哈林*・周 紅雲*：Environmental characteristics and desertification control method in Northern Naiman Banner, Inner Mongolia, China.

日本植物病理学会（1994. 6）

○門田 育生・奥野 慎二*・水野 明文・西山 幸司：数種細菌の外膜タンパク遺伝子に共通する塩基配列をプローブとしたグラム陰性細菌の識別

○水野 明文・門田 育生・西山 幸司：Curtobacterium fiaccumfaciensの菌体タンパク質の抗原性について

○島野 重光・鈴木 善彦・後藤 祥宏*・小島 誠*：イネ細葉枯萎ウイルスのRNAポリメラーゼおよび粒子の形態に及ぼす塩の影響

1994年度土壤微生物研究会（1994. 6）

○沢田 和也*・西田 康一*・宮下 清貴・木村 龍介・茨田 龍之介*：DNAプローブ法及びDNA同様性試験によるジャガイモウイルスの類別

○松田 泉・塩見 正衛*：Process of risk assessment for transgenic plants in Japan

日本生殖学会（1994. 7）

○山本 屋*・藤井 育・木村 龍介・瀬戸 裕之*：大腸菌のFerredoxin様遺伝子の過剰発現とそれに伴う生育阻害

日本土壤動物学会第13回大会（1994. 7）

○皆川 晃・吉田 信浩・水尾保 隆之*・竹原 利明*・串田 篤彦*・立石 靖*・白石 啓義*・平田 賢司：つくば地域の異なった土地利用条件下における土壤動物の多様性密度

日本線虫学会（1994. 7）

○平田 賢司：日本産 Longidorus 属線虫の2種について

○金 知仁*・皆川 晃：韓国におけるネグサレンセンチュウの発生および種について

○小林 義明*・牧野 孝宏*・佐藤 充雄*・渋谷 剛*：皆川 晃：センリョウ栽培におけるAphelenchoides fragariaeの発生と被害

○皆川 晃・吉田 信浩・水尾保 隆之*・竹原 利明*・串田 篤彦*・立石 靖*・白石 啓義*・平田 賢司：つくば地域の異なった土地利用条件下における塩原線虫の
Annual Meeting of the John Innes Centre & The Sainsbury Laboratory (1994. 7)

R. Chakraburtty*・B. Floriano*・藤井 毅・H. Gramaje*・G. Jones*・Eriko TAKANO*・A. Wietzorrekt*・J. White*・M. Bibb*・Regulation of growth phase-dependent antibiotic production in *Streptomyces coelicolor A3(2)

The VI International Congress of Ecology (1994. 8)

Wietzorrek*・J. White*・Regulation of bactericidal activities in transient light in *Streptomyces griseus and *Streptomyces griseus -associated bacteriophages of *Streptomyces griseus

Carbon dynamics and penguins in two different cropping agro-ecosystems in Japan

Carbon balance in early stages of secondary succession

Ohashi 國茂*・小泉 博・石見 有紀子*・佐藤 光政・Chlorophyll a/b in C3 and C4 leaves grown under shade and sun conditions

Carbon gain and water balance in transient light in *C3 and *C4 leaves grown under phade and sun conditions

O井 浩一： Relationship between light and reproductive characteristics in lepidopterous insects

日本植物学会（1994. 9）

松尾 和人・根元 正之：異なる光質環境下におけるツユクサの可逆的変異

日本生化学大会（1994. 9）

李 蕃穏*・市山 新・松田 泉：イネのもみ枯損菌病（*Pseudomonas glumae）におけるシュウ酸生成機能

1994年度日本土壤肥料学会関東支部大会（1994. 10）

大黒 健哉・根元 正之・松尾 和人：耕作放棄棚田における土壌環境の経年変化 - 1 - 棚田および周辺畦帯斜面での植生動態

日本植物病理学会（1994. 12）

門田 育生・水野 明文・西山 幸司：イネ褐条病細菌（*Pseudomonas avenae）の数種作物に対する病原性とタンパク質の特性

2nd MAFF International Workshop on Genetic Resources (1994. 12)

澤田 宏之：Diversity of the genus *Agrobacterium and its relatives

日本土壤肥料学会（1995. 3）

IV. 研究成果の発表及広報 93

小川 直人・宮下 清貴・木村 龍介：土壌細菌の3-Cルチン酸分解遺伝子間の塩基配列の比較

平舘 優太郎・谷口 悟*・桜井 克年*：合成とドロキシケイ酸アルミニウム水溶液および土壌抽出液の27Al- NMR スペクトル

谷口 悟*・平舘 優太郎・桜井 克年*：合成とドロキシケイ酸アルミニウム－モニタリナイト複合体の特性

Steinernema によるイオン種の同定

木村 武*・河本 征臣・三浦 重典・横山 和成・木崎 伸行*：キャベツ根ご病の発病に及ぼす雌性抑止型土壌の特性とその利用

佐藤 健司*・横山 和成・木崎 伸行*・柿 芸仁*：水熱処理の塩土堆積生物性におよぼす影響

日本植物病理学会創立80周年記念大会（1995. 3）

大久保 博人・佐藤 豊三*：Pythium 属菌の一種によるゴテロ立枯病（新称）

岡部 隼子・鳥山 重光・古庄 彰彦*：土壌伝染性ウイルス病を媒介するPolymyxa 属菌の休眠孢子の走査電子顕微鏡観察

門田 育生・露野 慎二*・水野 明文・西山 幸司：植物病原菌のウレアーゼ活性に関する DNA プロープの作成

水野 明文・木村 龍介・門田 育生・西山 幸司：Dig -ELISA kit を利用した DNA -DNA ハイブリダイゼーションによる *Curtobacterium flaccumfaciensの近縁細菌からの識別

Gryciuk Alfred*・門田 育生・西山 幸司・露野 慎二*：Presence of consensus repeating sequence found in avr genes of several *xanthomonas spp. in *Agrobacterium tumefaciens and A. rhizogenes.

澤田 宏之・竹内 徹*・松田 泉：リボソーム DNA のspacer領域とargkの塩基配列に基づく *Pseudomonas syringae pv. phaseolicola と pv. actinidiaeの比較

竹内 徹*・澤田 宏之・田中 文夫*・松田 泉：リボソーム DNA のspacer領域の塩基配列に基づくジャガイモ抗病性の選択

鈴木 文彦・朱 垂峰*・松田 泉：*Pseudomonas glumaeの毒素産生関連蛋白質の特定
○清水 正・鳥島 真光・高橋 眞実・米山 勝美・阿久津 克己*：イネ綱稲穂ウイルス RNA 4 のコードされている非構造タンパク質 (NS 4) の mRNA の 5'末端に付加されている塩基配列
○鳥島 真光・高橋 眞実・佐野 義孝*・清水 正・石沢 明*：テライウィルスの標準ウイルス、イネ綱稲穂ウイルスの RNA 15 ソード RNA ボリメラーゼ蛋白質
○西山 幸司：鑑別表に基づく植物病原細菌の簡易同定法
○松本 直幸・内山 和子*・新見 誠也：北海道における雪腐黒色小粒病菌生物型 A のジェネットの存在
○松本 直幸：北海道における雪腐黒色小粒病菌生物型 A の VCG の分布
○森脇 丈治・水野 明文*・佐藤 守*・門田 育生・西山 幸司：Pseudomonas syringae pv. glycinea におけるコロナチン生産と保有プラスミド

日本作物学会第19回講演会（1995. 4）
○西村 誠一・小泉 博・唐 鈴湖*：水稲個体群における葉面受光量の日変化モデルの構築とその検証

日本雑草学会第34回講演会（1995. 4）
○根本 正之・清谷 晃一*・三枝 正彦*：耕作地で雑草化したコンフリートの繁殖戦略
○松尾 邦人：オオバコとセイヨウオバコの密度と混植率を変えての競争実験

日本計量生物学学会・応用統計学会1995年合同年次大会（1995. 4）
○山村 光司：輸入植物検疫における病原虫侵入阻止率の推定

資材動態部

日本農業学会第19回大会（1994. 5）
○石井 康雄：残留農薬の分析のためのゲル浸透クロマトグラフィ
○上路 雅子・石坂 湧澄・高木 和広・小林 勝一郎*・杉山 浩*：メトラクロール光解活性体の土壤中における残留性
○龍野 栄子*・長谷川 英一*・島 毅之*・上路 雅子・石坂 湧澄・高木 和広：スルホニルウレア系除草剤の土壤カラムにおける移動性
○遠藤 正造・鶴崎 昌市*・鈴木 健：各地で採集したヒメトビウオカの薬剤感受性と抵抗性要因
○岡崎 博・行本 峰子*・下長根 鴻：茨城県下の畑園場における PCNB 分解土壌の分布とその特性（第 2 報）
○小山 弘介・岡崎 博：土壌中における PCNB の動態
○宮野 安彦・石戸 耕*: パーマスリン抵抗性チャネルキブリに対する SK 化合物の協力効果
○高木 和広・Anderson J. P. E*：下層土壌微生物と農業 分解ポテンシャル

日本農業土木学会（1994. 7）
○坂西 研二・岩間 秀矩*・柳多門：Distrometer を用いた雨滴運動エネルギーの測定

Eighth IUPAC International Congress of Pesticide Chemistry（第8回国際農薬化学学会議）（1994. 7）
○上路 雅子・石坂 湧澄・小林 勝一郎*・杉山 浩*：Stereo selectivity in herbicidal activity and degradation by the chiral isomers of metolachlor
○宮野 安彦・野村 美治*・宍戸 孝*：Novel Synergists against Organophosphorus (op) -Resistant Rice Stem Borer and Permethrin - Resistant German Cockroach.
○鈴木 健*・池 弘司・宮野 安彦・西東 力*: Carboxylesterase of the cotton aphid (Aphis gossypii Glover): Properties and role in fenitrothion resistance

日本農業学会第18回農薬残留分析研究会（1994. 9）
○石井 康雄：残留農薬分析のためのゲル浸透クロマトグラフィーII 水稲に用いられる薬剤を含む農薬

日本化学学会第68秋季年会（1994. 10）
○小原 裕之・鈴木 隆之：大気中農薬の分析(2)活性炭素繊維フェルト吸着剤の捕集効率への湿度の影響
第15回国薬サイエンティスト研究会／第12回農薬バイオテクノジー研究会合同シンポジウム（1994. 11）
○遠藤 正造：コプロメタガの薬剤防除及び薬剤感受性の変動

環境科学学会1994年会（1994. 11）
○高木 和広・津原 悦民*・松本 聰*: 生活排水中からキトサンコーティング木炭による直鎖アルキルベンゼンスルホニル酸ナトリウム (LAS) の除去－四万十川方式排水処理システムを事例として

日本農薬学会第20回大会（1995. 3）
○橋本 良子*・石井 康雄：農産物中残留農薬の簡易分析法の開発
○谷川 元一*・石井 康雄：カイソウ土壌および活性炭フロジルミリナト LAW を用いた野菜の多成分残留分析法
○石井 康雄：水稲における残留農薬の分析
○小原 裕之・原 privé 芳信・鈴木 隆之：大気中農薬の分析(3)―強酸フラックス測定のための分析方法の検討とその適用
○高木 和広・栗山 弘介・石坂 湧澄・上路 雅子：水田土壌の微生物生態系に及ぼす農薬の影響評価手法の開発―微熱流量測定法を利用し
4. 研究成果の発表及び広報

日本土壤肥料学会（1995.3）
○川崎 晃・山田 久男・村田 重光：下水汚泥施用に伴う土壤中重金属濃度の測定

環境管理部
○井手 任・横張 真：日本における農薬使用のイメージ、エコロジカルな農薬使用に関する研究（1994年版）

化学工学会第60年会（1995.3）
○川崎 晃・新井 浩：乾燥土壌の石油処理の検討

3. 公刊図書

企画調査部
○岡野 千秋：生物農薬による害虫防除の現状、その1
生物農薬とは「クミアイ農薬ニュース」338：1-3クミアイ安全防除推進協会（1994）

○岡野 千秋：微生物防除の現状と展望「植物防除」48-II：1-6日本植物防除協会（1994）

○岡野 千秋：環境にやさしい農薬使用の防除法～なぜ地球環境にやさしく、環境保全農業が必要なのか～環境と地球の関係を知り、環境保全農業の必要性を考える（1995）

化学工学会第60年会（1995.3）
○川崎 晃・新井 浩：乾燥土壌の石油処理の検討

○松永 俊朗：1H NMRによるコマツの中のホウ素の状態分析
○林 洋昭・渡辺 久男・松永 俊朗・茅野 充男：ICP-MSによるシロイヌナズナの微量元素分析
○渡辺 久男・松永 俊朗：ICP-MSによる植物中ホウ素の測定

○山本 千秋・E. Hadipoentyanti・岩田 泰治・丹羽 輝*・二宫 正士・鶴飼 保雄：DIVERSITY IN IN- DONESIAN CLOVE (SYZYGIUM AROMATI-CUM (L.) MERRE & PERR.) POPULATIONS AS SURVEYED BY ELLIPTIC FOURIER DESCRIPTORS OF LEAF SHAPE Toward Enhanced and Sustainable Agricultural Productivity in 2000'S: Breeding Research and Biotechnology Volume I 5-3-59 SABRAO (1994)

○武田 元吉*・二宫 正士・平田 豊・鶴飼 保雄*：三
位 正洋*・山田 利昭*：新編 育種学用語集 養賢堂 (1994)

○山本 譲治*・二宫 正士：インターネットとは何なのか
「農業情報化年鑑 1995」43-52農業情報利用研究会編
(社)農山漁村文化協会（1994）

○二宮 正士・山本 譲治*：個人で使えるインターネット
「農業情報化年鑑 1995」53-58農業情報利用研究会編
(社)農山漁村文化協会（1994）

○三重 宏：系統関係から進化過程を推論する「海洋と
環境資源部

○阿武 敬央：土を良く知ろう「養分の可給化と不可給化が始まるのは「果実日本」日本園芸農業協同組合連合会 (1995, 2)
○岩田 秀樹：多肥作物を環境保全的に栽培する？「農業及園芸」697: 741養賢堂 (1994, 7)
○岩田 秀樹：塩化物環境保全型農業技術 農林水産研究文書解釈 No.21 8-16(財)農林統計協会 (1995)
○大塚 縄雄：土を良く知ろう①「土の母岩や地質とは」生きものとしての土②「果実日本」494: 71-73日本園芸農業協同組合連合会 (1994, 4)
○大塚 縄雄：土の保全-養分管理(1)塩化物の保全技術「環境保全型農業技術編 農林水産研究文書解釈 No.21」16 8-180(財)農林統計協会 (1995)
○小原 洋：土を良く知ろう⑥「土の赤の遠い色は」生きもののとしての土④「果実日本」496: 72-73日本園芸農業協同組合連合会 (1994)
○加藤 英孝：土を良く知ろう⑧生きものとしての土⑥「土壌中の粘土の働きと粘土鉱物の種類」「果実日本」4 98: 62-64日本園芸農業協同組合連合会 (1994)
○小林 義之：水質汚染「環境保全型農業技術 農林水産研究文献解釈 No.21」28-48(財)農林統計協会 (1995)
○竹内 君道：土壌浸食「環境保全型農業技術 農林水産研究文献解釈 No.21」2-8(財)農林統計協会 (1995)
○谷山 一郎：土壌浸食「環境保全型農業技術 農林水産研究文献解釈 No.21」1994年と果実日本 495: 76-77日本園芸農業協同組合連合会 (1994)
○浜崎 思雄：土を良く知ろう⑤「土壌の分類と特徴」生きものとしての土⑤「果実日本」495: 76-77日本園芸農業協同組合連合会 (1994)
○浜崎 思雄：土を良く知ろう⑤「土壌の分類と特徴」土壌の存在形態と水の動き 生きものとしての土⑤「果実日本」495: 76-77日本園芸農業協同組合連合会 (1994)

環境生物部
○井村 治：間作・混作「環境保全型農業技術 農林水産研究文書解釈 No.21」667-672(財)農林統計協会 (1995)
○齋藤 修：2. 病害虫・雑草防除3植物・有機物利用による病害虫防除技術 イ、植物利用「環境保全型農業技術 農林水産研究文献解釈 No.21」538-542農林水
４．その他

企画調整部

○岡田 齊夫：農業技術と環境保全「平成6年度」産業教

資材動態調

○石井 康雄：農化メサレ－その使用実態と環境動態「農業技術」496：28-32 (1994)

○上路 雅子・鈴木 隆之・濱 吉弘司：農業使用語辞典・実戦講座 (1994)

○中村 雅子：農村「食生活知識」9：105-118 (財)日本農業技術協会 (1994)

○上路 雅子：新化学農業の開創－除草剤「環境保全型農業技術」農林水産研究文献解説 No. 21」335-344 (財)農林水産研究会 (1995)

○上路 雅子：化学農業の環境負荷軽減及び持続的利用技術－除草剤「環境保全型農業技術」農林水産研究文献解説 No. 21」358-364 (財)農林水産研究会 (1995)

○尾和 尚人：微生物資材の特性和施用効果「季刊 肥料」69：58-65 (1994)

○尾和 尚人：新肥料・土壌改良資材の開発と利用技術 肥効化調節型肥料「環境保全型農業技術」農林水産研究文献解説 No. 21」180-187 (財)農林水産研究会 (1995)

○渡水 昭彦・久保田 敦・上沢 正利・尾和 尚人・尾崎 保夫・木村 龍介・保科 次雄・小川 吉雄・影山 修・相田 連総論「環境保全・持続型農業の技術開発」第2部 分野別座談会 (土壌肥料) (1)「農業技術」49：564-570, 50：37-42, 50：87-92農業技術協会 (1994-1995)

○加藤 直人：「リン鉱石の耕作地への直接施用「季刊 肥料」68：28-31 (1994)

○野馬 誠也・成松 千寿・水野 明文・木村 龍介：DNA probes for detection of Pseudomonas glumae 「Plant Pathology and Biotechnology」143 Shanghai Scientific and Technical Publishers (1994)

○野馬 誠也・成松 千寿・水野 明文・木村 龍介：Cloned DNA probes for detection of Pseudomonas glumae causing bacterial grain rot of rice 「日本植物病理学会報」60：576-584 (1994)

○木村 龍介：リン溶解菌の利用技術「環境保全型農業技術」農林水産研究文献解説 No. 21」299-304 (財)農林水産研究会 (1995)

○木村 龍介：土壌バイオマスの利用技術「環境保全型農業技術」農林水産研究文献解説 No. 21」304-310 (財)農林水産研究会 (1995)

○鈴木 健：鋼鉄アガロプラン bersの殺虫剤抵抗性からの進化要論「植物防除」480：509-512 (1994)

○柄 弘司・石井 順雄・上路 雅子・遠藤 正利・鈴木 啓介・田中 良明：農業ハンドブック 1994年版 日本植物防除協会 (1994)

○橋口 太重：土壌水分変化と窒素吸収利用「信州のそ麦」471：12-15 JA長野経済連 (1994)

○橋口 太重：持続型農業における減肥対策と成功事例「農業および環境」70(2)：286-292養賢堂 (1995)

○渡辺 久男：表面X線マッピング装置を用いた植物モニタリングと放射線利用「Isotope Nwes」488：7-10日本アイストープ協会 (1995)
育指導者養成講座」（1994.8）

○岡田 齋夫：生態系に調和した有機物生物管理に向けて「生物農業の開発・利用に関するシンポジウム」日本植物防除協会（1994.9）

○岡田 齋夫：生態系調和型の病害虫管理と生物農業「第57回（平成6年度）九州農業研究発表会総合発表会、シンポジウム21世紀を展望する病害虫の総合管理−研究・技術の実災と問題点−」九州農業試験研究機関協議会（1994.9）

○岡田 齋夫：生態系に調和した有機物生物管理に向けて「平成6年度病害虫除除所職員等中央研究会」（1994.12）

○岡田 齋夫：生態系に調和した有機物生物管理に向けて「平成6年度植物防除講演会」三重県植物防除協会主催（1995.1）

○齋藤 茂隆：NetWare活用事例：農業環境技術研究所「Novell Solution」ノベル株式会社（1994.10）

○新藤 純子・Arnold K. Bregt*：共著：Application and evaluation of critical load methods for acid deposition in Gunma. Japan Second Rains Asia Impact meeting」1-4（1994.10）

○清野 豊：Global Ecosystem Database を利用した陸上植物の酸一次生産力の評価「第3回農林水産情報研究会講演集」（1994.11）

○清野 豊：気候変動予測に関する研究の動向「東アジア地域における気候変動と病害虫発生に関する基礎調査」（1995.3）

○竹澤 邦夫：Nonparametric prediction of rice production 「Proceedings of International Conference "Statistics in Industry, Science and Technology"」90-95応用統計学会（1994.7）

○原田 二郎：環境保全型の雑草管理「環境技術研修資料 (環境保全型農林水産技術)」（1994.12）

環境管理部

○秋山 俊：「英中日農業生物学用語集 用語選定委員」「英中日農業生物学用語集」（1994.3）

○秋山 俊：リモートセンシング技術の農業利用－人工衛星データによる水田面積の把握－「統計情報セミナー」（1994.4）

○秋山 俊：各種分光センサーによる植物の生育診断「筑波電波・光セミナー」（1994.10）

○秋山 俊：農作物の分光計測の現状とデータベース化の問題点「グランドトウースデータベース研究会」（1994.11）

○秋山 俊：コメント－途上国での利用の観点から－「第2回 リモートセンシングと地理情報システム研究会」（1994.11）

○秋山 俊：発生予察におけるリモートセンシング技術の利用－問題点の整理と提言－「病害虫発生予察資料シンポジウム「発生予察におけるリモートセンシング技術の利用」4:61-62（1995.3）

○鶴井 美佐子・結田 康一・山崎 慎一：土壌及び米麦子実の放射能調査（平成5年度）「第36回環境放射能調査研究成就果論文抄録集」36：15-16（1994.11）

○齋藤 元也・美濃 翔：A study of SAR data application to agriculture using JERS-1 and ERS-1 images 「Result Reporting Meeting of JERS-1/ERS-1 System Verification Program Abstracts.」通産省・宇宙開発事業団104（1994.1）

○齋藤 元也：リモートセンシング技術の将来展望－将来の地球観測衛星計画－「シンポジウム「宇宙から草地を織る」講演集」日本草地協会43-47（1994.8）

○齋藤 元也：農業への応用「国際シンポジウム－衛星データの産業利用と国際協力－講演集」資源・環境観測解析センター121-135（1994.9）

○齋藤 元也・美濃 翔：Arlrne M. Evangelista*・Jose D. Rondal**・Marvily P. Palaganas*：熱帯地域の環境変動に関する国際共同研究2)熱帯生態系変動の把握手法の開発w農業環境変動把握技術の高度化「隔離シンポジウム 新しいリモートセンシング技術利用による熱帯環境変動把握－SAR技術と利用－講演要旨集」10-13（1995.2）

○鶴田 治雄・神田 健一*・八木 一行・陽 洪徳：CH4とN2O emissions from rice paddy field 「Proceedings of the 7 th International Conference on Regional Air Pollution and Waste Issues in Asia and Pacific Rim」123-129 Environmental Protection Society ROC-Taiwan（1994.11）

○鶴田 治雄：N2O and NO emissions from fertilized soils, livestock wastes and rice paddy fields 「Proceedings of VK - Japan Workshop on controlling Methane and the Nitrogen Cycle on Farms」97-100 Silsoe Research Institute. Silsoe, JK（1995.3）

○二宮 正士：統計の基礎と確率分布「数理統計短期集中研修」（1994.11）

○二宮 正士・江渡 浩一*・山本 講治・南石 晃明*・gcc FORM を利用した WWW 画像データベースへ
の検索機能の付加「第3回農林水産情報研究会講演集」
(1994.11)
○江渡 洋一郎・山本 謙治・南石 昇明・二宮 正士：
青果物物流情報データベース NAPASS および WWW
版 NAPASS for Web 「第3回農林水産情報研究会講演
集」(1994.11)
○二宮 正士・遠藤 重・尾崎 佳紀子・江渡 洋一郎・
山本 謙治・南石 昇明・渡辺 三*・齋藤 元也・
美濃 伸之・鶴飼 保雄*：探索機能をもつ WWW 画像
データベース「第3回農林水産情報研究会講演集」
(1994.11)
○二宮 正士：インターネットと情報の洪水「AFFFINET
news 農林水産技術研究情報システム」(1994.12)
○二宮 正士：統計の基準と確率分布「都道府県農林水産
省数理短期集中研修」(1995.1)
○二宮 正士：インターネットの将来と農業・農村へのイ
ンパクト「平成6年度技術問題検討会資料 未来の農業
技術の姿」(1995.2)
○二宮 正士：慣用フレーリ解析による輪郭形状評価と
その数値解析への応用「全ゲノム選抜とその自動化のた
めの育種情報解析システムの開発 平成6年度科学研究
費補助金（試験研究（B））研究成果報告書」(1995.3)
○松本 成夫：Nitrogen Cycle at a Local Scale
through Recycling Systems of Crop Residues and
Animal Waste UK -Japan Workshop Controlling
Methane and the Nitrogen Cycle on Farms J Silsoe
Research Institute 3-5 (1994.11)
○三中 信宏：実験計画法「平成6年度都道府県農林水産
関係試験研修短期集中研修」(1995.1)
○三中 信宏：統計分析に関する箇の講習会, part 2「金沢
大学理学部生物学科集中講義資料」(1995.2)
○三中 信宏：生物形態測定学の理論と実践：形状輪郭・
標識点・相対性「富山大学理学部生物学科集中講義
（形態学論）」(1995.2)
○三中 信宏：実験計画「筑波国際農業研修センター野菜
生産コース統計研修」(1995.3)
○三中 信宏：実験計画「筑波国際農業研修センター野菜
栽培コース統計研修」(1995.3)
○美濃 伸之・齋藤 元也：サンドラットデーターによる根
糸草地の解析「シンポジウム「宇宙から草地を測る」
衛星データーを活用した草地管理技術の開発」(社) 日本草地
協 27-42 (1994.8)
○美濃 伸之：農業分野におけるリモートセンシング技術
利用の現状と展望「発生予察におけるリモートセンシ
ング技術の利用—シンポジウム講演要旨—」(1995.3)
○三輪 哲久：直交表による多因子計画「平成6年度数理
統計短期集中研修」(1994.11)
○三輪 哲久：タグチ (田口) メソッドについて－最近の
統計学進歩の視点－「農林交流セミナー」
(1994.11)
○三輪 哲久：直交表概論「平成6年度都道府県農林水産
関係研修短期集中研修（理論系）」(1995.1)
○守山 弘：森林の歴史的価値－一がつくった自然
「月刊 保田連」446: 44-48 全国保健医学会総合
会 (1994.5)
○守山 弘：水田が守ってきたもの－がつくった自然
(2)「月刊 保田連」450: 48-52 全国保健医学会総合
会 (1994.7)
○守山 弘：農村の自然の維持管理－がつくった自然
(3)「月刊 保田連」451: 62-66 全国保健医学会総合
会 (1994.8)
○守山 弘：農村環境を回復をするにはどうすべきか－
農村環境模型（ミヌ農村）の造成を事例にして－「農
村環境シンポジウム－生きものを育む農業農村をめざし
て－」19-32 日本土壤協会 (1995.3)
○山崎 慎一：環境科学における従量分析「1994年度 日
東理科大学分析科学セミナー」(1994.7)
○山崎 慎一：Environmental perspectives of agricultural
water quality Management : Status and mon-
itoring of Agricultural in Japan 'International Symposi-
om on Agricultural Water Quality Manage-
ment Techiques」(1994.11)
○山本 博道：主成分分析「数理統計短期集中研修テキス
環境資源部
○太田 健：Argric 東京11項目「土壤分類法 第16回農林交流セミナールワークショップ資料」(1994.11)
○太田 健・浜崎 秀雄・小原 洋・加藤 邦彦・谷山 一郎・太田 健・草場 敬*：土壤分類法「第16回農林交流セミナールワークショップ」(1994.11)
○小原 洋・三土 正則・浜崎 秀雄・加藤 邦彦・Omakupt Manu*・Chandrachai Wanchi*: Studies on the effect of changes of tropical forests on soil environments changes of soil after deforestation in northeast plateau of Thailand 「The International Workshop on the Changes of Tropical Forest Ecosystems by EINo and Others」(1994.11)
○山田 昭：(IV)水质浄化機能について「平成5年度 農業農村基本計画・環境保全機能維持増進対策調査報告書」134-147(財)日本農業土木総合研究所 (1994.3)
○山田 昭：農耕地からの農薬・リン等の発生負荷「一般別枠研究 物質循環の高度化に基づく生態系調和型次世代農業システムの開発」研究会資料「開拓性水域における富栄養化の評価と農業のかわり」 7-21 (1994.11)
○谷山 一郎：Ocric 表層土9項目「土壤分類法 第16回農林交流セミナールワークショップ資料」(1994.11)
○草場 敬*・谷山 一郎・小泉 博：Chbron dynamics and budgets in soil-plant system「国際北極圏総合研究シンポジウム資料」(1994.1)
○津村 昭人：高分解能型 ICP-MS による水環境試料中の微量・微量元素元素の直接分析「ファイオンズ環境分析セミナーで講演（東京朝会、大阪朝会）」丸文(社) (1995.11)
○津村 昭人・岡本 玲子・高久 雄一*・山崎 慎一：二重収束型高分解能誘導結合プラズマ質量分析装置による降水中のウランの直接分析「RADIOISOTOPES」44(2)：85-92(社)日本アイソトープ協会 (1995.1.2)

環境生物部
○浅川 征男：セイタカアワダチワの“爆発力”「植物の世界」4：1-120朝日新聞社 (1994.4)
○浅川 征男：農業におけるアレロパシー利用への期待 「Techno Innovation」14 ：28-33 STAFF (1994.4)
IV. 研究成果の発表及び広報

○尾和 尚人：肥効調節型肥料の現状と将来「東北地域土壌肥料研究会資料」(1994.3)
○尾和 尚人：環境保全型農業における肥料・有機質資材の新指針「平成6年度都道府県農林水産関係研究員短期集合研修（実践）」(1994.7)
○尾和 尚人：環境保全型の施肥管理技術「環境技術研修資料」107-114 (1994.12)
○加藤 直人：肥科学概論II－肥料・施用法－「平成6年度一般職員行政基礎研修」(1994.6)
○渡辺 弘司：環境保全型農業における農業の役割「植物防除講演会」(1994.11)
○渡辺 弘司：農業の環境動態と安全性について「森林病害虫等防除事業研究会」(1994.12)
○渡辺 久男：Chermsiri Chakrapong*・Attajarusit Surasit*・Kaewroj Surathin*・Tuntiwarawit Jarunan*：Boron deficiency in garlic (Allium sativum) grown on Tropaqualfs in northern Thailand「タイーJIRCAS共同研究25周年記念式典・タイーJIRCASセミナー」(1994.9)
5. 広報

(1) 新聞記事

<table>
<thead>
<tr>
<th>年 月 日</th>
<th>見 出 し</th>
<th>新 聞 名</th>
</tr>
</thead>
<tbody>
<tr>
<td>5月12日</td>
<td>遺伝子組換えイネ一般農場で栽培へ</td>
<td>東京新聞、日本農業新聞、日本工業新聞</td>
</tr>
<tr>
<td>5月12日</td>
<td>遺伝子組換えイネ一般栽培での栽培説明</td>
<td>朝日新聞</td>
</tr>
<tr>
<td>5月13日</td>
<td>遺伝子組換えイネ一般説明会</td>
<td>日刊工業新聞</td>
</tr>
<tr>
<td>5月21日</td>
<td>にわかに注目「ビオトープ」消えた自然を呼び戻せ</td>
<td>読売新聞</td>
</tr>
<tr>
<td>6月3日</td>
<td>一般は場で栽培試験縮業枯ウイルス遺伝子組換え稲</td>
<td>全国農業新聞</td>
</tr>
<tr>
<td>6月9日</td>
<td>害虫の活動地域温暖化で拡大へ</td>
<td>日本経済新聞、読売新聞、日経産業新聞、日刊工業新聞、日本農業新聞</td>
</tr>
<tr>
<td>6月18日</td>
<td>自然戻しとミニ農村</td>
<td>朝日新聞</td>
</tr>
<tr>
<td>7月24日</td>
<td>遺伝子組換え作物「食卓」のらせ試験着々</td>
<td>日本経済新聞</td>
</tr>
<tr>
<td>8月25日</td>
<td>農林水産 つくる研究機関を見る</td>
<td>化学工業日報</td>
</tr>
<tr>
<td>9月10日</td>
<td>順調に生育し収穫「遺伝子組換えキヌヒカリ」</td>
<td>茨城新聞</td>
</tr>
<tr>
<td>9月12日</td>
<td>地球の生態環境「田園編」(1)かわる日本の田園生態系保全必要に</td>
<td>日本経済新聞</td>
</tr>
<tr>
<td>9月20日</td>
<td>冷害予測研究に着手</td>
<td>日本農業新聞</td>
</tr>
<tr>
<td>9月20日</td>
<td>“バイテク稲”切り取り</td>
<td>毎日新聞</td>
</tr>
<tr>
<td>9月21日</td>
<td>一年生、近い将来食卓に</td>
<td>毎日新聞</td>
</tr>
<tr>
<td>9月21日</td>
<td>遺伝子組換え穀一般は場で初収穫</td>
<td>日本農業新聞、産経新聞、茨城新聞、東京新聞、日経産業新聞</td>
</tr>
<tr>
<td>9月22日</td>
<td>シンポジウム「水循環と暮らしふる世界の湖沼浄化を考える」</td>
<td>読売新聞</td>
</tr>
<tr>
<td>9月26日</td>
<td>「遺伝子トマト栽培点」農水省が安全性を確認</td>
<td>読売新聞</td>
</tr>
<tr>
<td>10月17日</td>
<td>北内モデルに冷害予測研究</td>
<td>北陸新聞</td>
</tr>
<tr>
<td>10月19日</td>
<td>北内モデルに冷害予測研究開始</td>
<td>北陸新聞</td>
</tr>
<tr>
<td>10月20日</td>
<td>第14回農業環境シンポジウム「導入・侵入生物の生態系へのインパクト」</td>
<td>日本農業新聞</td>
</tr>
<tr>
<td>10月22日</td>
<td>田畑・森林の環境保全貢献度「全国マップ作製」</td>
<td>日本経済新聞</td>
</tr>
<tr>
<td>11月16日</td>
<td>関する昆虫利用技術(2)</td>
<td>日経産業新聞</td>
</tr>
<tr>
<td>1月1日</td>
<td>「ミニ農村」で回復、人工池が生物の水場に</td>
<td>日本農業新聞</td>
</tr>
</tbody>
</table>

(2) テレビ・ラジオ

<table>
<thead>
<tr>
<th>年 月 日</th>
<th>見 出 し</th>
<th>発 表 媒 体</th>
</tr>
</thead>
<tbody>
<tr>
<td>5月25日</td>
<td>ズームイン朝 — ミニ農村紹介 —</td>
<td>日本テレビ</td>
</tr>
<tr>
<td>8月21日</td>
<td>ザ・アイニング — ハチが襲う夏 —</td>
<td>テレビ東京</td>
</tr>
<tr>
<td>9月3日</td>
<td>地球温暖化について</td>
<td>テレビ神奈川</td>
</tr>
<tr>
<td>10月13日</td>
<td>いっと6けん — ミニ農村 —</td>
<td>NHK テレビ</td>
</tr>
<tr>
<td>10月31日</td>
<td>おはよう日本 — 環境ストレスと時てんぐす病 —</td>
<td>NHK テレビ</td>
</tr>
<tr>
<td>12月</td>
<td>M A F F アワー 研究レポート — 地球温暖化が植物の生産と害虫発生に及ぼす影響 —</td>
<td>グリーンチャンネル</td>
</tr>
<tr>
<td></td>
<td>— 農林業が持つ環境保全の機能の評価 —</td>
<td></td>
</tr>
</tbody>
</table>
V. 研究・技術協力

1. 会議・研究会等

<table>
<thead>
<tr>
<th>会議・研究会名</th>
<th>開催日</th>
<th>開催場所</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成6年度農業環境技術研究会運営委員会</td>
<td>6.7.5</td>
<td>農業環境技術研究所</td>
<td></td>
</tr>
<tr>
<td>第11回農業環境動態研究会「環境における農業の分解と微生物の利用」</td>
<td>6.9.8〜9</td>
<td>農業環境技術研究所</td>
<td>参加者170名</td>
</tr>
<tr>
<td>環境保全型農業シンポジウム「暖地農業における養分循環の問題点と技術的展望」</td>
<td>6.10.6〜7</td>
<td>宮崎県宮崎市</td>
<td>参加者173名</td>
</tr>
<tr>
<td>第14回農業環境シンポジウム「導入・侵入生物の生態系へのインパクト」</td>
<td>6.11.17</td>
<td>農業環境技術研究所</td>
<td>参加者207名</td>
</tr>
<tr>
<td>組換え体の高度利用のためのアセスメント手法の開発研究会</td>
<td>7.3.2</td>
<td>農業環境技術研究所</td>
<td>参加者67名</td>
</tr>
<tr>
<td>平成6年度気象環境研究会「温暖化ガスと農林生態系」</td>
<td>7.3.10</td>
<td>農業環境技術研究所</td>
<td>参加者173名</td>
</tr>
</tbody>
</table>

2. 技術協力

(1) 受託調査

<table>
<thead>
<tr>
<th>番号</th>
<th>用務</th>
<th>委託者</th>
<th>用務の区分</th>
<th>担当者の所属</th>
<th>担当者の氏名</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>都道府県委託試験実施状況調査指導</td>
<td>社団法人日本植物防疫協会</td>
<td>調査指導</td>
<td>環境生物</td>
<td>科長 八重樫 博志</td>
</tr>
<tr>
<td>2</td>
<td>農村活性化住環境整備事業基本計画及び実施計画策定地区に対する訪問・指導</td>
<td>社団法人農村環境整備センター</td>
<td>調査指導</td>
<td>環境管理</td>
<td>研究員 石田 憲治</td>
</tr>
<tr>
<td>3</td>
<td>平成6年度水環境整備技術研修会講師</td>
<td>社団法人農村環境整備センター</td>
<td>構成員</td>
<td>水質管理</td>
<td>東京 守山 弘</td>
</tr>
<tr>
<td>4</td>
<td>土壌環境モデル事業検討委員会作業部会</td>
<td>財団法人土壌総合研究所</td>
<td>調査指導</td>
<td>水環境</td>
<td>研究員 加藤 好武</td>
</tr>
<tr>
<td>5</td>
<td>中央水環境技術検討委員会並びに中央農村景観委員会に関係する総合管理委員会</td>
<td>社団法人農村環境整備センター</td>
<td>調査指導</td>
<td>水環境</td>
<td>研究員 石田 憲治</td>
</tr>
<tr>
<td>6</td>
<td>中央水環境技術検討委員会並びに中央農村景観委員会に関係する総合管理委員会</td>
<td>社団法人農村環境整備センター</td>
<td>調査指導</td>
<td>水環境</td>
<td>研究員 井手 任</td>
</tr>
<tr>
<td>7</td>
<td>平成6年度水稲・作物病害虫防除研究会現地検討会</td>
<td>社団法人日本植物防疫協会</td>
<td>調査指導</td>
<td>環境生物</td>
<td>科長 八重樫 博志</td>
</tr>
<tr>
<td>8</td>
<td>都道府県委託試験実施状況調査指導</td>
<td>社団法人日本植物防疫協会</td>
<td>調査指導</td>
<td>環境生物</td>
<td>部長 吉野 誠一</td>
</tr>
<tr>
<td>9</td>
<td>平成6年度水稲・作物病害虫防除研究会現地検討会</td>
<td>社団法人日本植物防疫協会</td>
<td>調査指導</td>
<td>環境生物</td>
<td>科長 吉野 誠一</td>
</tr>
<tr>
<td>10</td>
<td>平成6年度第1回環境増進対策調査検討委員会（技術部）</td>
<td>社団法人農村環境整備センター</td>
<td>調査指導</td>
<td>植物生態</td>
<td>研究室 部長 守山 弘</td>
</tr>
<tr>
<td>11</td>
<td>農業環境保全情報システム開発委員会</td>
<td>財団法人日本土壌協会</td>
<td>調査指導</td>
<td>地理環境</td>
<td>研究チーム 長 福原 進</td>
</tr>
<tr>
<td>12</td>
<td>農業環境保全情報システム開発委員会</td>
<td>財団法人日本土壌協会</td>
<td>調査指導</td>
<td>環境管理</td>
<td>研究室 部長 加藤 好武</td>
</tr>
<tr>
<td>13</td>
<td>農業環境保全情報システム開発委員会</td>
<td>財団法人日本土壌協会</td>
<td>調査指導</td>
<td>環境管理</td>
<td>研究室 部長 齋藤 元也</td>
</tr>
<tr>
<td>番号</td>
<td>用 務</td>
<td>委 託 者</td>
<td>用務の区 分</td>
<td>担当者の所属</td>
<td>担当者の氏名</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>14</td>
<td>農業環境保全情報システム開発委員会</td>
<td>財団法人日本農業協会</td>
<td>調査指導</td>
<td>環境資源</td>
<td>大塚 拓男</td>
</tr>
<tr>
<td>15</td>
<td>農業環境保全情報システム開発委員会</td>
<td>財団法人日本農業協会</td>
<td>調査指導</td>
<td>環境調査</td>
<td>大塚 拓男</td>
</tr>
<tr>
<td>16</td>
<td>中央農業技術検査委員会・中央農村景観委員会</td>
<td>社団法人農村環境整備センター</td>
<td>調査指導</td>
<td>環境管理</td>
<td>研究員 石田 慎治</td>
</tr>
<tr>
<td>17</td>
<td>中央農業技術検査委員会・中央農村景観委員会</td>
<td>社団法人農村環境整備センター</td>
<td>調査指導</td>
<td>環境管理</td>
<td>研究員 井手 任</td>
</tr>
<tr>
<td>18</td>
<td>生物農薬の開発・利用に関するシンポジウム</td>
<td>社団法人日本農業協会</td>
<td>調査指導</td>
<td>環境管理</td>
<td>木村 啓夫</td>
</tr>
<tr>
<td>19</td>
<td>生物農薬の開発・利用に関するシンポジウム</td>
<td>社団法人日本農業協会</td>
<td>調査指導</td>
<td>環境生物</td>
<td>高橋 充雄</td>
</tr>
<tr>
<td>20</td>
<td>生物農薬の開発・利用に関するシンポジウム</td>
<td>社団法人日本農業協会</td>
<td>調査指導</td>
<td>環境生物</td>
<td>大塚 拓男</td>
</tr>
<tr>
<td>21</td>
<td>生物農薬の開発・利用に関するシンポジウム</td>
<td>社団法人日本農業協会</td>
<td>調査指導</td>
<td>環境生物</td>
<td>大塚 拓男</td>
</tr>
<tr>
<td>22</td>
<td>生物農薬の開発・利用に関するシンポジウム</td>
<td>社団法人日本農業協会</td>
<td>調査指導</td>
<td>環境生物</td>
<td>大塚 拓男</td>
</tr>
<tr>
<td>23</td>
<td>平成6年度矢野被害虫防除研究会現地検討会</td>
<td>社団法人日本農業協会</td>
<td>調査指導</td>
<td>環境生物</td>
<td>大塚 拓男</td>
</tr>
<tr>
<td>24</td>
<td>平成6年度矢野被害虫防除研究会現地検討会</td>
<td>社団法人日本農業協会</td>
<td>調査指導</td>
<td>環境生物</td>
<td>大塚 拓男</td>
</tr>
<tr>
<td>25</td>
<td>土地環境モデル事業第2回検討委員会</td>
<td>土地総合研究所</td>
<td>調査指導</td>
<td>農業政策</td>
<td>岩倉 秀和</td>
</tr>
<tr>
<td>26</td>
<td>都道府県試験実施状況調査指導</td>
<td>社団法人日本農業協会</td>
<td>調査指導</td>
<td>環境生物</td>
<td>吉野 紘一</td>
</tr>
<tr>
<td>27</td>
<td>イネ苗立枯壊害病の種子消毒試験法開発に関する試験検討会</td>
<td>社団法人日本農業協会</td>
<td>調査指導</td>
<td>環境生物</td>
<td>田中 弘道</td>
</tr>
<tr>
<td>28</td>
<td>都道府県試験実施状況調査指導</td>
<td>社団法人日本農業協会</td>
<td>調査指導</td>
<td>環境生物</td>
<td>大塚 拓男</td>
</tr>
<tr>
<td>29</td>
<td>園林協力事業団協同研究・農村開発保全コース講座</td>
<td>財団法人日本農業技術総合研究所</td>
<td>調査指導</td>
<td>設計指導</td>
<td>岩倉 秀和</td>
</tr>
<tr>
<td>30</td>
<td>四方十川農薬処置実験実施施設及び現地検討</td>
<td>財団法人日本農業技術総合研究所</td>
<td>調査指導</td>
<td>設計指導</td>
<td>木村 啓夫</td>
</tr>
<tr>
<td>31</td>
<td>細菌罹患・防除実証試験事業の現地調査及び現地実証事業指導</td>
<td>財団法人日本農業研究所</td>
<td>調査指導</td>
<td>環境生物</td>
<td>大塚 拓男</td>
</tr>
<tr>
<td>32</td>
<td>保全的草地造成工法に関する現地調査</td>
<td>農林水産省</td>
<td>調査指導</td>
<td>環境生物</td>
<td>大塚 拓男</td>
</tr>
<tr>
<td>33</td>
<td>保全的草地造成工法に関する現地調査</td>
<td>農林水産省</td>
<td>調査指導</td>
<td>環境生物</td>
<td>大塚 拓男</td>
</tr>
<tr>
<td>34</td>
<td>保全の草地造成工法に関する現地調査</td>
<td>農林水産省</td>
<td>調査指導</td>
<td>環境生物</td>
<td>大塚 拓男</td>
</tr>
<tr>
<td>35</td>
<td>平成6年度一般委託試験北陸地域成績検討会</td>
<td>社団法人日本農業協会</td>
<td>調査指導</td>
<td>環境生物</td>
<td>木村 秀代</td>
</tr>
<tr>
<td>36</td>
<td>平成6年度一般委託試験関東・東海地域成績検討会</td>
<td>社団法人日本農業協会</td>
<td>調査指導</td>
<td>環境生物</td>
<td>矢野 信一</td>
</tr>
<tr>
<td>37</td>
<td>平成6年度一般委託試験関東・東海地域成績検討会</td>
<td>社団法人日本農業協会</td>
<td>調査指導</td>
<td>環境生物</td>
<td>矢野 信一</td>
</tr>
<tr>
<td>38</td>
<td>都道府県試験実施状況調査指導</td>
<td>社団法人日本農業協会</td>
<td>調査指導</td>
<td>環境生物</td>
<td>岡田 隆夫</td>
</tr>
</tbody>
</table>
| 39 | 農村環境整備の基本的考え方に関する総合検討会 | 社団法人農村環境整備センター | 調査指導 | 環境生物 | 井手 任
<table>
<thead>
<tr>
<th>番号</th>
<th>用 務</th>
<th>委 託 者</th>
<th>用務の区 分</th>
<th>担当者の所属</th>
<th>担当者の職名</th>
<th>担当者の氏名</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>土地環境モデル事業第3回検討委員会</td>
<td>財団法人土地総合研究所</td>
<td>調査指導</td>
<td>環境管理</td>
<td>農村景観</td>
<td>室長</td>
</tr>
<tr>
<td>41</td>
<td>平成6年度一般委託試験総合判定委員会</td>
<td>財団法人日本植物病理学会</td>
<td>調査指導</td>
<td>環境管理</td>
<td>農村景観</td>
<td>室長</td>
</tr>
<tr>
<td>42</td>
<td>平成6年度一般委託試験総合判定委員会</td>
<td>財団法人日本植物病理学会</td>
<td>調査指導</td>
<td>生物研究</td>
<td>農村景観</td>
<td>科長</td>
</tr>
<tr>
<td>43</td>
<td>平成6年度一般委託試験総合判定委員会</td>
<td>財団法人日本植物病理学会</td>
<td>調査指導</td>
<td>農村景観</td>
<td>資料研究</td>
<td>科長</td>
</tr>
<tr>
<td>44</td>
<td>平成6年度一般委託試験総合判定委員会</td>
<td>財団法人日本植物病理学会</td>
<td>調査指導</td>
<td>環境管理</td>
<td>農村景観</td>
<td>研究員</td>
</tr>
<tr>
<td>45</td>
<td>第2回農村環境計画検討会</td>
<td>財団法人農村環境整備センター</td>
<td>調査指導</td>
<td>環境管理</td>
<td>農村景観</td>
<td>室長</td>
</tr>
<tr>
<td>46</td>
<td>中央技術検討委員会（合同委員会）</td>
<td>財団法人農村環境整備センター</td>
<td>調査指導</td>
<td>環境管理</td>
<td>農村景観</td>
<td>室長</td>
</tr>
<tr>
<td>47</td>
<td>中央技術検討委員会（合同委員会）</td>
<td>財団法人農村環境整備センター</td>
<td>調査指導</td>
<td>環境管理</td>
<td>農村景観</td>
<td>研究員</td>
</tr>
<tr>
<td>48</td>
<td>ホウレンソウにおけるバイオロジカル手法の微生物群解析と環境検討</td>
<td>岐阜県</td>
<td>調査指導</td>
<td>生物学</td>
<td>生物学</td>
<td>研究員</td>
</tr>
<tr>
<td>49</td>
<td>都道府県委託試験施設状況調査指導</td>
<td>財団法人日本農業研究所</td>
<td>調査指導</td>
<td>環境生物</td>
<td>畜産科学</td>
<td>室長</td>
</tr>
<tr>
<td>50</td>
<td>都道府県委託試験施設状況調査指導</td>
<td>財団法人日本農業研究所</td>
<td>調査指導</td>
<td>環境生物</td>
<td>畜産科学</td>
<td>室長</td>
</tr>
<tr>
<td>51</td>
<td>都道府県委託試験施設状況調査指導</td>
<td>財団法人日本農業研究所</td>
<td>調査指導</td>
<td>環境生物</td>
<td>畜産科学</td>
<td>研究員</td>
</tr>
<tr>
<td>52</td>
<td>珪酸石灰肥料の施用に関する栽培試験成績検討会</td>
<td>財団法人日本農業研究所</td>
<td>調査指導</td>
<td>環境生物</td>
<td>畜産科学</td>
<td>科長</td>
</tr>
<tr>
<td>53</td>
<td>珪酸石灰肥料の施用に関する栽培試験成績検討会</td>
<td>財団法人日本農業研究所</td>
<td>調査指導</td>
<td>環境生物</td>
<td>畜産科学</td>
<td>研究員</td>
</tr>
<tr>
<td>54</td>
<td>都道府県委託試験施設状況調査指導</td>
<td>財団法人日本農業研究所</td>
<td>調査指導</td>
<td>環境生物</td>
<td>畜産科学</td>
<td>室長</td>
</tr>
<tr>
<td>55</td>
<td>都道府県委託試験施設状況調査指導</td>
<td>財団法人日本農業研究所</td>
<td>調査指導</td>
<td>環境生物</td>
<td>畜産科学</td>
<td>研究員</td>
</tr>
<tr>
<td>56</td>
<td>珪酸石灰肥料の施用に関する栽培試験成績検討会</td>
<td>財団法人日本農業研究所</td>
<td>調査指導</td>
<td>環境生物</td>
<td>畜産科学</td>
<td>科長</td>
</tr>
<tr>
<td>57</td>
<td>珪酸石灰肥料の施用に関する栽培試験成績検討会</td>
<td>財団法人日本農業研究所</td>
<td>調査指導</td>
<td>環境生物</td>
<td>畜産科学</td>
<td>研究員</td>
</tr>
<tr>
<td>58</td>
<td>珪酸石灰肥料の施用に関する栽培試験成績検討会</td>
<td>財団法人日本農業研究所</td>
<td>調査指導</td>
<td>環境生物</td>
<td>畜産科学</td>
<td>研究員</td>
</tr>
<tr>
<td>59</td>
<td>都道府県委託試験施設状況調査指導</td>
<td>財団法人日本農業研究所</td>
<td>調査指導</td>
<td>環境研究</td>
<td>室長</td>
<td>守 山 弘</td>
</tr>
<tr>
<td>60</td>
<td>第3回農村環境計画検討委員会</td>
<td>財団法人農村環境整備センター</td>
<td>調査指導</td>
<td>環境管理</td>
<td>農村景観</td>
<td>室長</td>
</tr>
<tr>
<td>61</td>
<td>低侵入・高品質農業生産実証実験事業</td>
<td>財団法人日本農業研究所</td>
<td>調査指導</td>
<td>環境生物</td>
<td>農業管理</td>
<td>科長</td>
</tr>
<tr>
<td>62</td>
<td>都道府県委託試験施設状況調査指導</td>
<td>財団法人日本農業研究所</td>
<td>調査指導</td>
<td>環境生物</td>
<td>農業管理</td>
<td>室長</td>
</tr>
<tr>
<td>63</td>
<td>都道府県委託試験施設状況調査指導</td>
<td>財団法人日本農業研究所</td>
<td>調査指導</td>
<td>環境生物</td>
<td>農業管理</td>
<td>室長</td>
</tr>
</tbody>
</table>
| 64 | 農耕地環境保全情報システム開発委員会小委員会 | 財団法人日本土壌学会 | 調査指導 | 環境管理 | 農業管理 | 科長 | 福 原 一
<table>
<thead>
<tr>
<th>番号</th>
<th>用務</th>
<th>委託者</th>
<th>用務の所属</th>
<th>担当者の所属</th>
<th>担当者の氏名</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>農耕地環境保全情報システム開発委員会小委員会・業務部会</td>
<td>財団法人日本土壤協会</td>
<td>調査指導</td>
<td>環境管理</td>
<td>農村景観</td>
</tr>
<tr>
<td>66</td>
<td>農耕地環境保全情報システム開発委員会小委員会・業務部会</td>
<td>財団法人日本土壤協会</td>
<td>調査指導</td>
<td>環境資源</td>
<td>土壤管理科</td>
</tr>
<tr>
<td>67</td>
<td>農耕地環境保全情報システム開発委員会小委員会・業務部会</td>
<td>財団法人日本土壤協会</td>
<td>調査指導</td>
<td>環境管理</td>
<td>隔測</td>
</tr>
<tr>
<td>68</td>
<td>農耕地環境保全情報システム開発委員会小委員会・業務部会</td>
<td>財団法人日本土壤協会</td>
<td>調査指導</td>
<td>金画調整</td>
<td>地球環境研究チーム</td>
</tr>
<tr>
<td>69</td>
<td>農耕地環境保全情報システム開発委員会小委員会・業務部会</td>
<td>財団法人日本土壤協会</td>
<td>調査指導</td>
<td>環境資源</td>
<td>土壤生成</td>
</tr>
<tr>
<td>70</td>
<td>都道府県委託試験実施状況調査指導</td>
<td>財団法人日本植物防除協会</td>
<td>調査指導</td>
<td>環境研究官</td>
<td>研究員</td>
</tr>
<tr>
<td>71</td>
<td>土地環境モデル事業第4回検査委員会仙台地区作業部会</td>
<td>財団法人日本総合研究所</td>
<td>調査指導</td>
<td>環境管理</td>
<td>農村景観</td>
</tr>
<tr>
<td>72</td>
<td>都道府県委託試験実施状況調査指導</td>
<td>財団法人日本植物防除協会</td>
<td>調査指導</td>
<td>環境生物</td>
<td>天敵生物</td>
</tr>
<tr>
<td>73</td>
<td>平成6年度低侵入・高品質農業生産実験実証事業常務評議会</td>
<td>財団法人日本農業研究所</td>
<td>調査指導</td>
<td>環境生物</td>
<td>個体群発生</td>
</tr>
<tr>
<td>74</td>
<td>緑化技術講習会</td>
<td>千葉県</td>
<td>講師</td>
<td>環境管理</td>
<td>責務</td>
</tr>
<tr>
<td>75</td>
<td>四万十川方式農業等処理実験検討会</td>
<td>高知県自然循環方式処理技術研究</td>
<td>調査指導</td>
<td>資材動態</td>
<td>防除動態</td>
</tr>
<tr>
<td>76</td>
<td>新愛知川地区生態系保全手法検討業務現地調査</td>
<td>社団法人</td>
<td>植物環境整備センター</td>
<td>調査指導</td>
<td>環境管理</td>
</tr>
<tr>
<td>77</td>
<td>新愛知川地区生態系保全手法検討業務現地調査</td>
<td>社団法人</td>
<td>植物環境整備センター</td>
<td>調査指導</td>
<td>環境管理</td>
</tr>
<tr>
<td>78</td>
<td>都道府県委託試験実施状況調査指導</td>
<td>社団法人日本植物防除協会</td>
<td>調査指導</td>
<td>資材動態</td>
<td>農業動態科</td>
</tr>
<tr>
<td>79</td>
<td>平成6年度生物農業連絡試験成績検討会</td>
<td>社団法人日本植物防除協会</td>
<td>調査指導</td>
<td>環境研究官</td>
<td>研究員</td>
</tr>
<tr>
<td>80</td>
<td>土壌改良資材の品質管理技術開発</td>
<td>財団法人日本土壤協会</td>
<td>調査指導</td>
<td>資材動態</td>
<td>坑田動態科</td>
</tr>
<tr>
<td>81</td>
<td>土壌改良資材の品質管理技術開発</td>
<td>財団法人日本土壤協会</td>
<td>調査指導</td>
<td>資材動態</td>
<td>多量要素動態</td>
</tr>
<tr>
<td>82</td>
<td>土壌改良資材の品質管理技術開発</td>
<td>財団法人日本土壤協会</td>
<td>調査指導</td>
<td>環境資源</td>
<td>土壌保全</td>
</tr>
<tr>
<td>83</td>
<td>平成6年度第2回環境増進対策調査検討委員会</td>
<td>社団法人農村環境整備センター</td>
<td>調査指導</td>
<td>環境管理</td>
<td>植生動態</td>
</tr>
</tbody>
</table>

（2）受託研究

<table>
<thead>
<tr>
<th>番号</th>
<th>研究課題</th>
<th>委託者</th>
<th>担当者の所属</th>
<th>実施期間</th>
<th>経費</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>基地におけるリモートセンシング活動支援及び地域整備に関する研究</td>
<td>(社)日本耕地協会</td>
<td>環境管理</td>
<td>6.6.1〜7.3.15</td>
<td>305,000</td>
<td>657,920</td>
</tr>
<tr>
<td>2</td>
<td>多機能性新発想製品の基礎的研究</td>
<td>多機能性新発想製品の基礎的機能及び環境特性の解析</td>
<td>環境資源</td>
<td>6.6.1〜7.3.31</td>
<td>143,000</td>
<td>162,880</td>
</tr>
</tbody>
</table>
（3）委託調査

<table>
<thead>
<tr>
<th>番号</th>
<th>委托内容</th>
<th>委托者</th>
<th>着手年月日</th>
<th>完了年月日</th>
<th>契約額 (円)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>水域における農業生産資材投入実態の把握</td>
<td>茨城県知事</td>
<td>6.10.7</td>
<td>7.3.15</td>
<td>2,071,000</td>
</tr>
<tr>
<td>2.</td>
<td>植物被害に対する生物防除機能の負荷技術の開発</td>
<td>日本チッカリン株式会社</td>
<td>6.8.16</td>
<td>7.3.15</td>
<td>2,158,000</td>
</tr>
<tr>
<td>3.</td>
<td>電気刺激による植物生体反応の計測と解明</td>
<td>東京農工大学工学部</td>
<td>6.9.14</td>
<td>7.3.15</td>
<td>1,906,000</td>
</tr>
<tr>
<td>4.</td>
<td>植物刺激による植物生体反応の計測と解明</td>
<td>早稲田大学 理工学総合研究センター所長</td>
<td>6.8.26</td>
<td>7.3.15</td>
<td>1,906,000</td>
</tr>
<tr>
<td>5.</td>
<td>メタ酸化菌の活用による制御技術の開発</td>
<td>三重大学長</td>
<td>6.8.30</td>
<td>7.3.15</td>
<td>1,761,000</td>
</tr>
<tr>
<td>6.</td>
<td>拮抗細菌等による制御技術の開発</td>
<td>三重大学長</td>
<td>6.8.30</td>
<td>7.3.15</td>
<td>1,762,000</td>
</tr>
<tr>
<td>7.</td>
<td>植物集団の局所的分化と適応戦略の解析</td>
<td>京都大学理学部</td>
<td>6.8.19</td>
<td>7.3.15</td>
<td>1,761,000</td>
</tr>
<tr>
<td>8.</td>
<td>病害者－捕食者系の変動の解明</td>
<td>筑波大学学長</td>
<td>6.7.25</td>
<td>7.3.15</td>
<td>1,761,000</td>
</tr>
<tr>
<td>9.</td>
<td>土塚模造と土壌における微生物相の動態解明</td>
<td>東京大学農学部</td>
<td>6.8.19</td>
<td>7.3.15</td>
<td>1,761,000</td>
</tr>
<tr>
<td>10.</td>
<td>炭酸ガス濃度上昇と気候変化に伴う農作物の生長変動予測手法の開発</td>
<td>京都大学農学部</td>
<td>6.8.3</td>
<td>7.3.15</td>
<td>1,761,000</td>
</tr>
<tr>
<td>11.</td>
<td>農業気象への海象の影響解明</td>
<td>東北大学理学部</td>
<td>6.8.31</td>
<td>7.3.15</td>
<td>1,761,000</td>
</tr>
<tr>
<td>12.</td>
<td>放線菌の抗生物質生産および形態分化の調節機構</td>
<td>東京大学農学部</td>
<td>6.8.19</td>
<td>7.3.15</td>
<td>1,905,000</td>
</tr>
<tr>
<td>13.</td>
<td>アレルギー物質の構造解析とその合成</td>
<td>京都大学農学部</td>
<td>6.9.8</td>
<td>7.3.15</td>
<td>3,405,000</td>
</tr>
<tr>
<td>14.</td>
<td>稲虫の土壤系内における寄生性制御因子</td>
<td>学校法人東海大学理事長</td>
<td>6.7.19</td>
<td>7.3.15</td>
<td>2,035,000</td>
</tr>
<tr>
<td>15.</td>
<td>鳥類の集団がわらの空間的誘導と採食制御</td>
<td>学校法人東海大学理事長</td>
<td>6.7.19</td>
<td>7.3.15</td>
<td>1,435,000</td>
</tr>
<tr>
<td>16.</td>
<td>昆虫における種内変異と個体群制御</td>
<td>京都大学農学部</td>
<td>6.8.3</td>
<td>7.3.15</td>
<td>1,966,000</td>
</tr>
<tr>
<td>17.</td>
<td>ハナバチ類の巣及びコロニーの管理技術の開発</td>
<td>島根大学農学部</td>
<td>6.8.19</td>
<td>7.3.15</td>
<td>1,966,000</td>
</tr>
<tr>
<td>18.</td>
<td>昆虫における進化的動態予測及び遺伝的制御</td>
<td>岡山大学農学部</td>
<td>6.7.25</td>
<td>7.3.15</td>
<td>2,405,000</td>
</tr>
<tr>
<td>19.</td>
<td>煙・樹園地・草地における水質浄化機能の評価に関する調査研究</td>
<td>千葉県知事</td>
<td>6.9.8</td>
<td>7.3.15</td>
<td>827,000</td>
</tr>
<tr>
<td>20.</td>
<td>污染水下流水入水田における水質浄化機能の評価に関する調査研究</td>
<td>埼玉県知事</td>
<td>6.8.22</td>
<td>7.3.15</td>
<td>874,000</td>
</tr>
<tr>
<td>21.</td>
<td>ため池・湿原の生態系を利用した浄化技術の開発に関する調査研究</td>
<td>神奈川県知事</td>
<td>6.8.26</td>
<td>7.3.15</td>
<td>838,000</td>
</tr>
<tr>
<td>22.</td>
<td>冷温帯林生態系におけるササ型林床構成の炭素循環の定量的解析</td>
<td>北海道大学 研究センター長</td>
<td>6.12.1</td>
<td>7.3.15</td>
<td>3,504,000</td>
</tr>
<tr>
<td>23.</td>
<td>亜寒帯林生態系における炭素循環・収支の定量的解析</td>
<td>広島大学</td>
<td>6.12.1</td>
<td>7.3.15</td>
<td>3,947,000</td>
</tr>
<tr>
<td>24.</td>
<td>亜寒帯林における土壌微生物群をめぐる炭素循環の定量的解析</td>
<td>広島大学</td>
<td>6.12.1</td>
<td>7.3.15</td>
<td>4,088,000</td>
</tr>
</tbody>
</table>
3. 研究・研修等

（1）派遣

1）流動研究員

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属</th>
<th>派遣先</th>
<th>研究課題</th>
<th>期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>吉本 真由美</td>
<td>気象特性研究室</td>
<td>千葉大学工学部</td>
<td>大気－植生－土壌系モデルの農林生態系への適用</td>
<td>6.10.1 ～6.12.25</td>
</tr>
<tr>
<td>坂西 研二</td>
<td>土壌保全研究室</td>
<td>国際農水研センター沖縄支所</td>
<td>光波式距離測定装置による土壌侵食量の計測</td>
<td>6.10.30 ～6.11.12</td>
</tr>
<tr>
<td>松村 雄</td>
<td>昆虫分類研究室</td>
<td>国際農水研センター沖縄支所</td>
<td>亜熱帯性膜翅目昆虫の標本及び生態情報の収集</td>
<td>7.2.25 ～7.3.29</td>
</tr>
</tbody>
</table>

2）国内留学研究員

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属</th>
<th>留学先</th>
<th>研究課題</th>
<th>期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>麗多 門</td>
<td>土壌保全研究室</td>
<td>東北大学農学部</td>
<td>黒ボク土の陰イオン吸着特性の解明</td>
<td>6.6.1 ～6.8.31</td>
</tr>
<tr>
<td>綱藤 彩女</td>
<td>農村景観研究室</td>
<td>広島大学工学部</td>
<td>魚の環境移行にともなう自然環境および農業生態系の認識・評価モデルの開発</td>
<td>6.9.1 ～7.2.28</td>
</tr>
</tbody>
</table>

3）国外での国際研究集会参加

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属</th>
<th>開催国</th>
<th>発表課題及び活動内容</th>
<th>期間</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>鶴田 治雄</td>
<td>影響調査研究室</td>
<td>アメリカ</td>
<td>「地球規模の気候変動に関する国際会議」において発表、意見交換</td>
<td>6.4.5 ～6.4.11</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>阿南 誠也</td>
<td>土壌微生物生態研究所</td>
<td>中国</td>
<td>第2回杭州国際病理学シンポジウムに出席し、ポスター発表</td>
<td>6.6.13 ～6.6.24</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>橋山 和成</td>
<td>土壌微生物生態研究所</td>
<td>中国</td>
<td>第2回杭州国際病理学シンポジウムに出席し、ポスター発表</td>
<td>6.6.13 ～6.6.21</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>松田 泉</td>
<td>昆虫生態研究室</td>
<td>中国</td>
<td>第2回杭州国際病理学シンポジウムに出席し、ポスター発表</td>
<td>6.6.13 ～6.6.21</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>鈴木 文彦</td>
<td>昆虫生態研究室</td>
<td>中国</td>
<td>第2回杭州国際病理学シンポジウムに出席し、ポスター発表</td>
<td>6.6.13 ～6.6.24</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>昆野 安彦</td>
<td>殺虫剤生態研究室</td>
<td>アメリカ</td>
<td>第8回国際農業化学会議に出席し、ポスター発表</td>
<td>6.7.3 ～6.7.10</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>上路 雅子</td>
<td>殺虫剤生態研究室</td>
<td>アメリカ</td>
<td>第8回国際農業化学会議に出席し、ポスター発表</td>
<td>6.7.3 ～6.7.10</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>鈴木 幸彦</td>
<td>殺虫剤生態研究室</td>
<td>アメリカ</td>
<td>第8回国際農業化学会議に出席し、ポスター発表</td>
<td>6.7.3 ～6.7.10</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>鈴木 健</td>
<td>殺虫剤耐性研究室</td>
<td>アメリカ</td>
<td>第8回国際農業化学会議に出席し、ポスター発表</td>
<td>6.7.3 ～6.7.10</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>氏名</td>
<td>所属</td>
<td>関連</td>
<td>発表題目及び活動内容</td>
<td>期間</td>
<td>備考</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>結川康一</td>
<td>分析法研究室</td>
<td>メキシコ</td>
<td>第15回国際土壌学会に出席し、ポスター発表
第15回国際土壌学会に出席し、ポスター発表</td>
<td>6.7.5</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>浜崎清雄</td>
<td>土壤調査分類研究室</td>
<td>アメリカ</td>
<td>第15回国際土壌学会に出席し、ポスター発表
第15回国際土壌学会に出席し、ポスター発表</td>
<td>6.7.5</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>舂田共之</td>
<td>資源・環境生態学研究室</td>
<td>メキシコ</td>
<td>第15回国際土壌学会に出席し、ポスター発表
第15回国際土壌学会に出席し、ポスター発表</td>
<td>6.7.6</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>陽治</td>
<td>資源・生態管理</td>
<td>オーストラリア</td>
<td>IGBPの中のGCTEに関する会議において、地球温暖化と陸上生態系について討論</td>
<td>6.7.10</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>新藤純子</td>
<td>資源・環境生態学研究室</td>
<td>メキシコ</td>
<td>第15回国際土壌学会に出席し、ポスター発表
第15回国際土壌学会に出席し、ポスター発表</td>
<td>6.7.6</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>加藤英孝</td>
<td>土壤物理研究室</td>
<td>中国</td>
<td>西太平洋地球物理学会に出席し、水文学のセッションで口頭発表及び情報収集を行う</td>
<td>6.7.24</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>陽治</td>
<td>資源・生態管理</td>
<td>中国</td>
<td>AGU-WPM国際学会に出席し、地球温暖化と水田のセッションで議長を務める</td>
<td>6.7.24</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>陽治</td>
<td>影響調査研究室</td>
<td>中国</td>
<td>西太平洋地球物理学会に参加し、「水田から発生する亜硝酸基素の測定」を発表</td>
<td>6.7.24</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>八木一歩</td>
<td>影響調査研究室</td>
<td>中国</td>
<td>西太平洋地球物理学会に参加し、大気化学のセッションで発表
西太平洋地球物理学会に参加し、大気化学のセッションで発表</td>
<td>6.7.24</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>小原裕三</td>
<td>農業管理研究室</td>
<td>中国</td>
<td>西太平洋地球物理学会に参加し、大気化学のセッションで発表
西太平洋地球物理学会に参加し、大気化学のセッションで発表</td>
<td>6.7.24</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>横沢正幸</td>
<td>気候資源研究所</td>
<td>イギリス</td>
<td>第6回国際生態学会に参加し、ポスター発表
第6回国際生態学会に参加し、ポスター発表</td>
<td>6.8.20</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>細野達夫</td>
<td>大気全科学研究室</td>
<td>イギリス</td>
<td>第6回国際生態学会に参加し、ポスター発表
第6回国際生態学会に参加し、ポスター発表</td>
<td>6.8.20</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>白井洋一</td>
<td>昆虫行動研究室</td>
<td>イギリス</td>
<td>研究課題「移動性昆虫の飛翔行動性の解明」に関する第6回国際生態学会に出席し、「昆虫目昆虫の飛翔と繁殖行動の関係」について発表</td>
<td>6.8.20</td>
<td>科技庁「重点基礎」</td>
</tr>
<tr>
<td>池田浩明</td>
<td>地球環境研究所</td>
<td>イギリス</td>
<td>第6回国際生態学会に参加し、ポスター発表
第6回国際生態学会に参加し、ポスター発表</td>
<td>6.8.21</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>小泉博</td>
<td>植生生態研究室</td>
<td>イギリス</td>
<td>第6回国際生態学会に参加し、「日本の農業環境における炭素の動態及び収支」に関する講演を行う
第6回国際生態学会に参加し、「日本の農業環境における炭素の動態及び収支」に関する講演を行う</td>
<td>6.8.21</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>山崎慎一</td>
<td>分析法研究室</td>
<td>ハンガリー</td>
<td>第13回国際質量分析会議に出席し、ポスター発表
第13回国際質量分析会議に出席し、ポスター発表</td>
<td>6.8.29</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>渡辺久男</td>
<td>微量要素生態研究室</td>
<td>タイ</td>
<td>タイと日本国際農業科学研究センター (JIRCAS) 協力25周年記念セミナーに出席
タイと日本国際農業科学研究センター (JIRCAS) 協力25周年記念セミナーに出席</td>
<td>6.9.5</td>
<td>研究交流促進</td>
</tr>
<tr>
<td>橋本真</td>
<td>農村景観研究所</td>
<td>アメリカ</td>
<td>北米造園教育研究者会議に出席し、日本とカナダにおける文化景観の比較研究に関する論文を発表
北米造園教育研究者会議に出席し、日本とカナダにおける文化景観の比較研究に関する論文を発表</td>
<td>6.9.7</td>
<td>研究交流促進</td>
</tr>
</tbody>
</table>
| 薮多門 | 土壌保全研究室 | ベラルーシ | 第3回国際環境地球化学シンポジウム
第3回国際環境地球化学シンポジウム | 6.9.10 | 茨城県科学地質調査所
<table>
<thead>
<tr>
<th>氏 名</th>
<th>所 属</th>
<th>国</th>
<th>発表課題及び活動内容</th>
<th>期 間</th>
<th>備 考</th>
</tr>
</thead>
<tbody>
<tr>
<td>山崎 慎一</td>
<td>分析法研究室</td>
<td>イギリス</td>
<td>第4回ブラズマ源質量分析国際会議に出席し、講演発表を行う。</td>
<td>6.9.10</td>
<td>技術振興財団研究交流促進法5条</td>
</tr>
<tr>
<td>新藤 鈴子</td>
<td>資源・環境動態研究室</td>
<td>中国</td>
<td>アジア開発銀貯蔵会議に出席</td>
<td>6.9.15</td>
<td>研究交流促進法5条</td>
</tr>
<tr>
<td>清野 隆</td>
<td>企画科</td>
<td>韓国</td>
<td>韓国生態学シンポジウムに出席し、気候変化に伴う生態系への影響についてポスター発表・討論を行う</td>
<td>6.10.8</td>
<td>研究交流促進法5条</td>
</tr>
<tr>
<td>加藤 直人</td>
<td>多量要素動態研究室</td>
<td>オーストラリア</td>
<td>FAO／IAEA主催の「持続型農業と環境保全に関する土壤・植物研究における原子力手法に関する国際シンポジウム」において「アイソトープ法によるリン酸肥料の植物に対する残効性評価」の課題で発表</td>
<td>6.10.15</td>
<td>技術振興財団研究交流促進法5条</td>
</tr>
<tr>
<td>小西 和彦</td>
<td>昆虫分類研究室</td>
<td>カナダ</td>
<td>第4回観光定会同窓会ワークショップに出席し、観光定会の開催を推奨</td>
<td>6.10.18</td>
<td>研究交流促進法5条</td>
</tr>
<tr>
<td>原谷 明信</td>
<td>気象特性研究室</td>
<td>チリ</td>
<td>「地中海型生態系における視覚退化」の国際会議に出席し、ポスター発表</td>
<td>6.10.8</td>
<td>研究交流促進法5条</td>
</tr>
<tr>
<td>水田 共之</td>
<td>地球環境研究チーム</td>
<td>アメリカ</td>
<td>「地球規模評価モデルの構築に関する国際ワークショップ」に出席</td>
<td>6.10.24</td>
<td>(JST)科学技術振興機構「国際交流センター（JISTEC）」</td>
</tr>
<tr>
<td>池田 昭明</td>
<td>地球環境研究チーム</td>
<td>台湾</td>
<td>「第7回IUAPPA大気汚染および廃棄物に関する環太平洋地域議会」に出席し、講演を行う</td>
<td>6.11.1</td>
<td>研究交流促進法5条</td>
</tr>
<tr>
<td>山崎 慎一</td>
<td>分析法研究室</td>
<td>韓国</td>
<td>農業用水質管理に関する国際会議における「日本における農業用水質管理に関する環境科学的展望」という演題で講演を行う</td>
<td>6.11.10</td>
<td>ソウル大学国立環境管理機器センター</td>
</tr>
<tr>
<td>竹澤 邦夫</td>
<td>地球環境研究チーム</td>
<td>アメリカ</td>
<td>ENVIROSOF94（環境の数理的把握に関する国際会議）に出席し、研究発表と討論を行う</td>
<td>6.11.15</td>
<td>研究交流促進法5条</td>
</tr>
<tr>
<td>小原 洋</td>
<td>土壌調査分類研究室</td>
<td>タイ</td>
<td>「エル・ニーニョ現象等による帯生態系変動が地球温暖化に及ぼす影響解析」に関する国際ワークショップに出席</td>
<td>7.2.6</td>
<td>(JST)科学技術振興機構「国際交流センター（JISTEC）」</td>
</tr>
</tbody>
</table>
（2）招へい

1）流動研究員

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属</th>
<th>招へい先</th>
<th>研究課題</th>
<th>期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>河村 旨也</td>
<td>千葉大学工学部</td>
<td>気象特性研究室</td>
<td>植生のCO₂ガス交換流体力学系モデルの開発研究</td>
<td>6.7.1 〜6.9.30 6.12.1 〜7.1.21</td>
</tr>
<tr>
<td>文字信貴</td>
<td>大阪府立大学農学部</td>
<td>気象特性研究室</td>
<td>大気微量気体の農林生態系における観測的解析</td>
<td>6.8.23 〜6.9.3 7.3.13 〜7.3.24</td>
</tr>
<tr>
<td>大平仁夫</td>
<td>鳳来寺山自然科学博物館・昆虫分類研究室</td>
<td>コメツキムシ科 (Elateridae) の形態・分類学的研究</td>
<td>6.9.6 〜6.9.30</td>
<td></td>
</tr>
</tbody>
</table>

2）外国人研究員

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属</th>
<th>受入れ研究室</th>
<th>研究課題</th>
<th>期間</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma. Arlene M. Evangelista</td>
<td>フィリピン土壤水管理局リモートセンシング課</td>
<td>隔離研究室</td>
<td>「マイクロ波センサーデータ利用等によるリモートセンシング高度化のための基盤技術開発」において、「農業環境変化モニタリングのためのリモートセンシング技術高度化共同研究」の推進</td>
<td>6.10.3 〜6.11.1</td>
<td>科技庁 「総合研究」</td>
</tr>
<tr>
<td>Yuliartoro Baliadi</td>
<td>インドネシアマラン食用作物研究所</td>
<td>線虫・小動物研究室</td>
<td>植物寄生性線虫の形態学的及び生化学的分類・同定法</td>
<td>6.10.13 〜6.10.23</td>
<td>国際センター 「招へい」</td>
</tr>
<tr>
<td>Stanley C. Tyler</td>
<td>アメリカカリフォルニア大学アーバイン校</td>
<td>影響調査研究室</td>
<td>「農耕地生態系における臭化メチルの動態解明」</td>
<td>7.1.10 〜7.3.3</td>
<td>科技庁 「招へい」</td>
</tr>
<tr>
<td>Timo Mela</td>
<td>フィンランドフィンランド農研センター</td>
<td>植生生態研究室</td>
<td>「北極域における気候・水質・生物圏の変動及びそれらの相互作用に関する国際共同研究」</td>
<td>7.1.10 〜7.1.19</td>
<td>科技庁 「招へい」</td>
</tr>
<tr>
<td>Li. Shenggong</td>
<td>中国科学院沙漠研究所</td>
<td>気象特性研究室</td>
<td>「砂漠化機構の解明に関する国際共同研究」に係るデータ解析</td>
<td>7.1.30 〜7.2.26 7.3.4 〜7.3.10</td>
<td>科技庁 「総合研究」</td>
</tr>
<tr>
<td>He Zongying</td>
<td>中国科学院沙漠研究所</td>
<td>気象特性研究室</td>
<td>「砂漠化機構の解明に関する国際共同研究」に係るデータ解析</td>
<td>7.1.30 〜7.2.26 7.3.4 〜7.3.10</td>
<td>科技庁 「総合研究」</td>
</tr>
<tr>
<td>Mary Susan Moran</td>
<td>アメリカ農務省水保全研究所</td>
<td>生物情報計測研究室</td>
<td>「リモートセンシングによる地表蒸発散および植生資源の動態評価に関する研究」</td>
<td>7.2.1 〜7.2.20</td>
<td>科技庁 「招へい」</td>
</tr>
<tr>
<td>氏名</td>
<td>所属</td>
<td>受入れ研究室</td>
<td>研究課題</td>
<td>期間</td>
<td>備考</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td>---------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Zhao Halin</td>
<td>中国科学院沙漠研究所</td>
<td>保全植生研究室</td>
<td>「砂漠化機構の解明に関する国際共同研究」において、家畜の放牧管理の立場から砂漠化機構を解明し、砂漠化防止技術に関する討議を行う</td>
<td>7.2.19 〜 7.3.10</td>
<td>科技庁</td>
</tr>
<tr>
<td>Hendrikus J. Vlug</td>
<td>オランダホーゲンゲ植物保護研究所</td>
<td>天敵生物研究室</td>
<td>天敵による昆虫管理のための温室生態系モデル化に関する研究</td>
<td>7.2.13 〜 7.2.22</td>
<td>〜個別重要</td>
</tr>
<tr>
<td>Liu Shuzhen</td>
<td>中国科学院成都地震災害及び環境研究所</td>
<td>環境立地研究所</td>
<td>「砂漠化と人間活動の相互影響評価に関する研究」の推進状況に関する検討打合せ</td>
<td>7.2.21 〜 7.3.6</td>
<td>環境庁</td>
</tr>
<tr>
<td>James R. Aist</td>
<td>アメリカニューヨーク州コーネル大学</td>
<td>土壌微生物生態研究室</td>
<td>土壌の染色体分離過程の有視化に関する研究</td>
<td>7.3.13 〜 7.3.22</td>
<td>科技庁</td>
</tr>
<tr>
<td>Arnoldus Janssen</td>
<td>オランダアムステルダム大学</td>
<td>天敵生物研究所</td>
<td>天敵による昆虫管理のための温室生態系モデル化に関する研究</td>
<td>7.3.15 〜 7.3.28</td>
<td>〜個別重要</td>
</tr>
<tr>
<td>Walter C. Oechel</td>
<td>アメリカサン・ディエゴ州立大学</td>
<td>気象特性研究所</td>
<td>大気環境シミュレーションにおける大気環境化ガスの基礎研究とそれが大気環境化に及ぼす影響の解明</td>
<td>7.3.13 〜 7.3.27</td>
<td>科技庁</td>
</tr>
<tr>
<td>Andrea Pitacco</td>
<td>イタリアパドバ大学</td>
<td>地球環境研究チーム</td>
<td>ノンパラメトリック回帰を利用した地球環境変動下での作物生育の予測</td>
<td>7.3.12 〜 7.3.18</td>
<td>科技庁</td>
</tr>
</tbody>
</table>

（3）特別な研究員

1）科学技術特別研究員

<table>
<thead>
<tr>
<th>氏名</th>
<th>前歴</th>
<th>受入れ研究室</th>
<th>研究課題</th>
<th>期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>卑 亜峰</td>
<td>（株）植物工学研究所研究員</td>
<td>植物寄生シュードモナス属細菌の病原性関連遺伝子の解明</td>
<td>6.4.1 〜 6.9.31</td>
<td></td>
</tr>
<tr>
<td>波 邊浩一郎</td>
<td>千葉大学園芸学部大学院研究生</td>
<td>環境資料中の微量元素の分析における即応γ線分析法利用に関する研究</td>
<td>6.4.1 〜 6.5.31</td>
<td></td>
</tr>
<tr>
<td>諏 順 正裕</td>
<td>九州大学大学院農学研究科</td>
<td>CO₂増加による温暖化が植物の光合成・物質生産に及ぼす影響の解明</td>
<td>6.4.1 〜 6.7.1</td>
<td></td>
</tr>
<tr>
<td>渕 山 弘介</td>
<td>鳥取大学気象科学部</td>
<td>殺菌剤動態研究</td>
<td>6.4.1 〜 6.3.31</td>
<td></td>
</tr>
<tr>
<td>市 橋 秀樹</td>
<td>日本学術振興会特別研究員（愛媛大学）</td>
<td>土壌-植物-動物系における超微量元素存在の動態の解明</td>
<td>6.4.1 〜 6.3.31</td>
<td></td>
</tr>
</tbody>
</table>

2）科学技術庁フェローシップ研究員

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属</th>
<th>受入れ研究室</th>
<th>研究課題</th>
<th>期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subbarao V. Guntur</td>
<td>インドICRISAT</td>
<td>土壌生化学研究室</td>
<td>熱帯産マメ科作物による難溶性リンの吸収機構とその遺伝的解析</td>
<td>6.4.7 〜 7.4.2</td>
</tr>
<tr>
<td>Wang Tao</td>
<td>中国科学院沙漠研究所</td>
<td>環境立地研究室</td>
<td>リモートセンシング/地理情報システムを用いた砂漠化の監視・評価手法の開発</td>
<td>7.2.16 〜 8.8.15</td>
</tr>
</tbody>
</table>
（4）研修等

1）依頼研究員

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属</th>
<th>受入れ研究室</th>
<th>研究課題</th>
<th>期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>杉藤泰彦</td>
<td>北興化学工業(株)</td>
<td>殺薬剤播種研究室</td>
<td>薬剤の効果と生物効果の関係の解析</td>
<td>6.6.1 ~ 6.11.30</td>
</tr>
<tr>
<td>吉岡毅一</td>
<td>東洋電化工業(株)</td>
<td>殺薬剤播種研究室</td>
<td>環境中における農薬の動態制御技術の開発</td>
<td>6.6.1 ~ 7.2.28</td>
</tr>
<tr>
<td>橋本良子</td>
<td>東京都農業試験場</td>
<td>殺薬剤播種研究室</td>
<td>殲留農薬分析に関わる基礎的知識</td>
<td>6.6.1 ~ 6.8.31</td>
</tr>
<tr>
<td>内山和子</td>
<td>神奈川県農業総合研究所</td>
<td>土壌微生物生態研究室</td>
<td>土壌微生物の選択的分離</td>
<td>6.6.1 ~ 6.11.30</td>
</tr>
<tr>
<td>浅井貴之</td>
<td>長野県畜産試験場</td>
<td>多量毒素播種研究室</td>
<td>家畜ふん尿の肥料化技術の開発</td>
<td>6.6.1 ~ 6.8.31</td>
</tr>
<tr>
<td>潮谷一生</td>
<td>岡崎県農業試験場</td>
<td>生物情報計測研究室</td>
<td>リモートセンシング手法を用いた直接栽培土壌の生理生態的観察の実例</td>
<td>6.6.1 ~ 6.8.31</td>
</tr>
<tr>
<td>重富修</td>
<td>佐賀県農業研究センター</td>
<td>気候資源研究室</td>
<td>メッシュ気候資源の利用技術の確立</td>
<td>6.6.1 ~ 6.11.30</td>
</tr>
<tr>
<td>久米隆志</td>
<td>長崎県農業試験場</td>
<td>土壌有機物研究室</td>
<td>各種有機質茨部の土壌中での分解特性及び品質評価</td>
<td>6.6.1 ~ 6.11.30</td>
</tr>
<tr>
<td>富永重光</td>
<td>長崎県果樹試験場</td>
<td>土壌物理研究室</td>
<td>根群発達と土壌の物理性</td>
<td>6.7.1 ~ 6.9.30</td>
</tr>
<tr>
<td>近藤吉和</td>
<td>大分県農業技術センター</td>
<td>生物情報計測研究室</td>
<td>果樹類生育情報の非破壊計測法</td>
<td>6.7.1 ~ 6.9.30</td>
</tr>
<tr>
<td>関上直幸</td>
<td>鹿児島県農業試験場</td>
<td>気象生態研究室</td>
<td>気象に関する予測モデル化</td>
<td>6.7.11 ~ 6.10.10</td>
</tr>
<tr>
<td>佐藤健司</td>
<td>宮城県農業センター</td>
<td>土壌微生物生態研究室</td>
<td>土壌微生物の検出と診断方法</td>
<td>6.8.1 ~ 6.10.31</td>
</tr>
<tr>
<td>村上芳照</td>
<td>山梨県総合農業試験場</td>
<td>天敵生物研究室</td>
<td>非防除害虫の天敵を用いた防除</td>
<td>6.8.1 ~ 6.10.31</td>
</tr>
<tr>
<td>渡辺安弘</td>
<td>滋賀県農業試験場</td>
<td>天敵生物研究室</td>
<td>天敵昆虫の増殖及び特性解明</td>
<td>6.8.1 ~ 6.10.31</td>
</tr>
<tr>
<td>渡辺和弘</td>
<td>山形県農業試験場</td>
<td>天敵生物研究室</td>
<td>天敵による害虫防除</td>
<td>6.9.1 ~ 6.11.30</td>
</tr>
<tr>
<td>谷川元一</td>
<td>奈良県農業試験場</td>
<td>殺薬剤播種研究室</td>
<td>薬剤の散布方法を変えて時の薬剤付着量と防除効果の関係</td>
<td>6.9.1 ~ 6.11.30</td>
</tr>
<tr>
<td>山下賢一</td>
<td>兵庫県中央農業技術センター</td>
<td>天敵生物研究室</td>
<td>アブラムシ類に対する天敵利用技術の開発</td>
<td>6.9.1 ~ 6.11.30</td>
</tr>
<tr>
<td>千賀健司</td>
<td>岡山県農業試験場</td>
<td>隔離研究室</td>
<td>リモートセンシング技術を利用した害虫発生予測</td>
<td>6.9.1 ~ 6.11.30</td>
</tr>
<tr>
<td>竹内晴信</td>
<td>北海道北見農業試験場</td>
<td>土壌物理研究室</td>
<td>作物に対する土壌の水分供給能の評価</td>
<td>6.9.26 ~ 6.12.22</td>
</tr>
<tr>
<td>植田順宏</td>
<td>岐阜県農業総合センター</td>
<td>土壌物理研究室</td>
<td>一般的な土壌物理性に基づく研究の成果の得</td>
<td>6.10.1 ~ 7.1.31</td>
</tr>
<tr>
<td>杉藤龍司</td>
<td>長野県野菜花卉試験場</td>
<td>多量素動態研究室</td>
<td>硫酸集積土壌のイオン組成と電気伝導率</td>
<td>6.10.1 ~ 6.12.28</td>
</tr>
<tr>
<td>氏名</td>
<td>所属</td>
<td>受入れ研究室</td>
<td>研究課題</td>
<td>期間</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>竹内</td>
<td>北海道中央農業試験場</td>
<td>寄生菌動態研究室</td>
<td>作物病害のDNA診断技術の開発</td>
<td>6.10.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~7.3.30</td>
</tr>
<tr>
<td>安岡真二</td>
<td>北海道十勝農業試験場</td>
<td>微生物特性分類研究室</td>
<td>モノクロナール抗体作成技術の習得</td>
<td>6.12.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~7.3.30</td>
</tr>
</tbody>
</table>

2）技術講習

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属</th>
<th>受入れ研究室</th>
<th>研究課題</th>
<th>期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>東條元昭</td>
<td>大阪府立大学農学部</td>
<td>土壌微生物生態研究室</td>
<td>DNAプロープを用いた土壤伝染性植物病原菌の検出法</td>
<td>6.4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~6.9.30</td>
</tr>
<tr>
<td>Rakwal Rendeep</td>
<td>茨城大学大学院農学研究科</td>
<td>薬剤耐性研究室</td>
<td>抗いもち割りの検定法の習得</td>
<td>6.5.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~6.10.31</td>
</tr>
<tr>
<td>吉田実</td>
<td>岐阜大学大学院連合農学研究科</td>
<td>情報解析システム研究室</td>
<td>データ解析並びに画像解析方法の習得</td>
<td>6.5.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~6.5.27</td>
</tr>
<tr>
<td>神代大樹</td>
<td>北里大学衛生学部</td>
<td>分析法研究室</td>
<td>環境試料の機器分析に関する技術講習</td>
<td>6.5.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~7.2.28</td>
</tr>
<tr>
<td>大橋竜也</td>
<td>北里大学衛生学部</td>
<td>分析法研究室</td>
<td>環境試料の機器分析に関する技術講習</td>
<td>6.5.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~7.2.28</td>
</tr>
<tr>
<td>五島知子</td>
<td>茨城大学大学院環境科学研究科</td>
<td>地球環境研究チーム</td>
<td>酸性雨に関する総合気候解析技術</td>
<td>6.7.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~7.3.31</td>
</tr>
<tr>
<td>寺西雅弘</td>
<td>富山県薬事研究所付属薬用植物指導センター</td>
<td>線虫・小動物研究室</td>
<td>シャクヤクの線虫の分類・同定法並びに線虫の生態的防除法等</td>
<td>6.8.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~6.8.26</td>
</tr>
<tr>
<td>木嶋伸行</td>
<td>(株)熊谷組技術研究所</td>
<td>土壌微生物生態研究室</td>
<td>極限環境下の微生物群構造の探索</td>
<td>6.8.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~7.3.31</td>
</tr>
<tr>
<td>加藤秀一</td>
<td>長野県果樹試験場</td>
<td>多量要素動態研究室</td>
<td>可燃性無機物測定法の習得</td>
<td>6.10.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~6.10.28</td>
</tr>
<tr>
<td>大倉利明</td>
<td>JICAプロジェクト方式技術協力に係る技術研修者</td>
<td>土壌分類研究室</td>
<td>立地類型区分、土壌生産力可能性分級の作成技術</td>
<td>6.10.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~6.11.18</td>
</tr>
</tbody>
</table>

3）外国人研修（JICA等）

<table>
<thead>
<tr>
<th>氏名</th>
<th>国名</th>
<th>受入れ研究室</th>
<th>研究課題</th>
<th>期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferdinand B. Barbero</td>
<td>フィリピン</td>
<td>地球環境研究チーム</td>
<td>地理情報システム</td>
<td>6.4.5~6.5.27</td>
</tr>
<tr>
<td>Diana Raquel Yogi</td>
<td>アルゼンチン</td>
<td>土壌微生物生態研究室</td>
<td>土壌病害防除</td>
<td>6.4.5~6.10.6</td>
</tr>
<tr>
<td>Joseph B. Rojales</td>
<td>フィリピン</td>
<td>土壌生成研究室</td>
<td>土壌侵害の実態と要因解析（降雨量、傾斜作付様式）およびその防止法</td>
<td>6.6.28~6.8.12</td>
</tr>
<tr>
<td>Siriporn Zungsontiporn</td>
<td>タイ</td>
<td>他感物質研究室</td>
<td>雑草科学</td>
<td>6.10.18~7.10.4</td>
</tr>
<tr>
<td>Dr. Jose Da Silva Madeira Netto</td>
<td>ブラジル</td>
<td>環境立地研究室</td>
<td>リモートセンシング技術による資源評価</td>
<td>7.1.18~7.3.10</td>
</tr>
</tbody>
</table>
4) 職員研修

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属</th>
<th>研修課題</th>
<th>期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>藤本 瑞</td>
<td>企画調整部企画科</td>
<td>第28回国家公務員合同初任研修</td>
<td>6.4.5～6.4.8</td>
</tr>
<tr>
<td>屋良 佳織利</td>
<td></td>
<td>平成6年度Ⅰ種試験採用者研修</td>
<td>6.4.11～6.4.15</td>
</tr>
<tr>
<td>坂谷 博</td>
<td></td>
<td>平成6年度Ⅰ種試験採用者専門研修</td>
<td>6.4.18～6.4.21</td>
</tr>
<tr>
<td>植原 健人</td>
<td></td>
<td>(研究職コース)</td>
<td></td>
</tr>
<tr>
<td>田澤 純子</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>安田 勝 雄</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>米村 照彦</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>芦澤 武人</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(農業研究センター併任)

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属</th>
<th>研修課題</th>
<th>期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>阿部 雄一郎</td>
<td>総務部秘書課</td>
<td>平成6年度Ⅲ種試験採用者研修</td>
<td>6.4.25～6.4.28</td>
</tr>
<tr>
<td>諏訪 熱切</td>
<td>総務部会計課</td>
<td>平成6年度管理者研修（第1班）</td>
<td>6.5.16～6.5.20</td>
</tr>
<tr>
<td>宮澤 仁</td>
<td>総務部会計課</td>
<td>平成6年度係長行政研修 I</td>
<td>6.7.18～6.7.29</td>
</tr>
<tr>
<td>鈴木 聡 男</td>
<td>総務部秘書課</td>
<td>第20回関東地区課長補佐研修</td>
<td>6.9.26～6.9.30</td>
</tr>
<tr>
<td>飯野 武</td>
<td>総務部会計課</td>
<td>平成6年度係長行政研修 II</td>
<td>6.10.5～6.11.1</td>
</tr>
<tr>
<td>高橋 一二三</td>
<td>総務部会計課</td>
<td>平成6年度一般職員行政研修（第1班）</td>
<td>6.11.28～6.12.9</td>
</tr>
<tr>
<td>上田 敏恵</td>
<td>総務部秘書課</td>
<td>平成6年度係長行政研修 I（第2班）</td>
<td>7.1.30～7.2.10</td>
</tr>
</tbody>
</table>

専門研修

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属</th>
<th>研修課題</th>
<th>期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>横山 和成</td>
<td>環境生物部微生物管理科</td>
<td>平成6年度数理統計短期集団研修</td>
<td>6.11.7～6.11.18</td>
</tr>
<tr>
<td>塚田 静香</td>
<td>環境生物部昆虫管理科</td>
<td></td>
<td></td>
</tr>
<tr>
<td>杉本 星彦</td>
<td>農村動植物業務科</td>
<td>平成6年度農業技術化研修（高性能農業技術基本研修）</td>
<td>6.11.7～6.11.17</td>
</tr>
<tr>
<td>高橋 桂志</td>
<td>企画調整課業務部</td>
<td>平成6年度試験研究機関等職員に対する電子計算機プログラミング研修</td>
<td>6.12.5～6.12.14</td>
</tr>
<tr>
<td>横山 和成</td>
<td>環境生物部微生物管理科</td>
<td>平成6年度試験研究機関等職員に対する電子計算機プログラミング研修</td>
<td>6.12.5～6.12.14</td>
</tr>
<tr>
<td>高橋 健</td>
<td>横浜調整課業務科</td>
<td>平成6年度環境整備技術研修</td>
<td>7.1.18～7.2.8</td>
</tr>
<tr>
<td>横沢 正幸</td>
<td>環境資源部気象管理科</td>
<td>第30回Rホ利用生態基礎医学講習授業（生態コース）</td>
<td>7.1.23～7.2.17</td>
</tr>
</tbody>
</table>

その他の研修

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属</th>
<th>研修課題</th>
<th>期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>小川 直人</td>
<td>環境生物部微生物管理科</td>
<td>第17回研究交流センター英語研修（在外研究員コース）</td>
<td>6.5.9～6.12.12</td>
</tr>
<tr>
<td>吉田 正則</td>
<td>環境資源部土壤管理科</td>
<td>第17回研究交流センター英語研修（一般コース）</td>
<td>6.5.9～6.12.12</td>
</tr>
<tr>
<td>松尾 和人</td>
<td>環境生物部植生管理科</td>
<td>第17回研究交流センター英語研修（初級コース）</td>
<td>6.5.9～6.12.12</td>
</tr>
<tr>
<td>生出 真里</td>
<td>環境管理部計測情報科</td>
<td></td>
<td></td>
</tr>
<tr>
<td>二宮 正健</td>
<td>環境管理部計測情報科</td>
<td>平成6年度新型農業労働技術に関する研修</td>
<td>6.10.18～6.10.20</td>
</tr>
</tbody>
</table>
5）研修会への講師派遣

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属</th>
<th>講師派遣内容</th>
<th>期 間</th>
</tr>
</thead>
<tbody>
<tr>
<td>原田二郎</td>
<td>企画調整部長</td>
<td>平成6年度環境技術研修の講師</td>
<td>6.12.9</td>
</tr>
<tr>
<td>石田共之</td>
<td>地球環境研究チーム長</td>
<td>平成6年度数理統計短期合研修の講師</td>
<td>6.11.6・18</td>
</tr>
<tr>
<td>新藤純子</td>
<td>"</td>
<td>"</td>
<td>6.11.15・18</td>
</tr>
<tr>
<td>竹澤邦夫</td>
<td>"</td>
<td>"</td>
<td>6.11.10・18</td>
</tr>
<tr>
<td>岡田雅夫</td>
<td>環境研究官</td>
<td>平成6年度産業教育指導者養成講座の講師</td>
<td>6.8.22</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>平成6年度環境技術研修の講師</td>
<td>6.12.9</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>平成6年度病害虫防除所職員等中央研修の開催に伴う講師派遣について</td>
<td>6.12.6</td>
</tr>
<tr>
<td>守山弘</td>
<td>資源・生産家畜科</td>
<td>平成6年度環境技術研修の講師</td>
<td>6.12.6</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>平成6年度水環境整備技術研修会</td>
<td>6.6.23</td>
</tr>
<tr>
<td>石田雅治</td>
<td>"</td>
<td>平成6年度数理統計短期合研修の講師</td>
<td>6.11.15・18</td>
</tr>
<tr>
<td>秋山侃</td>
<td>計測情報科</td>
<td>「発生予防におけるリモートセンシング技術の利用」シンポジウム</td>
<td>7.3.22</td>
</tr>
<tr>
<td>三中信</td>
<td>宏 計測情報科</td>
<td>平成6年度数理統計短期合研修の講師</td>
<td>6.11.9・14・18</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>平成6年度農林水産関係研究員短期集会</td>
<td>7.1.25・27</td>
</tr>
<tr>
<td>三輪哲久</td>
<td>"</td>
<td>農林交流センター「研究を楽しくする実験計画法」における講師派遣依頼について</td>
<td>6.11.28</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>平成6年度数理統計短期合研修の講師</td>
<td>6.11.11・18</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>平成6年度農林水産関係研究員短期集会</td>
<td>7.1.26・27</td>
</tr>
<tr>
<td>山村光司</td>
<td>"</td>
<td>平成6年度数理統計短期合研修の講師</td>
<td>6.11.14・18</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>平成6年度農林水産関係研究員短期集会</td>
<td>7.1.26・27</td>
</tr>
<tr>
<td>山本博道</td>
<td>"</td>
<td>平成6年度数理統計短期合研修の講師</td>
<td>6.11.11</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>平成6年度農林水産関係研究員短期集会</td>
<td>7.1.26・27</td>
</tr>
<tr>
<td>二宮正士</td>
<td>"</td>
<td>平成6年度数理統計短期合研修の講師</td>
<td>6.11.7・16・18</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>平成6年度農林水産関係研究員短期集会</td>
<td>7.1.23・24・27</td>
</tr>
<tr>
<td>美濃伸之</td>
<td>"</td>
<td>平成6年度数理統計短期合研修の講師</td>
<td>6.11.8・18</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>平成6年度農林水産関係研究員短期集会</td>
<td>7.1.23・24・27</td>
</tr>
<tr>
<td>矢倉正晴</td>
<td>気象管理科</td>
<td>「発生予防におけるリモートセンシング技術の利用」シンポジウム</td>
<td>7.3.22</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>平成6年度関東東海農業試験研究推進会議水田・畑作物分科会稲栽培研究会</td>
<td>6.7.5</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>平成6年度果樹・野菜・花木技術者研修</td>
<td>6.7.6</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>平成6年度一般行政基礎研修</td>
<td>6.8.5</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>平成6年度一般行政基礎研修（第2班）</td>
<td>6.11.25</td>
</tr>
<tr>
<td>大塚紘雄</td>
<td>土壌管理科長</td>
<td>平成6年度環境技術研修の講師</td>
<td>6.12.7</td>
</tr>
<tr>
<td>阿江教治</td>
<td>土壌管理科</td>
<td>シンポジウム講師（神戸大学）</td>
<td>6.10.6・7</td>
</tr>
<tr>
<td>岩間秀矩</td>
<td>"</td>
<td>平成6年度農業土木第1回一般技術研修</td>
<td>6.4.12・13</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>平成6年度農業土木第2回一般技術研修について</td>
<td>6.10.6・16</td>
</tr>
<tr>
<td>山縣真人</td>
<td>"</td>
<td>平成6年度一般行政基礎研修（第1班）の講師</td>
<td>6.6.20・21</td>
</tr>
<tr>
<td>太田健</td>
<td>土壌管理科</td>
<td>平成6年度一般行政基礎研修（第2班）</td>
<td>6.10.3・4</td>
</tr>
<tr>
<td>小林義之</td>
<td>水質管理科</td>
<td>平成6年度農林水産関係研究員短期集会</td>
<td>6.7.13</td>
</tr>
</tbody>
</table>
Ⅴ. 研究・技術協力

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属</th>
<th>講師派遣内容</th>
<th>期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>吉野 一</td>
<td>環境生物部長</td>
<td>平成6年度都道府県農林水産関係研究員短期集中研修</td>
<td>6.7.13</td>
</tr>
<tr>
<td>八重山 博志</td>
<td>微生物管理科長</td>
<td>平成6年度環境技術研修の講師</td>
<td>6.12.7</td>
</tr>
<tr>
<td>和田 泉</td>
<td>微生物管理科</td>
<td>平成6年度都道府県農林水産関係研究員短期集中研修</td>
<td>6.9.29</td>
</tr>
<tr>
<td>鎌田 宏之</td>
<td>"</td>
<td>第2回MAFF遺伝資源国際セミナー「土壤微生物遺伝資源の収集、保存とその利用」</td>
<td>6.12.5～7</td>
</tr>
<tr>
<td>志賀 正和</td>
<td>昆虫管理科長</td>
<td>平成6年度環境技術研修の講師</td>
<td>6.12.8</td>
</tr>
<tr>
<td>松村 雄</td>
<td>昆虫管理科</td>
<td>平成6年度都道府県農林水産関係研究員短期集中研修</td>
<td>6.7.13</td>
</tr>
<tr>
<td>菅 弘司</td>
<td>農業動態科長</td>
<td>平成6年度環境技術研修の講師</td>
<td>6.12.8</td>
</tr>
<tr>
<td>尾和田 尚人</td>
<td>肥料動態科長</td>
<td>平成6年度環境技術研修の講師</td>
<td>6.12.8</td>
</tr>
<tr>
<td>加藤 直人</td>
<td>肥料動態科</td>
<td>平成6年度一般行政基礎研修（第1班）の講師</td>
<td>6.6.24</td>
</tr>
<tr>
<td>渡辺 久男</td>
<td>"</td>
<td>"</td>
<td>6.6.13</td>
</tr>
<tr>
<td>橋口 太重</td>
<td>"</td>
<td>平成6年度一般行政基礎研修（第2班）</td>
<td>6.9.30</td>
</tr>
</tbody>
</table>

6）委員会への委嘱・応募

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属</th>
<th>委嘱・応募先</th>
<th>委嘱・応募名</th>
</tr>
</thead>
<tbody>
<tr>
<td>玉木 佳男</td>
<td>所長</td>
<td>全国農業協同組合中央会</td>
<td>全国環境保全型農業推進委員会委員</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>(社)農林水産技術情報協会</td>
<td>平成6年度生物機能を利用した農林水産環境修復技術の開発に関する調査委託事業に係る推進委員会委員</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>(社)農林水産技術情報協会</td>
<td>アイソトープ・放射線利用委員会委員</td>
</tr>
<tr>
<td>岡田 周夫</td>
<td>環境研究官</td>
<td>(社)農林水産技術情報協会</td>
<td>21世紀をめざした福島県農林水産試験研究体制調査に関する委託事業検討委員</td>
</tr>
<tr>
<td>清野 豊</td>
<td>企画科長</td>
<td>(社)農林水産技術情報協会</td>
<td>平成6年度東アジア地域における気候変動と病虫害発生に関する基礎調査委託事業に係る調査検討委員会委員</td>
</tr>
<tr>
<td>杉原 進</td>
<td>研究交流科長</td>
<td>茨城県</td>
<td>茨城県科学技術推進連絡協議会橋本委員</td>
</tr>
<tr>
<td>稲田 共之</td>
<td>地球環境研究チーム長</td>
<td>(社)農林水産技術情報協会</td>
<td>平成6年度農村エネルギー連携・効率利用推進調査（農村エネルギー連携利用推進調査）委託事業に係る検討委員会委員</td>
</tr>
<tr>
<td>守山 弘</td>
<td>資源・生態管理科</td>
<td>(社)農村環境整備センター</td>
<td>環境増進対策調査検討委員会委員</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>"</td>
<td>生態系保全型土地改良新技術検討委員会委員</td>
</tr>
<tr>
<td>松本 正夫</td>
<td>資源・生態管理科</td>
<td>茨城県</td>
<td>牛久沼水質保全対策調査検討委員会委員</td>
</tr>
<tr>
<td>秋山 助</td>
<td>情報情報科長</td>
<td>バイオコミュニケーション技術研究組合</td>
<td>バイオコミュニケーション技術研究組合推進委員会委員</td>
</tr>
<tr>
<td>斎藤 元也</td>
<td>情報情報科</td>
<td>(財)資源環境観測解析センター</td>
<td>EOSデータ利用専門委員会委員</td>
</tr>
<tr>
<td>山崎 隆</td>
<td>情報情報科</td>
<td>(財)環境科学技術研究所</td>
<td>陸上環境評価委員会委員</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>(社)農林水産技術情報協会</td>
<td>自然・社会環境調査検討委員会委員</td>
</tr>
<tr>
<td>二宮 正士</td>
<td>情報情報科</td>
<td>(社)全国農業共済協会</td>
<td>平成6年度生物機能を利用した農林水産環境修復技術の開発に関する調査委託事業に係る推進委員会ワーキンググループ委員</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>(社)農林水産技術情報協会</td>
<td>新技術の応用による損害評価方法調査検討委員会委員</td>
</tr>
</tbody>
</table>
4. 共同研究等

（1）共同研究

<table>
<thead>
<tr>
<th>研究課題</th>
<th>共同研究者</th>
<th>所担当者</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.1 貧栄養生産性と塩分耐性</td>
<td>(社)農林水産技術情報協会</td>
<td>(社)農林水産技術情報協会</td>
</tr>
<tr>
<td>4.5.1 貧栄養生産性と塩分耐性</td>
<td>(社)農林水産技術情報協会</td>
<td>(社)農林水産技術情報協会</td>
</tr>
<tr>
<td>4.6.1 貧栄養生産性と塩分耐性</td>
<td>(社)農林水産技術情報協会</td>
<td>(社)農林水産技術情報協会</td>
</tr>
<tr>
<td>4.7.1 貧栄養生産性と塩分耐性</td>
<td>(社)農林水産技術情報協会</td>
<td>(社)農林水産技術情報協会</td>
</tr>
<tr>
<td>4.8.1 貧栄養生産性と塩分耐性</td>
<td>(社)農林水産技術情報協会</td>
<td>(社)農林水産技術情報協会</td>
</tr>
<tr>
<td>4.9.1 貧栄養生産性と塩分耐性</td>
<td>(社)農林水産技術情報協会</td>
<td>(社)農林水産技術情報協会</td>
</tr>
<tr>
<td>4.10.1 貧栄養生産性と塩分耐性</td>
<td>(社)農林水産技術情報協会</td>
<td>(社)農林水産技術情報協会</td>
</tr>
<tr>
<td>4.11.1 貧栄養生産性と塩分耐性</td>
<td>(社)農林水産技術情報協会</td>
<td>(社)農林水産技術情報協会</td>
</tr>
<tr>
<td>4.12.1 貧栄養生産性と塩分耐性</td>
<td>(社)農林水産技術情報協会</td>
<td>(社)農林水産技術情報協会</td>
</tr>
<tr>
<td>4.13.1 貧栄養生産性と塩分耐性</td>
<td>(社)農林水産技術情報協会</td>
<td>(社)農林水産技術情報協会</td>
</tr>
<tr>
<td>4.14.1 貧栄養生産性と塩分耐性</td>
<td>(社)農林水産技術情報協会</td>
<td>(社)農林水産技術情報協会</td>
</tr>
<tr>
<td>4.15.1 貧栄養生産性と塩分耐性</td>
<td>(社)農林水産技術情報協会</td>
<td>(社)農林水産技術情報協会</td>
</tr>
</tbody>
</table>

4.2.1 貧栄養生産性と塩分耐性

<table>
<thead>
<tr>
<th>順位</th>
<th>共同研究者</th>
<th>所担当者</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>大矢慎一</td>
<td>野口浩司</td>
</tr>
<tr>
<td>2</td>
<td>上田和田</td>
<td>杉山清司</td>
</tr>
<tr>
<td>3</td>
<td>内村章</td>
<td>松本芳彦</td>
</tr>
<tr>
<td>4</td>
<td>木村良子</td>
<td>三野純志</td>
</tr>
<tr>
<td>5</td>
<td>新野惠子</td>
<td>佐藤宏</td>
</tr>
</tbody>
</table>

4.3.1 貧栄養生産性と塩分耐性

<table>
<thead>
<tr>
<th>順位</th>
<th>共同研究者</th>
<th>所担当者</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>大矢慎一</td>
<td>野口浩司</td>
</tr>
<tr>
<td>2</td>
<td>上田和田</td>
<td>杉山清司</td>
</tr>
<tr>
<td>3</td>
<td>内村章</td>
<td>松本芳彦</td>
</tr>
<tr>
<td>4</td>
<td>木村良子</td>
<td>三野純志</td>
</tr>
<tr>
<td>5</td>
<td>新野惠子</td>
<td>佐藤宏</td>
</tr>
</tbody>
</table>

4.4.1 貧栄養生産性と塩分耐性

<table>
<thead>
<tr>
<th>順位</th>
<th>共同研究者</th>
<th>所担当者</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>大矢慎一</td>
<td>野口浩司</td>
</tr>
<tr>
<td>2</td>
<td>上田和田</td>
<td>杉山清司</td>
</tr>
<tr>
<td>3</td>
<td>内村章</td>
<td>松本芳彦</td>
</tr>
<tr>
<td>4</td>
<td>木村良子</td>
<td>三野純志</td>
</tr>
<tr>
<td>5</td>
<td>新野惠子</td>
<td>佐藤宏</td>
</tr>
</tbody>
</table>

4.5.1 貧栄養生産性と塩分耐性

<table>
<thead>
<tr>
<th>順位</th>
<th>共同研究者</th>
<th>所担当者</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>大矢慎一</td>
<td>野口浩司</td>
</tr>
<tr>
<td>2</td>
<td>上田和田</td>
<td>杉山清司</td>
</tr>
<tr>
<td>3</td>
<td>内村章</td>
<td>松本芳彦</td>
</tr>
<tr>
<td>4</td>
<td>木村良子</td>
<td>三野純志</td>
</tr>
<tr>
<td>5</td>
<td>新野惠子</td>
<td>佐藤宏</td>
</tr>
</tbody>
</table>

4.6.1 貧栄養生産性と塩分耐性

<table>
<thead>
<tr>
<th>順位</th>
<th>共同研究者</th>
<th>所担当者</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>大矢慎一</td>
<td>野口浩司</td>
</tr>
<tr>
<td>2</td>
<td>上田和田</td>
<td>杉山清司</td>
</tr>
<tr>
<td>3</td>
<td>内村章</td>
<td>松本芳彦</td>
</tr>
<tr>
<td>4</td>
<td>木村良子</td>
<td>三野純志</td>
</tr>
<tr>
<td>5</td>
<td>新野惠子</td>
<td>佐藤宏</td>
</tr>
</tbody>
</table>

4.7.1 貧栄養生産性と塩分耐性

<table>
<thead>
<tr>
<th>順位</th>
<th>共同研究者</th>
<th>所担当者</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>大矢慎一</td>
<td>野口浩司</td>
</tr>
<tr>
<td>2</td>
<td>上田和田</td>
<td>杉山清司</td>
</tr>
<tr>
<td>3</td>
<td>内村章</td>
<td>松本芳彦</td>
</tr>
<tr>
<td>4</td>
<td>木村良子</td>
<td>三野純志</td>
</tr>
<tr>
<td>5</td>
<td>新野惠子</td>
<td>佐藤宏</td>
</tr>
</tbody>
</table>

4.8.1 貧栄養生産性と塩分耐性

<table>
<thead>
<tr>
<th>順位</th>
<th>共同研究者</th>
<th>所担当者</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>大矢慎一</td>
<td>野口浩司</td>
</tr>
<tr>
<td>2</td>
<td>上田和田</td>
<td>杉山清司</td>
</tr>
<tr>
<td>3</td>
<td>内村章</td>
<td>松本芳彦</td>
</tr>
<tr>
<td>4</td>
<td>木村良子</td>
<td>三野純志</td>
</tr>
<tr>
<td>5</td>
<td>新野惠子</td>
<td>佐藤宏</td>
</tr>
</tbody>
</table>

4.9.1 貧栄養生産性と塩分耐性

<table>
<thead>
<tr>
<th>順位</th>
<th>共同研究者</th>
<th>所担当者</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>大矢慎一</td>
<td>野口浩司</td>
</tr>
<tr>
<td>2</td>
<td>上田和田</td>
<td>杉山清司</td>
</tr>
<tr>
<td>3</td>
<td>内村章</td>
<td>松本芳彦</td>
</tr>
<tr>
<td>4</td>
<td>木村良子</td>
<td>三野純志</td>
</tr>
<tr>
<td>5</td>
<td>新野惠子</td>
<td>佐藤宏</td>
</tr>
</tbody>
</table>

4.10.1 貧栄養生産性と塩分耐性

<table>
<thead>
<tr>
<th>順位</th>
<th>共同研究者</th>
<th>所担当者</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>大矢慎一</td>
<td>野口浩司</td>
</tr>
<tr>
<td>2</td>
<td>上田和田</td>
<td>杉山清司</td>
</tr>
<tr>
<td>3</td>
<td>内村章</td>
<td>松本芳彦</td>
</tr>
<tr>
<td>4</td>
<td>木村良子</td>
<td>三野純志</td>
</tr>
<tr>
<td>5</td>
<td>新野惠子</td>
<td>佐藤宏</td>
</tr>
</tbody>
</table>

4.11.1 貧栄養生産性と塩分耐性

<table>
<thead>
<tr>
<th>順位</th>
<th>共同研究者</th>
<th>所担当者</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>大矢慎一</td>
<td>野口浩司</td>
</tr>
<tr>
<td>2</td>
<td>上田和田</td>
<td>杉山清司</td>
</tr>
<tr>
<td>3</td>
<td>内村章</td>
<td>松本芳彦</td>
</tr>
<tr>
<td>4</td>
<td>木村良子</td>
<td>三野純志</td>
</tr>
<tr>
<td>5</td>
<td>新野惠子</td>
<td>佐藤宏</td>
</tr>
</tbody>
</table>

4.12.1 貧栄養生産性と塩分耐性

<table>
<thead>
<tr>
<th>順位</th>
<th>共同研究者</th>
<th>所担当者</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>大矢慎一</td>
<td>野口浩司</td>
</tr>
<tr>
<td>2</td>
<td>上田和田</td>
<td>杉山清司</td>
</tr>
<tr>
<td>3</td>
<td>内村章</td>
<td>松本芳彦</td>
</tr>
<tr>
<td>4</td>
<td>木村良子</td>
<td>三野純志</td>
</tr>
<tr>
<td>5</td>
<td>新野惠子</td>
<td>佐藤宏</td>
</tr>
</tbody>
</table>

4.13.1 貧栄養生産性と塩分耐性

<table>
<thead>
<tr>
<th>順位</th>
<th>共同研究者</th>
<th>所担当者</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>大矢慎一</td>
<td>野口浩司</td>
</tr>
<tr>
<td>2</td>
<td>上田和田</td>
<td>杉山清司</td>
</tr>
<tr>
<td>3</td>
<td>内村章</td>
<td>松本芳彦</td>
</tr>
<tr>
<td>4</td>
<td>木村良子</td>
<td>三野純志</td>
</tr>
<tr>
<td>5</td>
<td>新野惠子</td>
<td>佐藤宏</td>
</tr>
</tbody>
</table>

4.14.1 貧栄養生産性と塩分耐性

<table>
<thead>
<tr>
<th>順位</th>
<th>共同研究者</th>
<th>所担当者</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>大矢慎一</td>
<td>野口浩司</td>
</tr>
<tr>
<td>2</td>
<td>上田和田</td>
<td>杉山清司</td>
</tr>
<tr>
<td>3</td>
<td>内村章</td>
<td>松本芳彦</td>
</tr>
<tr>
<td>4</td>
<td>木村良子</td>
<td>三野純志</td>
</tr>
<tr>
<td>5</td>
<td>新野惠子</td>
<td>佐藤宏</td>
</tr>
</tbody>
</table>

4.15.1 貧栄養生産性と塩分耐性

<table>
<thead>
<tr>
<th>順位</th>
<th>共同研究者</th>
<th>所担当者</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>大矢慎一</td>
<td>野口浩司</td>
</tr>
<tr>
<td>2</td>
<td>上田和田</td>
<td>杉山清司</td>
</tr>
<tr>
<td>3</td>
<td>内村章</td>
<td>松本芳彦</td>
</tr>
<tr>
<td>4</td>
<td>木村良子</td>
<td>三野純志</td>
</tr>
<tr>
<td>5</td>
<td>新野惠子</td>
<td>佐藤宏</td>
</tr>
<tr>
<td>研究課題</td>
<td>所属研究者</td>
<td>氏名</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>チャ及びベリー類の害虫ナガナバコゲサの性フェロモンに関する研究</td>
<td>野菜・茶葉試験場茶栽培部</td>
<td>望月 雅俊</td>
</tr>
<tr>
<td>北海道中央農業試験場</td>
<td>兼平 優修</td>
<td>稲本 宏志</td>
</tr>
<tr>
<td>合成技術研究所</td>
<td>鈴木 邦彦</td>
<td>福本 桂彦</td>
</tr>
<tr>
<td>農業環境変化モニタリングのためのリモートセンシング技術開発化</td>
<td>フィリピン土壤・水管理局</td>
<td>Dr. Jose D. Rondal</td>
</tr>
<tr>
<td>共同研究</td>
<td>高木 一夫</td>
<td>磯部 東明</td>
</tr>
<tr>
<td>千葉県農業試験場</td>
<td>藤家 平明</td>
<td>安田 明</td>
</tr>
<tr>
<td>福岡県総合農業試験場</td>
<td>津田 信一</td>
<td>タナヤ 堅</td>
</tr>
<tr>
<td>信越科学工業株式会社合成技術研究所</td>
<td>鈴木 邦彦</td>
<td>福本 桂彦</td>
</tr>
<tr>
<td>果樹害虫チャバネアオウムシの繁殖フェロモンに関する研究</td>
<td>果樹試験場保護部</td>
<td>建設省土木研究所</td>
</tr>
<tr>
<td>千葉県農業試験場</td>
<td>市村 護 海王</td>
<td>東志一</td>
</tr>
<tr>
<td>福岡県総合農業試験場</td>
<td>落合季修</td>
<td>平山 孝治</td>
</tr>
<tr>
<td>信越科学工業株式会社合成技術研究所</td>
<td>Dr. C. van Lenteren</td>
<td>清水 喜一</td>
</tr>
<tr>
<td>家禽飼育と下水汚泥の融合コンポスト化に関する研究</td>
<td>建設省土木研究所</td>
<td>市村 護 海王</td>
</tr>
<tr>
<td>農業生態系における天敵の影響評価</td>
<td>戸田 達也</td>
<td>東志一</td>
</tr>
<tr>
<td>シバオサゾウムシの誘引物質に関する研究</td>
<td>高木 一夫</td>
<td>藤家 平明</td>
</tr>
<tr>
<td>千葉県病虫防除所</td>
<td>高木 一夫</td>
<td>磯部 東明</td>
</tr>
</tbody>
</table>

（2）交流共同研究

<table>
<thead>
<tr>
<th>研究課題</th>
<th>共同研究者</th>
<th>所属研究者</th>
<th>期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>イネ緑葉枯ウイルスの外被タンパク質を導入した組換えイネの安全性評価</td>
<td>鈴木 一郎</td>
<td>昆虫管理科</td>
<td>4.10.20</td>
</tr>
<tr>
<td>(株)植物工学研究所研究開発部</td>
<td>稲本 康</td>
<td>環境生物部</td>
<td>岡田 齊夫</td>
</tr>
<tr>
<td>(株)植物工学研究所研究開発部</td>
<td>鈴木 一郎</td>
<td>昆虫管理科</td>
<td>岡田 齊夫</td>
</tr>
<tr>
<td>農林水産研究における原子炉中性子即発ガンマ線分析法の利用に関する研究</td>
<td>畜産試験場</td>
<td>生理部</td>
<td>秋山 優</td>
</tr>
<tr>
<td>遠洋水産研究所 山本 眞</td>
<td>橋本 進</td>
<td>計測情報科</td>
<td>波多野 浩一郎</td>
</tr>
</tbody>
</table>

（2）交流共同研究
5. 昆虫の同定依頼

（1）同定依頼の区別受付数

<table>
<thead>
<tr>
<th>依頼者</th>
<th>受付件数</th>
<th>受付標本数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 農林水産試験研究機関</td>
<td>25</td>
<td>524</td>
</tr>
<tr>
<td>2. 都道府県農林試験研究機関</td>
<td>44</td>
<td>739</td>
</tr>
<tr>
<td>3. 大学その他の教育機関</td>
<td>12</td>
<td>110</td>
</tr>
<tr>
<td>4. その他の宮公庁（保健所、博物館、予防衛生研）</td>
<td>7</td>
<td>333</td>
</tr>
<tr>
<td>5. 民間（研究所、会社、個人）</td>
<td>37</td>
<td>175</td>
</tr>
<tr>
<td>6. 国外（韓国、タイ、ベトナム）</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>計</td>
<td>132</td>
<td>1931</td>
</tr>
</tbody>
</table>

（2）同定依頼の目別結果集計

<table>
<thead>
<tr>
<th>分類群</th>
<th>受付</th>
<th>回答</th>
<th>未回答</th>
</tr>
</thead>
<tbody>
<tr>
<td>荷役</td>
<td>件数</td>
<td>標本数</td>
<td>個体数</td>
</tr>
<tr>
<td>ハチ目</td>
<td>38</td>
<td>1264</td>
<td>1428</td>
</tr>
<tr>
<td>ハエ目</td>
<td>36</td>
<td>326</td>
<td>503</td>
</tr>
<tr>
<td>チョウ目</td>
<td>25</td>
<td>113</td>
<td>165</td>
</tr>
<tr>
<td>甲虫目</td>
<td>19</td>
<td>183</td>
<td>230</td>
</tr>
<tr>
<td>ガメ目</td>
<td>5</td>
<td>27</td>
<td>36</td>
</tr>
<tr>
<td>その他</td>
<td>9</td>
<td>18</td>
<td>74</td>
</tr>
<tr>
<td>合計</td>
<td>132</td>
<td>1931</td>
<td>2436</td>
</tr>
</tbody>
</table>

*研究範囲中のものを含む
VI. 総 務

1. 機 構

平成6年度における機構は次のとおりである。

<table>
<thead>
<tr>
<th>企画調整部</th>
<th>企業科</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>研究交流科</td>
</tr>
<tr>
<td></td>
<td>研究技術情報官</td>
</tr>
<tr>
<td></td>
<td>情報資料課（管理係，広報係）</td>
</tr>
<tr>
<td>総務部</td>
<td>業務科</td>
</tr>
<tr>
<td></td>
<td>地球環境研究チーム</td>
</tr>
<tr>
<td></td>
<td>働務</td>
</tr>
<tr>
<td></td>
<td>働務課（庶務第1係，庶務第2係，人事第1係，人事第2係，厚生係）</td>
</tr>
<tr>
<td></td>
<td>会計課（主計係，支出係，監査係，用度係，施設管理係）</td>
</tr>
<tr>
<td>環境研究官</td>
<td>資源・生態管理科（環境立地研究室，資源・環境動態研究室，影響調査研究室，農村景観研究室，植生生態研究室）</td>
</tr>
<tr>
<td>環境管理部</td>
<td>計測情報科（隔測研究室，生物情報計測研究室，分析法研究室，数理解析研究室，調査計画研究室，情報解析・システム研究室）</td>
</tr>
<tr>
<td></td>
<td>気象管理科（気候資源研究室，気象特性研究室，気象生態研究室，大気保全研究室）</td>
</tr>
<tr>
<td>所 長</td>
<td>土壤管理科（土壤調査分類研究室，土壤形成研究室，土壤コロイド研究室，土壤物理研究室，土壤生化学研究室，土壤有機物研究室，土壤保全研究室）</td>
</tr>
<tr>
<td>環境資源部</td>
<td>水質管理科（水質特性研究室，水質動態研究室，水質保全研究室）</td>
</tr>
<tr>
<td></td>
<td>植生管理科（植生生態研究室，保全植生研究室，他感物質研究室）</td>
</tr>
<tr>
<td>環境生物部</td>
<td>微生物管理科（微生物特性・分類研究室，寄生菌動態研究室，土壤微生物分類研究室，土壤微生物生態研究室，土壤微生物利用研究室，線虫・小動物研究室）</td>
</tr>
<tr>
<td></td>
<td>昆虫管理科（昆虫分類研究室，昆虫行動研究室，天敵生物研究室，個体群動態研究室）</td>
</tr>
<tr>
<td>資材動態部</td>
<td>農薬動態科（殺菌剤動態研究室，殺虫剤動態研究室，除草剤動態研究室，農薬耐性研究室，農薬管理研究室）</td>
</tr>
<tr>
<td></td>
<td>肥料動態科（多量要素動態研究室，微量元素動態研究室，廃棄物利用研究室）</td>
</tr>
</tbody>
</table>
2. 人 事

(1) 定 員

平成6年度末各部定員は、次のとおりである。

(7.3.31現在)

<table>
<thead>
<tr>
<th>部 別</th>
<th>定 員</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>指 定</td>
</tr>
<tr>
<td>所 長</td>
<td>1</td>
</tr>
<tr>
<td>企 画 調 整 部</td>
<td>8</td>
</tr>
<tr>
<td>総 務 部</td>
<td>34</td>
</tr>
<tr>
<td>部 長</td>
<td>(1)</td>
</tr>
<tr>
<td>匠 務 課</td>
<td>(16)</td>
</tr>
<tr>
<td>企 計 課</td>
<td>(17)</td>
</tr>
<tr>
<td>環 境 研 究 官</td>
<td>(18)</td>
</tr>
<tr>
<td>環 境 管 理 部</td>
<td>1</td>
</tr>
<tr>
<td>環 境 資 源 部</td>
<td>46</td>
</tr>
<tr>
<td>環 境 生 物 部</td>
<td>24</td>
</tr>
<tr>
<td>資 材 勤 態 部</td>
<td>33</td>
</tr>
<tr>
<td>合 計</td>
<td>1</td>
</tr>
</tbody>
</table>

(2) 人事異動（6.4.1 ～7.3.31）

採 用

<table>
<thead>
<tr>
<th>発令年月日</th>
<th>氏 名</th>
<th>新 所 属</th>
<th>旧 所 属</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.1</td>
<td>橋 該 恭</td>
<td>環境管理部（資源・生態管理科資源・環境動態研究室）</td>
<td>農林漁業金融公庫</td>
</tr>
<tr>
<td>〃</td>
<td>阿 滝 雄 一</td>
<td>総務部匠務課（匠務第2係）</td>
<td></td>
</tr>
<tr>
<td>〃</td>
<td>須 田 晃 俊</td>
<td>企画調整部（業務科）</td>
<td></td>
</tr>
<tr>
<td>〃</td>
<td>島 谷 均</td>
<td>環境資源部主任研究官（気象管理科気候資源研究室）</td>
<td></td>
</tr>
<tr>
<td>〃</td>
<td>屋 良 佳 彦</td>
<td>企画調整部（企画科）</td>
<td></td>
</tr>
<tr>
<td>〃</td>
<td>坂 本 塚 男</td>
<td>企画調整部（企画科）</td>
<td></td>
</tr>
<tr>
<td>〃</td>
<td>糸 田 博 人</td>
<td>企画調整部（企画科）</td>
<td></td>
</tr>
<tr>
<td>〃</td>
<td>植 原 健 人</td>
<td>企画調整部（企画科）</td>
<td></td>
</tr>
<tr>
<td>〃</td>
<td>田 澤 純 子</td>
<td>企画調整部（企画科）</td>
<td></td>
</tr>
<tr>
<td>〃</td>
<td>菊 澤 武 人</td>
<td>企画調整部（企画科）</td>
<td></td>
</tr>
<tr>
<td>〃</td>
<td>安 田 伸 人</td>
<td>企画調整部（企画科）</td>
<td></td>
</tr>
<tr>
<td>〃</td>
<td>米 村 健 人</td>
<td>企画調整部（企画科）</td>
<td></td>
</tr>
</tbody>
</table>

転 入

<table>
<thead>
<tr>
<th>発令年月日</th>
<th>氏 名</th>
<th>新 所 属</th>
<th>旧 所 属</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.1</td>
<td>諸 橋 弘 忠</td>
<td>総務部会計課長</td>
<td>農業工学研究所総務部業務管理課長</td>
</tr>
<tr>
<td>〃</td>
<td>鈴 木 長 男</td>
<td>総務部匠務課長兼補</td>
<td>草地試験場総務部会計課課長兼補</td>
</tr>
<tr>
<td>〃</td>
<td>古 見 一 八</td>
<td>総務部会計課施設管理係長</td>
<td>国際農林水産業研究センター沖縄支所匠務課匠務係長</td>
</tr>
<tr>
<td>〃</td>
<td>藤 原 剛</td>
<td>総務部匠務課（人事第2係）</td>
<td>農林水産技術会議事務局総務課（経理班経理係）</td>
</tr>
</tbody>
</table>
6.4.1 又 川 達 雄 企画調整部（業務科） 農業研究センター企画調整部（業務第3課）
” 大 塚 銘 雄 環境資源部土壌管理科長 北海道農業試験場環境部土壌特性研究室長
” 筒 井 等 企画調整部主任研究官（企画科） 野菜・茶業試験場環境部主任研究官（虫害第1研究室）
” 大 塚 明 企画調整部主任研究官（研究交流科） 東海農政局計画部資源課長
” 廣 泰 敏 弘 環境管理部主任研究官（計測情報科学解析研究室） 中国農業試験場企画連絡室主任研究官（研究技術情報科）

6.8.1 蘭 道 生 環境資源部長 国際農林水産業研究センター環境資源部長
6.10.1 廣 澤 久 子 企画調整部情報資料課課長補佐 畜産試験場企画連絡室情報資料課司書専門官
” 高 津 武 総務部秘書課秘書第2係長 果樹試験場事務部計画課秘書係秘書長
” 藤 篤 篤 総務部秘書課秘書第1係長 国際農林水産業研究センター総務部秘書課係秘書長
” 野 谷 美千代 総務部会計課（用度係） 果樹試験場育種部
” 佐 藤 和 彦 総務部会計課（用度係） 畜・昆虫農業技術研究所松本支所製品試験部（農務係）
” 山 本 博 道 環境管理部計測情報科学解析研究室長 食品総合研究所分析評価部主任研究官（品質情報解析研究室）
” 駒 田 充 生 環境資源部主任研究官（水質管理科水質保全研究室） 北海道農業試験場水産環境部主任研究官（水田環境管理研究室）
” 宮 下 清 貴 環境生物部主任研究官（微生物管理科土壌微生物利用研究室） 農林水産技術会議事務局研究開発課課長補佐（開発第2班担当）
” 三 島 慎一角 環境管理部（資源・生態管理科資源・環境動態研究室） 東北農業試験場企画連絡室（企画科）
” 上 村 順 子 環境資源部（土壤管理科土壌有機物研究室） 北海道農業試験場企画連絡室（企画科）
” 森 勝 丈 治 環境生物部（微生物管理科微生物特性・分析研究室） 九州農業試験場企画連絡室（企画科）
” 岡 口 哲 生 資材動態部（肥料動態科多量要素動態研究室） 九州農業試験場企画連絡室（企画科）

7.3.1 大 内 昭 環境生物部長 中国農業試験場水産環境部長
” 王 弓 洋一 資材動態部長 東北農業試験場地域基盤研究部長
” 宮 崎 昌 久 環境生物部昆虫管理科長 蟹・昆虫農業技術研究所生産技術部虫害研究室長

転出

<table>
<thead>
<tr>
<th>発令年月日</th>
<th>氏 名</th>
<th>新 所 属</th>
<th>旧 所 属</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.1</td>
<td>久保田 忠 弘</td>
<td>家畜衛生試験場総務部秘書課長</td>
<td>総務部会計課長</td>
</tr>
</tbody>
</table>
” 近藤 哉 美 | 農業総合研究所資料部広報課長 | 総務部秘書課秘書課長 |
” 上村 純美子 | 畜産試験場会計課会計係長 | 総務部秘書課人事係第2係係長 |
” 稲原 淑 | 家畜衛生試験場総務部会計課主計係長 | 総務部会計課計画課係長 |
” 志村 誠敬 | 草試験場総務部知事課（人事第2係） | 総務部会計課人事係課係長 |
” 河村 恵一郎 | 農業研究センター企画調整部（業務第3係） | 企画調整部（業務係） |
” 大水 豊司 | 九州農業試験場水田利用部（業務係） | 企画調整部（業務係） |
” 神田 健一 | 草試験場環境部作物害虫研究室長 | 環境資源部主任研究官（土壤管理科土壌生態研究室） |
” 久保谷 定夫 | 北海道農業試験場環境部土壌特性研究室長 | 環境資源部主任研究官（土壤管理科土壌生態研究室） |
” 宮崎 健一 | 九州農業試験場土壌利用部業務係長 | 環境管理部主任研究官（資源・生態管理科環境影響研究室） |
<table>
<thead>
<tr>
<th>発令年月日</th>
<th>氏名</th>
<th>新所属</th>
<th>旧所属</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.1</td>
<td>野田隆志</td>
<td>東北農業試験場域系研究部主任研究官（害虫発生予察研究室）</td>
<td>環境生物部主任研究官（昆虫管理科天敵生物研究室）</td>
</tr>
<tr>
<td>6.8.1</td>
<td>風野光</td>
<td>農業研究センター総合研究官</td>
<td>環境管理部業務生態管理室</td>
</tr>
<tr>
<td>小野寺</td>
<td>国際農林水産業研究センター環境資源部長</td>
<td>環境管理部資源・生態管理課長</td>
<td></td>
</tr>
<tr>
<td>6.10.1</td>
<td>平山立夫</td>
<td>農林水産技術会議事務局施設事務所広報課長</td>
<td>環境調査部情報資料課課長補佐</td>
</tr>
<tr>
<td>大柿秀雄</td>
<td>農業工学研究所総務部総務課務課長</td>
<td>環境管理部総務課人事第1係長</td>
<td></td>
</tr>
<tr>
<td>大沢健</td>
<td>農業工学研究所総務部総務課務課長</td>
<td>環境管理部総務課長補佐</td>
<td></td>
</tr>
<tr>
<td>矢口直実</td>
<td>農林水産技術会議事務局施設事務所広報課長</td>
<td>環境管理部情報資料課課長補佐</td>
<td></td>
</tr>
<tr>
<td>高橋周史</td>
<td>農業研究センター総務部会計課（主任係）</td>
<td>環境管理部会計課（主任係）</td>
<td></td>
</tr>
<tr>
<td>山田一茂</td>
<td>北海道農業試験場農村計画部気象資源評価研究部長</td>
<td>環境管理部計測情報資料解析研究部門長</td>
<td></td>
</tr>
<tr>
<td>石田泰治</td>
<td>九州農業試験場農村計画部資源評価研究主任</td>
<td>環境管理部主任研究官（資源・生態管理科 環境管理研究室）</td>
<td></td>
</tr>
<tr>
<td>辻藤啓助</td>
<td>食品総合研究所分析課品質情報解析研究部長</td>
<td>環境管理部主任研究官（計測情報科情報解析・システム研究室）</td>
<td></td>
</tr>
<tr>
<td>藤本瑞</td>
<td>農業生物資源研究所分子微生物研究部（遺伝子情報管理研究室）</td>
<td>環境管理部会計課（企画課）</td>
<td></td>
</tr>
<tr>
<td>荒谷博</td>
<td>草地試験場育種科（育種環境管理研究室）</td>
<td>環境管理部会計課（企画課）</td>
<td></td>
</tr>
<tr>
<td>植原輝</td>
<td>北海道農業試験場生態環境部（生態環境研究室）</td>
<td>環境管理部会計課（企画課）</td>
<td></td>
</tr>
<tr>
<td>田澤純子</td>
<td>北海道農業試験場環境部（環境観測研究センター）</td>
<td>環境管理部会計課（企画課）</td>
<td></td>
</tr>
<tr>
<td>芦澤武人</td>
<td>草地試験場育種科（育種環境管理研究室）</td>
<td>環境管理部会計課（企画課）</td>
<td></td>
</tr>
<tr>
<td>安田伸子</td>
<td>北海道農業試験場生態環境部（生態環境研究室）</td>
<td>環境管理部会計課（企画課）</td>
<td></td>
</tr>
<tr>
<td>米村健一</td>
<td>中国農業試験場生態環境部（生態環境研究室）</td>
<td>環境管理部情報解析研究部門長</td>
<td></td>
</tr>
<tr>
<td>橋詰登</td>
<td>農業総合研究所農業構造部門（地域経済研究部門）</td>
<td>環境管理部（資源・生態環境科資源・環境動態研究室）</td>
<td></td>
</tr>
<tr>
<td>7.3.1</td>
<td>志賀正和</td>
<td>菊系・昆虫農業技術研究所生態情報部長</td>
<td>環境生物部昆虫管理課長</td>
</tr>
</tbody>
</table>

所内異動

<table>
<thead>
<tr>
<th>発令年月日</th>
<th>氏名</th>
<th>新所属</th>
<th>旧所属</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.1</td>
<td>西林二三武</td>
<td>総務部庶務課庶務第１係長</td>
<td>総務部庶務課庶務第１係長</td>
</tr>
<tr>
<td>飯野武</td>
<td>総務部会計課監査係長</td>
<td>総務部庶務課庶務第１係長</td>
<td></td>
</tr>
<tr>
<td>仲美</td>
<td>総務部会計課庶務係長</td>
<td>総務部庶務課庶務第２係長</td>
<td></td>
</tr>
<tr>
<td>小野寺淳子</td>
<td>企画調整部（庶務）</td>
<td>総務部会計課（庶務）</td>
<td></td>
</tr>
<tr>
<td>谷口洋</td>
<td>総務部庶務課（庶務第１係）</td>
<td>総務部会計課（庶務係）</td>
<td></td>
</tr>
<tr>
<td>廣瀬玲子</td>
<td>総務部庶務課（庶務係）</td>
<td>企画調整部（庶務）</td>
<td></td>
</tr>
<tr>
<td>岡本和代</td>
<td>総務部会計課（庶務係）</td>
<td>総務部会計課（庶務係）</td>
<td></td>
</tr>
<tr>
<td>青木えみ子</td>
<td>総務部会計課（庶務係）</td>
<td>総務部会計課（庶務係）</td>
<td></td>
</tr>
<tr>
<td>佐藤光</td>
<td>企画調整部（庶務係）</td>
<td>環境生物部（生態管理科）</td>
<td></td>
</tr>
<tr>
<td>今川俊明</td>
<td>環境管理部（環境管理科）</td>
<td>環境管理部（環境管理科）</td>
<td></td>
</tr>
<tr>
<td>山崎慎一</td>
<td>環境管理部（環境管理科）</td>
<td>環境管理部（環境管理科）</td>
<td></td>
</tr>
<tr>
<td>浜崎光雄</td>
<td>環境管理部（環境管理科）</td>
<td>環境管理部（環境管理科）</td>
<td></td>
</tr>
<tr>
<td>山村光司</td>
<td>環境管理部（環境管理科）</td>
<td>環境管理部（環境管理科）</td>
<td></td>
</tr>
<tr>
<td>発令年月日</td>
<td>氏 名</td>
<td>新 所 属</td>
<td>旧 所 属</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>6.8.1</td>
<td>原田 二郎</td>
<td>企画調整部長</td>
<td>環境生物制発生管理課長</td>
</tr>
<tr>
<td></td>
<td>福原 一</td>
<td>企画調整部地球環境研究チーム長</td>
<td>環境生物制発生管理科地球環境研究室長</td>
</tr>
<tr>
<td></td>
<td>浅川 男</td>
<td>企画調整部環境生物制発生管理科長</td>
<td>環境生物制発生管理科地球環境研究室長</td>
</tr>
<tr>
<td></td>
<td>槇田 之介</td>
<td>企画調整部地球環境研究チーム長</td>
<td>環境生物制発生管理科地球環境研究室長</td>
</tr>
<tr>
<td></td>
<td>森 堅治</td>
<td>企画調整部環境管理部環境管理研究官（環境生物制発生管理科）</td>
<td>環境管理部（環境生物制発生管理科）</td>
</tr>
<tr>
<td></td>
<td>井手 任</td>
<td>企画調整部環境管理部環境管理研究官（環境生物制発生管理科）</td>
<td>環境管理部（環境生物制発生管理科）</td>
</tr>
<tr>
<td></td>
<td>山村 光司</td>
<td>企画調整部環境生物制発生管理科環境生物制発生管理研究室長</td>
<td>環境生物制発生管理科環境生物制発生管理研究室長</td>
</tr>
<tr>
<td></td>
<td>川崎 明</td>
<td>企画調整部環境生物制発生管理科環境生物制発生管理研究室長</td>
<td>環境生物制発生管理科環境生物制発生管理研究室長</td>
</tr>
<tr>
<td></td>
<td>田中 明</td>
<td>企画調整部環境管理部環境管理研究官（地球環境研究チーム）</td>
<td>環境管理部（地球環境研究チーム）</td>
</tr>
<tr>
<td></td>
<td>藤原 剛</td>
<td>環境管理部環境管理部環境管理研究官（地球環境研究チーム）</td>
<td>環境管理部（地球環境研究チーム）</td>
</tr>
<tr>
<td></td>
<td>十島 光信</td>
<td>環境管理部環境管理部環境管理研究官（地球環境研究チーム）</td>
<td>環境管理部（地球環境研究チーム）</td>
</tr>
<tr>
<td></td>
<td>新藤 隆子</td>
<td>企画調整部環境管理部環境管理研究官（地球環境研究チーム）</td>
<td>環境管理部（地球環境研究チーム）</td>
</tr>
<tr>
<td></td>
<td>綱藤 男</td>
<td>企画調整部環境管理部環境管理研究官（地球環境研究チーム）</td>
<td>環境管理部（地球環境研究チーム）</td>
</tr>
<tr>
<td></td>
<td>鈴木 健</td>
<td>企画調整部環境管理部環境管理研究官（地球環境研究チーム）</td>
<td>環境管理部（地球環境研究チーム）</td>
</tr>
<tr>
<td></td>
<td>屋良 佳代</td>
<td>企画調整部環境管理部環境管理研究官（地球環境研究チーム）</td>
<td>環境管理部（地球環境研究チーム）</td>
</tr>
<tr>
<td></td>
<td>宮下 清貴</td>
<td>企画調整部環境管理部環境管理研究官（地球環境研究チーム）</td>
<td>環境管理部（地球環境研究チーム）</td>
</tr>
<tr>
<td></td>
<td>木村 龍介</td>
<td>企画調整部環境管理部環境管理研究官（地球環境研究チーム）</td>
<td>環境管理部（地球環境研究チーム）</td>
</tr>
</tbody>
</table>

併任

<table>
<thead>
<tr>
<th>発令年月日</th>
<th>氏 名</th>
<th>併任先</th>
<th>本務先</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.1</td>
<td>橋詰 登</td>
<td>農業総合研究所</td>
<td>環境管理部（環境生物制発生管理科）</td>
</tr>
<tr>
<td></td>
<td>芦澤 武人</td>
<td>農業研究センター</td>
<td>環境管理部（環境生物制発生管理科）</td>
</tr>
<tr>
<td></td>
<td>石井 康雄</td>
<td>農林水産技術会議事務局気象事務所</td>
<td>環境管理部（環境生物制発生管理科）</td>
</tr>
</tbody>
</table>

併任解除

<table>
<thead>
<tr>
<th>発令年月日</th>
<th>氏 名</th>
<th>併任先</th>
<th>本務先</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.10.1</td>
<td>芦澤 武人</td>
<td>農業総合研究所</td>
<td>環境管理部（環境生物制発生管理科）</td>
</tr>
<tr>
<td></td>
<td>橋詰 登</td>
<td>農業総合研究所</td>
<td>環境管理部（環境生物制発生管理科）</td>
</tr>
</tbody>
</table>

退職

<table>
<thead>
<tr>
<th>発令年月日</th>
<th>氏 名</th>
<th>新 所 属</th>
<th>旧 所 属</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.8.1</td>
<td>水保田 徹</td>
<td>農業総合研究所</td>
<td>環境資源部長</td>
</tr>
<tr>
<td>7.3.1</td>
<td>吉野 崧一</td>
<td>農業総合研究所</td>
<td>環境生物部長</td>
</tr>
<tr>
<td></td>
<td>越野 正義</td>
<td>農業総合研究所</td>
<td>環境生物部長</td>
</tr>
<tr>
<td></td>
<td>新井 重光</td>
<td>農業総合研究所</td>
<td>環境生物部長</td>
</tr>
<tr>
<td>発令年月日</td>
<td>氏 名</td>
<td>新 所 属</td>
<td>田 所 属</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>7.3.31</td>
<td>橋 本 昭</td>
<td>企画調整部情報資料課長</td>
<td>企画調整部情報資料課長</td>
</tr>
<tr>
<td></td>
<td>社 部 诚 之</td>
<td>地球環境研究所気象管理課長</td>
<td>環境資源部気象管理課長</td>
</tr>
<tr>
<td></td>
<td>片 桐 政 子</td>
<td>資材動態部研究主任官</td>
<td></td>
</tr>
</tbody>
</table>

（3）職員名簿

<table>
<thead>
<tr>
<th>所属・役職名</th>
<th>氏 名</th>
<th>所属・役職名</th>
<th>氏 名</th>
</tr>
</thead>
<tbody>
<tr>
<td>所 長</td>
<td>玉木 佳男</td>
<td>企画調整部</td>
<td>大浦 隆子</td>
</tr>
<tr>
<td>技 官</td>
<td>原田 二郎</td>
<td>総務部 部 長</td>
<td>齊藤 利雄</td>
</tr>
<tr>
<td>部 長</td>
<td>企画科長</td>
<td>総務部 課長</td>
<td>神長 奉夫</td>
</tr>
<tr>
<td>頭 部</td>
<td>深野 難</td>
<td>課長補佐</td>
<td>鈴木 長男</td>
</tr>
<tr>
<td>主任研究官</td>
<td>森田 明子</td>
<td>課長第一係長</td>
<td>西林二三四</td>
</tr>
<tr>
<td>研究交流科長</td>
<td>筒井 中</td>
<td>課長第二係長</td>
<td>佐藤 敏明</td>
</tr>
<tr>
<td>主任研究官</td>
<td>研究技術情報官</td>
<td>町田 克偉</td>
<td>高津 武</td>
</tr>
<tr>
<td>広務部</td>
<td>事務官</td>
<td>町田 克偉</td>
<td>川崎 美江</td>
</tr>
<tr>
<td>広務部</td>
<td>町田 克偉</td>
<td>町田 克偉</td>
<td>千葉 貴通</td>
</tr>
<tr>
<td>情報資料課長</td>
<td>橋 本 昭</td>
<td>町田 克偉</td>
<td>飯塚のり子</td>
</tr>
<tr>
<td>課長補佐</td>
<td>広澤 久子</td>
<td>町田 克偉</td>
<td>阿部雄一郎</td>
</tr>
<tr>
<td>管理係長</td>
<td>亭田 悠子</td>
<td>町田 克偉</td>
<td>彈瀬 玲子</td>
</tr>
<tr>
<td>業務科長</td>
<td>新聞 幸子</td>
<td>町田 克偉</td>
<td>鈴木 亜子</td>
</tr>
<tr>
<td>業務科長</td>
<td>加藤 真里子</td>
<td>町田 克偉</td>
<td>上田 敏恵</td>
</tr>
<tr>
<td>業務科長</td>
<td>阿部 里子</td>
<td>町田 克偉</td>
<td>大崎 亜子</td>
</tr>
<tr>
<td>企画作業長</td>
<td>佐藤 光政</td>
<td>町田 克偉</td>
<td>岡本 和代</td>
</tr>
<tr>
<td>企画作業長</td>
<td>森原 金重</td>
<td>町田 克偉</td>
<td>岡本 和代</td>
</tr>
<tr>
<td>兼務部企画課</td>
<td>上村 博</td>
<td>町田 克偉</td>
<td>岡本 和代</td>
</tr>
<tr>
<td>飯泉 良行</td>
<td>斎藤 修</td>
<td>町田 克偉</td>
<td>岡本 和代</td>
</tr>
<tr>
<td>佐藤 光政</td>
<td>鈴木 文夫</td>
<td>町田 克偉</td>
<td>岡本 和代</td>
</tr>
<tr>
<td>松本 公吉</td>
<td>鈴木 忠男</td>
<td>町田 克偉</td>
<td>岡本 和代</td>
</tr>
<tr>
<td>松本 公吉</td>
<td>内山 兵</td>
<td>町田 克偉</td>
<td>岡本 和代</td>
</tr>
<tr>
<td>若林 洋一</td>
<td>監査係長</td>
<td>町田 克偉</td>
<td>岡本 和代</td>
</tr>
<tr>
<td>柳井 弘</td>
<td>用度係長</td>
<td>町田 克衛</td>
<td>岡本 和代</td>
</tr>
<tr>
<td>岡田 利之</td>
<td>河野 君代</td>
<td>町田 克衛</td>
<td>岡本 和代</td>
</tr>
<tr>
<td>高橋 修</td>
<td>高橋 一三</td>
<td>町田 克衛</td>
<td>岡本 和代</td>
</tr>
<tr>
<td>坂本 郷男</td>
<td>高橋 武志</td>
<td>町田 克衛</td>
<td>岡本 和代</td>
</tr>
<tr>
<td>佐藤 光政</td>
<td>佐藤 光政</td>
<td>町田 克衛</td>
<td>岡本 和代</td>
</tr>
<tr>
<td>高橋 順</td>
<td>町田 克衛</td>
<td>町田 克衛</td>
<td>岡本 和代</td>
</tr>
<tr>
<td>地球環境研究主任官</td>
<td>町田 克衛</td>
<td>町田 克衛</td>
<td>岡本 和代</td>
</tr>
<tr>
<td>主任研究官</td>
<td>山本 武則</td>
<td>町田 克衛</td>
<td>岡本 和代</td>
</tr>
<tr>
<td>新藤 純子</td>
<td>兼務科</td>
<td>町田 克衛</td>
<td>岡本 和代</td>
</tr>
<tr>
<td>町田 克衛</td>
<td>町田 克衛</td>
<td>町田 克衛</td>
<td>岡本 和代</td>
</tr>
<tr>
<td>町田 克衛</td>
<td>町田 克衛</td>
<td>町田 克衛</td>
<td>岡本 和代</td>
</tr>
<tr>
<td>町田 克衛</td>
<td>町田 克衛</td>
<td>町田 克衛</td>
<td>岡本 和代</td>
</tr>
<tr>
<td>町田 克衛</td>
<td>町田 克衛</td>
<td>町田 克衛</td>
<td>岡本 和代</td>
</tr>
<tr>
<td>池田 浩明</td>
<td>環境管理部 部 長</td>
<td>町田 克衛</td>
<td>岡本 和代</td>
</tr>
<tr>
<td>所屬・役職名</td>
<td>氏名</td>
<td>所屬・役職名</td>
<td>氏名</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>---------------</td>
<td>-------</td>
</tr>
<tr>
<td>環境管理部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>資源・生態管理係</td>
<td>技官</td>
<td>環境資源部</td>
<td>主任研究官</td>
</tr>
<tr>
<td>環境調査研究室長</td>
<td>今川 優明</td>
<td>土壤物理研究室長</td>
<td></td>
</tr>
<tr>
<td>主任研究官</td>
<td>松森 堅治</td>
<td>主任研究官</td>
<td></td>
</tr>
<tr>
<td>壺・農業管理係</td>
<td>技官</td>
<td></td>
<td></td>
</tr>
<tr>
<td>影響調査研究室長</td>
<td>松本 成夫</td>
<td>土壤生態研究室長</td>
<td></td>
</tr>
<tr>
<td>主任研究官</td>
<td>三島 智一郎</td>
<td>主任研究官</td>
<td></td>
</tr>
<tr>
<td>植物動態研究室長</td>
<td>鶴田 治雄</td>
<td>主任研究官</td>
<td></td>
</tr>
<tr>
<td>主任研究官</td>
<td>八本 一行</td>
<td></td>
<td></td>
</tr>
<tr>
<td>計測情報科長</td>
<td>加藤 好武</td>
<td>土壤植物研究室長</td>
<td></td>
</tr>
<tr>
<td>植物研究室長</td>
<td>絹藤 芳男</td>
<td>主任研究官</td>
<td></td>
</tr>
<tr>
<td></td>
<td>橋塚 真</td>
<td></td>
<td></td>
</tr>
<tr>
<td>数理解析研究室長</td>
<td>山本 博</td>
<td>水質管理科長</td>
<td></td>
</tr>
<tr>
<td>主任研究官</td>
<td>塩澤 英宏</td>
<td>主任研究官</td>
<td></td>
</tr>
<tr>
<td>調査計画研究室長</td>
<td>三輪 珪久</td>
<td>水質毒性研究室長</td>
<td></td>
</tr>
<tr>
<td>主任研究官</td>
<td>中村 信宏</td>
<td>植物生態科長</td>
<td></td>
</tr>
<tr>
<td>計測解析研究室長</td>
<td>元城 正士</td>
<td>主任研究官</td>
<td></td>
</tr>
<tr>
<td></td>
<td>生出 順里</td>
<td></td>
<td></td>
</tr>
<tr>
<td>気象生態研究所</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>部長</td>
<td>赤尾勝一郎</td>
<td></td>
<td></td>
</tr>
<tr>
<td>気象管理科長</td>
<td>藤道 生</td>
<td>保全植物研究室長</td>
<td></td>
</tr>
<tr>
<td>主任研究官</td>
<td>横山 宏太郎</td>
<td>主任研究官</td>
<td></td>
</tr>
<tr>
<td>気候環境研究室長</td>
<td>技官</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環境生物部</td>
<td>島原 均</td>
<td>植物生態研究所長</td>
<td></td>
</tr>
<tr>
<td>主任研究官</td>
<td>橋本 理子</td>
<td>主主任研究官</td>
<td></td>
</tr>
<tr>
<td>気象特性研究室長</td>
<td>原田 智信</td>
<td>微生物管理科長</td>
<td></td>
</tr>
<tr>
<td>主任研究官</td>
<td>宮田 明</td>
<td>微生物特性研究</td>
<td></td>
</tr>
<tr>
<td>気象生態研究室長</td>
<td>矢島 正晴</td>
<td>分类研究所長</td>
<td></td>
</tr>
<tr>
<td>主任研究官</td>
<td>岡村 正一郎</td>
<td>主任研究官</td>
<td></td>
</tr>
<tr>
<td>大気環境研究室長</td>
<td>野間 勇</td>
<td></td>
<td></td>
</tr>
<tr>
<td>主任研究官</td>
<td>小林 和彦</td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壤管理科長</td>
<td>細野 直夫</td>
<td>生物動態研究室長</td>
<td></td>
</tr>
<tr>
<td>土壤調査分類研究室長</td>
<td>大塚 六雄</td>
<td>主任研究官</td>
<td></td>
</tr>
<tr>
<td></td>
<td>浜崎 悠雄</td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壤微生物研究室長</td>
<td>小原 洋</td>
<td>土壤微生物分類研究室長</td>
<td></td>
</tr>
<tr>
<td>主任研究官</td>
<td>加藤 邦彦</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>谷山 一郎</td>
<td></td>
<td></td>
</tr>
<tr>
<td>土塚研究室長</td>
<td>太田 健</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>高橋 義明</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VI. 総務

桜井 泰弘
牧野 知之
長谷川 隆一
加藤 英孝
吉田 正則
阿江 洋治
山縣 真人
大谷 卓
早野 恒一
竹中 真
村田 喜子
坂西 研二
斎 隆門
小林 義之
芝野 和夫
大崎 秀雄
岡本 玲子
欠
津村 昭人
川村 隆之
竹内 敬
馬田 光生
大内 昭
浅川 征男
欠
小泉 博
西村 誠一
根本 正之
松尾 和人
大黒 優太
欠
中谷 敬子
平倉俊夫
八重樫博志
西山 実司
門田 育生
水野 明文
久保保博人
森脇 正治
松田 泉
澤田 宏之
鈴木 文彦
鳥山 重光
高橋 真実
岡部 郁子
<table>
<thead>
<tr>
<th>所属・役職名</th>
<th>氏名</th>
<th>所属・役職名</th>
<th>氏名</th>
</tr>
</thead>
<tbody>
<tr>
<td>環境生物部</td>
<td>土壤微生物生態</td>
<td>材料動態部</td>
<td>部長</td>
</tr>
<tr>
<td>研究室長</td>
<td>技官 篠本直幸</td>
<td>部長 柴田 亮司</td>
<td></td>
</tr>
<tr>
<td>主任研究官</td>
<td>向馬誠也</td>
<td>支援研究室長</td>
<td></td>
</tr>
<tr>
<td>土壤微生物利用</td>
<td>横山和成</td>
<td>主任研究官</td>
<td></td>
</tr>
<tr>
<td>研究室長</td>
<td>宮下清貴</td>
<td>研究室長</td>
<td></td>
</tr>
<tr>
<td>主任研究官</td>
<td>藤井毅</td>
<td>主任研究官</td>
<td></td>
</tr>
<tr>
<td>有虫・小動物</td>
<td>小川直人</td>
<td>研究室長</td>
<td></td>
</tr>
<tr>
<td>研究室長</td>
<td>菅川望</td>
<td>研究室長</td>
<td></td>
</tr>
<tr>
<td>主任研究官</td>
<td>平田賢司</td>
<td>研究室長</td>
<td></td>
</tr>
<tr>
<td>昆虫管理科長</td>
<td>宮崎長久</td>
<td>主任研究官</td>
<td></td>
</tr>
<tr>
<td>昆虫分類研究室長</td>
<td>松村雄</td>
<td>研究室長</td>
<td></td>
</tr>
<tr>
<td>主任研究官</td>
<td>吉田慎一</td>
<td>支援研究室長</td>
<td></td>
</tr>
<tr>
<td>昆虫行動研究室長</td>
<td>齋藤修</td>
<td>支援研究室長</td>
<td></td>
</tr>
<tr>
<td>主任研究官</td>
<td>杉尾元</td>
<td>支援研究室長</td>
<td></td>
</tr>
<tr>
<td>主任研究官</td>
<td>白井洋一</td>
<td>支援研究室長</td>
<td></td>
</tr>
<tr>
<td>天敵生物研究室長</td>
<td>柴田静香</td>
<td>天敵生物研究室長</td>
<td></td>
</tr>
<tr>
<td>個体群動態研究室長</td>
<td>矢野栄二</td>
<td>天敵生物研究室長</td>
<td></td>
</tr>
<tr>
<td>主任研究室</td>
<td>藤田敬士</td>
<td>天敵生物研究室長</td>
<td></td>
</tr>
<tr>
<td>屋良俊津</td>
<td>主任研究官</td>
<td></td>
<td></td>
</tr>
<tr>
<td>主任研究室</td>
<td>井村 治</td>
<td>支援研究室長</td>
<td></td>
</tr>
<tr>
<td>森本信生</td>
<td>支援研究室長</td>
<td></td>
<td></td>
</tr>
<tr>
<td>山村光司</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(4) 受賞・表彰等

第39回日本土壤学会賞（6.4.3）
山崎慎一（環境管理部）
「土壤・植物体・水試料中の多量、微量及び超微量元素の分析法の開発」

第12回日本土壤学会奨励賞（6.4.3）
八木一（環境管理部）
「水田からのメタン発生量とその制御要因の解明」

日本植物病理学会学術奨励賞（6.4.3）
澤田宏之（環境生殖部）
「根頭がんの菌系の系統及び分類に関する研究」

日本農業気象学会普及賞（6.6.7）
森野昭（企画調整部）
「気象情報資源の評価法の開発とその利用法の普及」

システム農業学会論文賞（6.11.2）
松本成夫（環境管理部）
「農業地域における有機物現存量とフロー量の評価に関すること」

平成6年度永年勤続者名簿
(30年以上)

（20年以上）

農業環境技術研究所年報 平成6年度
<table>
<thead>
<tr>
<th>氏名</th>
<th>所属</th>
<th>出張先</th>
<th>用途</th>
<th>期間</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>久保田 敦</td>
<td>環境資源部</td>
<td>プラジル</td>
<td>セラード農業環境保全研究計画実施協議調査</td>
<td>4.9～4.22</td>
<td>JICA</td>
</tr>
<tr>
<td>崎口 太重</td>
<td>資材調査部</td>
<td>フィリピン</td>
<td>フィリピン土壌研究開発センター短期計画専門家</td>
<td>4.10～5.19</td>
<td>JICA</td>
</tr>
<tr>
<td>玉木 佳男</td>
<td>所長</td>
<td>台湾</td>
<td>FFTCの第12回技術諮問委員会及び「アジア・太平洋における持続的食糧生産」国際シンポジウムに専門家として参加</td>
<td>4.10～4.15</td>
<td>FFTC</td>
</tr>
<tr>
<td>松村 雄</td>
<td>環境資源部</td>
<td>韓国</td>
<td>農業昆虫分類</td>
<td>5.19～6.16</td>
<td>JICA</td>
</tr>
<tr>
<td>根本 正之</td>
<td>環境資源部</td>
<td>イギリス</td>
<td>英国の草地における草本群落の多様性と持続性の解明に関する研究</td>
<td>6.1～7.31</td>
<td>ロンドン大学</td>
</tr>
<tr>
<td>尾和 尚人</td>
<td>資材調査部</td>
<td>韓国</td>
<td>「農業生産における微生物・有機質肥料利用に関する国際セミナー」出席及び、肥料及び土壌改良資材の専門家として講演発表する。</td>
<td>6.13～6.18</td>
<td>FFTC</td>
</tr>
<tr>
<td>鎮 塚 光信</td>
<td>環境資源部</td>
<td>アメリカ</td>
<td>ツンドラ地域における地球温暖化ガスフラックスの観測研究</td>
<td>6.29～7.20</td>
<td>サンディエゴ州立大学</td>
</tr>
<tr>
<td>吉本 真由美</td>
<td>環境資源部</td>
<td>アメリカ</td>
<td>ツンドラ地域における地球温暖化ガスフラックスの観測研究</td>
<td>6.29～8.15</td>
<td>サンディエゴ州立大学</td>
</tr>
<tr>
<td>岡田 齊夫</td>
<td>環境調査司</td>
<td>オーストラリア, フィジー, シマリオ, シマリオ, オーストラリア, フィジー, シマリオ</td>
<td>アジア生産性機構</td>
<td>7.10～7.25</td>
<td></td>
</tr>
<tr>
<td>岡本 勝男</td>
<td>企画調査部</td>
<td>パラグアイ</td>
<td>パラグアイ農業統計強化計画に係るリマークセンシングの専門家</td>
<td>7.11～8.8</td>
<td>JICA</td>
</tr>
<tr>
<td>吉松 慎一</td>
<td>環境調査司</td>
<td>韓国</td>
<td>韓国農業振興庁農業技術研究所において、農業昆虫分類の専門家として指導・助言等を行う</td>
<td>7.18～8.11</td>
<td>JICA</td>
</tr>
<tr>
<td>白井 洋一</td>
<td>環境資源部</td>
<td>タイ</td>
<td>熱帯野生害虫科ナガの発生解析</td>
<td>7.18～8.16</td>
<td>国研センター</td>
</tr>
<tr>
<td>大塚 豪一</td>
<td>環境資源部</td>
<td>フィリピン</td>
<td>フィリピン土壌計画フェーズIIに係る事前調査班</td>
<td>8.16～8.25</td>
<td>JICA</td>
</tr>
<tr>
<td>岩間 秀矩</td>
<td>環境資源部</td>
<td>フィリピン</td>
<td>フィリピン土壌計画フェーズIIに係る事前調査班</td>
<td>8.16～8.25</td>
<td>JICA</td>
</tr>
<tr>
<td>井上 吉雄</td>
<td>環境管理司</td>
<td>カナダ</td>
<td>サスカチェワン大学及びウィスコンシン大学での研究交流計画の打合せ</td>
<td>8.17～8.24</td>
<td>農水省</td>
</tr>
<tr>
<td>松本 堅治</td>
<td>環境管理司</td>
<td>タイ</td>
<td>東北タイ農業研究開発計画フェーズIIに係る地理情報システムの短期専門家</td>
<td>8.23～10.20</td>
<td>JICA</td>
</tr>
<tr>
<td>尾和 尚人</td>
<td>資材調査部</td>
<td>インドネシア</td>
<td>インドネシア国農業省農業研究開発中心食作物研究所において開催のセミナーで、「農業資材の効果活用」の専門家として指導助言を行う</td>
<td>8.24～9.2</td>
<td>JICA</td>
</tr>
<tr>
<td>秋山 倖</td>
<td>環境管理司</td>
<td>フィンランド</td>
<td>北極圏における気候・水準・生物群の変動及びそれらの相互作用に関する国際共同研究</td>
<td>8.24～9.4</td>
<td>科技庁 「総合研究」</td>
</tr>
<tr>
<td>原隆 芳信</td>
<td>環境資源部</td>
<td>中国</td>
<td>砂漠化現象の解明に関する国際共同研究</td>
<td>8.25～9.10</td>
<td>科技庁 「総合研究」</td>
</tr>
<tr>
<td>大黒 俊哉</td>
<td>環境資源部</td>
<td>中国</td>
<td>砂漠化現象の解明に関する国際共同研究</td>
<td>8.25～9.14</td>
<td>科技庁 「総合研究」</td>
</tr>
<tr>
<td>松尾 和人</td>
<td>環境資源部</td>
<td>中国</td>
<td>中国北部半乾燥地域における砂丘植物の耐乾性機構の解明に関する研究</td>
<td>8.25～9.14</td>
<td>中国科学院沙漠研究所</td>
</tr>
<tr>
<td>氏名</td>
<td>所属</td>
<td>出所</td>
<td>用務</td>
<td>期間</td>
<td>備考</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>越野正義</td>
<td>資材動態部</td>
<td>台湾</td>
<td>FFTC（食糧肥料技術センター）の「葉及び土壌の診断による施肥」に関する研究会講演者として参加</td>
<td>9.12～9.17</td>
<td>FFTC</td>
</tr>
<tr>
<td>小川直人</td>
<td>環境生物部</td>
<td>アメリカ</td>
<td>日米科学技術協力協定下にある課題「環境汚染関連有機物素化合物の生物分解」について共同研究を実施</td>
<td>9.26～10.26</td>
<td>科技庁「三国立協力」</td>
</tr>
<tr>
<td>越野正義</td>
<td>資材動態部</td>
<td>タイ</td>
<td>ESCAP管理及び環境保護のための肥料科学会に関する地域シンポジウム出席</td>
<td>10.2～10.8</td>
<td>農水省</td>
</tr>
<tr>
<td>吉田睦浩</td>
<td>環境生物部</td>
<td>イギリス</td>
<td>DNAの相対性に基づいた昆虫病原性線虫の分子分類学的研究</td>
<td>10.3～11.26</td>
<td>国際寄生虫学研究所所長</td>
</tr>
<tr>
<td>小林和彦</td>
<td>環境資源部</td>
<td>タイ</td>
<td>タイ東北タイ農業開発計画フェーズII</td>
<td>10.3～11.30</td>
<td>JICA</td>
</tr>
<tr>
<td>矢島正晴</td>
<td>環境資源部</td>
<td>フィリピン</td>
<td>フィリピン農業研究所計画に係る作物生育の短期専門家</td>
<td>10.10～11.5</td>
<td>JICA</td>
</tr>
<tr>
<td>宮田明</td>
<td>環境資源部</td>
<td>オーストラリア</td>
<td>「農業生態系における観測研究」に関する温室効果气体のフラックスの観測手法に関する現地調査研究を実施</td>
<td>10.17～11.3</td>
<td>科技庁「地球科学技術特定調査研究」</td>
</tr>
<tr>
<td>鶴田治雄</td>
<td>環境管理部</td>
<td>タイ</td>
<td>「メタン・亜酸化窒素の放出源及びその放出量の解明に関する研究」の効率的推進</td>
<td>11.9～11.15</td>
<td>地球環境研究</td>
</tr>
<tr>
<td>谷山一郎</td>
<td>環境資源部</td>
<td>中国</td>
<td>東アジアにおける土地荒廃防止のための土地利用システムに関する国際ワークショップの開催準備</td>
<td>11.10～11.9</td>
<td>(社)科学技術国際交流センター(JISTEC)</td>
</tr>
<tr>
<td>今川俊明</td>
<td>環境管理部</td>
<td>中国</td>
<td>東アジアにおける土地荒廃防止のための土地利用システムに関する国際ワークショップの開催準備</td>
<td>11.10～11.9</td>
<td>(社)科学技術国際交流センター(JISTEC)</td>
</tr>
<tr>
<td>岩間秀矩</td>
<td>環境資源部</td>
<td>ブラジル</td>
<td>セラード農業環境保護計画に係る土壌物理の短期専門家</td>
<td>11.11～12.27</td>
<td>JICA</td>
</tr>
<tr>
<td>山川修治</td>
<td>企画調整部</td>
<td>オーストラリア</td>
<td>「農林水産生態系を利用した地球環境変動要因の制御技術の開発」に関する平成6年度海外調査</td>
<td>11.12～11.23</td>
<td>農水省地環境</td>
</tr>
<tr>
<td>福原道一</td>
<td>環境管理部</td>
<td>ブラジル</td>
<td>セラード農業環境保護計画に係るリモートセンシングの短期専門家</td>
<td>11.14～12.4</td>
<td>JICA</td>
</tr>
<tr>
<td>八木一行</td>
<td>環境管理部</td>
<td>タイ</td>
<td>湿潤熱帯農地のメタン生成メカニズムと生成抑制技術の開発</td>
<td>11.17～12.6</td>
<td>国研センター</td>
</tr>
<tr>
<td>藤田共之</td>
<td>企画調整部</td>
<td>中国</td>
<td>中国における酸性雨実態把握調査</td>
<td>11.23～12.1</td>
<td>(社)海外環境協力センター(OECC)</td>
</tr>
<tr>
<td>吉野満一</td>
<td>環境生物部</td>
<td>アルゼンチン</td>
<td>アルゼンチン植物ウイルス研究計画実施協議会</td>
<td>11.24～12.9</td>
<td>JICA</td>
</tr>
<tr>
<td>松本成夫</td>
<td>環境管理部</td>
<td>タイ</td>
<td>樹木伐採跡地の気候的変化の評価</td>
<td>11.30～12.20</td>
<td>国研センター</td>
</tr>
<tr>
<td>浜崎忠雄</td>
<td>環境資源部</td>
<td>タイ</td>
<td>「熱帯林変動とその影響」に係る課題「土壌環境の変動に関する観測研究」のための現地調査と研究打合せ</td>
<td>12.4～12.24</td>
<td>科技庁「地球科学技術特定調査研究」</td>
</tr>
<tr>
<td>小原洋</td>
<td>環境資源部</td>
<td>タイ</td>
<td>「熱帯林変動とその影響」に係る課題「土壌環境の変動に関する観測研究」のための現地調査と研究打合せ</td>
<td>12.4～12.24</td>
<td>科技庁「地球科学技術特定調査研究」</td>
</tr>
<tr>
<td>根本正之</td>
<td>環境生物部</td>
<td>ブラジル</td>
<td>ブラジル北東部半乾燥帯の種多様性の維持と植物種の多様性に関する調査研究</td>
<td>12.7～1.13</td>
<td>ジオケインナップ研究所</td>
</tr>
<tr>
<td>鶴田治雄</td>
<td>環境管理部</td>
<td>中国</td>
<td>「メタン・亜酸化窒素の放出源及びその放出量の解明に関する研究」の効率的推進</td>
<td>12.8～12.13</td>
<td>地球環境研究</td>
</tr>
<tr>
<td>鶴田治雄</td>
<td>環境管理部</td>
<td>インドネシア</td>
<td>「アシア太平洋海域における土地利用変動が地球温暖化に及ぼす影響に関する予備的研究」に係る現地調査として、インドネシアにおける森林消去後の土壌形成の調査</td>
<td>12.20～12.24</td>
<td>地球環境研究</td>
</tr>
<tr>
<td>氏名</td>
<td>所属</td>
<td>出張先</td>
<td>用務</td>
<td>期間</td>
<td>備考</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
</tr>
</tbody>
</table>
| 大塚絵雄 | 環境資源部 | アメリカ | 地利用変化状況の把握 | 12.11~12.23 | 農水省
| 菅田元也 | 環境管理部 | フィリピン | 「主要国の農業生産状況に関する調査」 | 1.5~1.14 | 科技館
| 谷山一郎 | 環境資源部 | フィリピン | フィリピン地域地図の物理性の解析 | 1.17~2.17 | 国研センター
| 浜崎忠雄 | 環境資源部 | パラグアイ | パラグアイ主要穀物生産量推計研究 | 1.24~3.4 | JICA
| 船田治雄 | 環境資源部 | マレーシア | 「アジア太平洋地域における土地利用変動が地球温暖化に及ぼす影響に関する予備的研究」 | 1.25~1.31 | 地球環境研究
| 長谷川周一 | 環境資源部 | ケニア | ケニア・ムニア草原農業開発計画短期専門家 | 2.15~3.15 | JICA
| 阿江教治 | 環境資源部 | コロンビア | 熱帯強酸性土壌における植物の成長の抑制の実態とその解析 | 2.18~3.19 | 国研センター
| 船田治雄 | 環境資源部 | タイ | 「メタン・亜硝酸窒素の放出源及びその放出量の解明に関する研究」の効率的推進 | 2.19~2.25 | 地球環境研究
| 松本成夫 | 環境管理部 | タイ | 「メタン・亜硝酸窒素の放出源及びその放出量の解明に関する研究」の効率的推進 | 2.19~2.26 | 地球環境研究
| 野内勇 | 環境資源部 | タイ | 「メタン・亜硝酸窒素の放出源及びその放出量の解明に関する研究」の効率的推進 | 2.19~2.26 | 地球環境研究
| 鳥山重光 | 環境資源部 | スリランカ | スリランカ植物遺伝資源センター計画に係るウイルス抵抗性の短期専門家 | 2.20~3.6 | JICA
| 千上吉雄 | 環境管理部 | アメリカ | リモートセンシングによる地表面蒸発散および植生資源の動態評価に関する研究 | 2.25~3.26 | 科技庁
| 鳥田治雄 | 環境管理部 | インドネシア | 「アジア太平洋地域における土地利用変動が地球温暖化に及ぼす影響に関する予備的研究」の効率的推進 | 3.1~3.7 | 地球環境研究
| 澤田宏之 | 環境生物部 | オーストラリア | 農林水産省ジェーンバキク事業微生物遺伝資源海外調査に係る、オーストラリア国立に分布するアグロバクテリア属細菌の調査 | 3.8~3.22 | 農水省
| 太田健 | 環境資源部 | 中国 | 「半乾燥・半湿潤地域における砂漠化に及ぼす人間活動の影響評価に関する研究」に関する現地調査及び打合せ | 3.11~3.26 | 地球環境研究
| 松尾和人 | 環境資源部 | 中国 | 「半乾燥・半湿潤地域における砂漠化に及ぼす人間活動の影響評価に関する研究」に関する現地調査及び打合せ | 3.11~3.26 | 地球環境研究
| 伊藤治喜 | 資材動態部 | インド | 「マメ科植物の窒素同定と根環境」に関する調査・研究 | 3.16~4.6 | 国研センター
| 鶴田治雄 | 環境管理部 | イギリス | 日英ワークショップ「農地におけるメタンと窒素循環の制御」に出席及び濃縮地からの亜硝酸窒素の発生に関する研究打合せ | 3.19~3.29 | 地球環境研究
| 野内勇 | 環境資源部 | イギリス | 日英ワークショップ「農地におけるメタンと窒素循環の制御」に出席及び濃縮地からの亜硝酸窒素の発生に関する研究打合せ | 3.19~3.27 | 地球環境研究
3. 会計

（1）予算

歳入

平成6年度農業環境技術研究所の予算は総額8,506千円であり、そのおもなものは、農林水産省受託研究等実施規程（昭和37年2月15日農林省告示第207号）に基づく受託調査及び試験収入（4,617千円）、農林水産省依頼研究員受入規則（昭和38年6月12日農林省告示第766号）に基づく受託研究員受入（1,749千円）、及び試験場製品等売払代（523千円）である。試験場製品は米交等の試験研究の結果で不用となったものの売払である。

<table>
<thead>
<tr>
<th>科目</th>
<th>予算額</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>増収入</td>
<td>8,506,000</td>
<td></td>
</tr>
<tr>
<td>国有財産利用収入</td>
<td>1,252,000</td>
<td></td>
</tr>
<tr>
<td>国有財産贷付収入</td>
<td>41,000</td>
<td></td>
</tr>
<tr>
<td>国有財産使用収入</td>
<td>1,211,000</td>
<td></td>
</tr>
<tr>
<td>諸収入</td>
<td>7,254,000</td>
<td></td>
</tr>
<tr>
<td>受託調査試験及び役務収入</td>
<td>6,366,000</td>
<td></td>
</tr>
<tr>
<td>弁償及び返納金</td>
<td>56,000</td>
<td></td>
</tr>
<tr>
<td>物品売払収入</td>
<td>583,000</td>
<td></td>
</tr>
<tr>
<td>難入</td>
<td>249,000</td>
<td></td>
</tr>
</tbody>
</table>

歳出

平成6年度における農業環境技術研究所の歳出予算（補正後）は経常的経費、特別研究等経費、科学技术庁関係経費、環境庁関係経費及び文部省関係経費に大別される。

1) 経常的経費（組織：農林水産省試験研究機関、項：農林水産省試験研究所）を入件費（5日目まで）と事業費に分けた。次のとおりである。

| 入件費 | 1,684,634,000 |
| 事業費 | 629,719,000 |
VI. 総務 133

2) 特別研究等経費（組織：農林水産技術会議、項：農林水産業振興費より、組織：農林水産本省試験研究機関、項：農林水産本省試験研究所移用）は、329,961,000円であり、その内容は、次のとおりである。

<table>
<thead>
<tr>
<th>項目</th>
<th>予算額</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 農林水産研究計算センターの運営に要する経費</td>
<td>1,778,000</td>
</tr>
<tr>
<td>② 受託研究研究調査費</td>
<td>3,501,000</td>
</tr>
<tr>
<td>③ 研究用機械整備費</td>
<td>60,313,000</td>
</tr>
<tr>
<td>④ 特別研究費</td>
<td>4,202,000</td>
</tr>
<tr>
<td>⑤ 総合的研究費</td>
<td>32,428,000</td>
</tr>
<tr>
<td>⑥ 一般別枠研究</td>
<td>75,036,000</td>
</tr>
<tr>
<td>⑦ 大型別枠研究</td>
<td>55,657,000</td>
</tr>
<tr>
<td>⑧ バイオテクノロジー先端技術開発研究</td>
<td>38,823,000</td>
</tr>
<tr>
<td>⑨ その他</td>
<td>58,223,000</td>
</tr>
</tbody>
</table>

3) 科学技術庁関係経費（組織：科学技術庁より、組織：農林水産本省試験研究機関に移替）は、次のとおりである。

(項) 科学技術振興調整費	58,443,000
(項) 海洋開発及地球科学技術調査研究促進費	16,942,000
(項) 国立機関原子力試験研究費	36,374,000
(項) 放射能調査研究費	16,853,000

4) 環境庁関係費（組織：環境庁より、組織：農林水産本省試験研究機関に移替）は、次のとおりである。

| (項) 国立機関公害防止等試験研究費 | 17,008,000 |
| (項) 地球環境研究総合推進費 | 84,184,000 |

5) 文部省関係経費（組織：文部省より、組織：農林水産本省試験研究機関に移替）は、次のとおりである。

| (項) 南極地域観測事業費 | 1,388,000 |

平成6年度歳出予算一覧表

<table>
<thead>
<tr>
<th>科目</th>
<th>予算額</th>
</tr>
</thead>
<tbody>
<tr>
<td>(組織) 農林水産本省試験研究機関</td>
<td></td>
</tr>
<tr>
<td>(項) 農林水産本省試験研究所</td>
<td>2,674,381,000</td>
</tr>
<tr>
<td>人件費</td>
<td>1,684,634,000</td>
</tr>
<tr>
<td>事業費</td>
<td>989,747,000</td>
</tr>
<tr>
<td>(項) 科学技術振興調整費</td>
<td>58,443,000</td>
</tr>
<tr>
<td>(項) 海洋開発及地球科学技術調査研究促進費</td>
<td>16,942,000</td>
</tr>
<tr>
<td>(項) 国立機関原子力試験研究費</td>
<td>36,374,000</td>
</tr>
<tr>
<td>(項) 放射能調査研究費</td>
<td>16,853,000</td>
</tr>
<tr>
<td>(項) 国立機関公害防止等試験研究費</td>
<td>17,008,000</td>
</tr>
<tr>
<td>(項) 地球環境研究総合推進費</td>
<td>84,184,000</td>
</tr>
<tr>
<td>(項) 南極地域観測事業費</td>
<td>1,388,000</td>
</tr>
</tbody>
</table>

合計 2,905,573,000
（2）国有財産

1）行政財産

<table>
<thead>
<tr>
<th>区分</th>
<th>数量</th>
<th>台帳価格</th>
</tr>
</thead>
<tbody>
<tr>
<td>土</td>
<td>208,880m²</td>
<td>17,246,659,758円</td>
</tr>
<tr>
<td>水</td>
<td>42,950</td>
<td>41,340,128円</td>
</tr>
<tr>
<td>灑</td>
<td>149,670</td>
<td>4,198,892円</td>
</tr>
<tr>
<td>そ の 他</td>
<td>171,897</td>
<td>6,229,430,593円</td>
</tr>
<tr>
<td>合計</td>
<td>573,397</td>
<td>31,578,17,317円</td>
</tr>
</tbody>
</table>

2）行政財産

<table>
<thead>
<tr>
<th>区分</th>
<th>数量</th>
<th>台帳価格</th>
</tr>
</thead>
<tbody>
<tr>
<td>特権等</td>
<td>20件</td>
<td>421,612円</td>
</tr>
<tr>
<td>合計</td>
<td>一</td>
<td>421,612円</td>
</tr>
</tbody>
</table>

（3）機械等購入

<table>
<thead>
<tr>
<th>整理番号</th>
<th>機械名</th>
<th>型式</th>
<th>購入金額(円)</th>
<th>所属研究室等</th>
</tr>
</thead>
<tbody>
<tr>
<td>06001</td>
<td>トラクター</td>
<td>クボタGL32BSP</td>
<td>3,331,741</td>
<td>業務科</td>
</tr>
<tr>
<td>06002</td>
<td>環境測定装置</td>
<td>サーモダックEF5020A</td>
<td>1,907,354</td>
<td>地球環境研究チーム</td>
</tr>
<tr>
<td>06003</td>
<td>郵便料金計器</td>
<td>ハスラーS220PS/F325AD</td>
<td>1,462,600</td>
<td>総務部</td>
</tr>
<tr>
<td>06004</td>
<td>ワークスチーションシステム</td>
<td>肥満通S-4/20mode150</td>
<td>9,537,800</td>
<td>環境立地研</td>
</tr>
<tr>
<td>06005</td>
<td>土壌呼吸測定システム</td>
<td>アキッ計測AZRF</td>
<td>4,220,682</td>
<td>資源動態研</td>
</tr>
<tr>
<td>06006</td>
<td>燃素化合物測定装置</td>
<td>サーモエレクトロンMODEL17N</td>
<td>8,058,390</td>
<td>影響調査研</td>
</tr>
<tr>
<td>06007</td>
<td>ガスクロマットグラフ</td>
<td>岡崎GC-14BPF特型</td>
<td>3,796,000</td>
<td>影響調査研</td>
</tr>
<tr>
<td>06008</td>
<td>データ処理装置</td>
<td>岡崎C-R7Aplus</td>
<td>7,142,000</td>
<td>影響調査研</td>
</tr>
<tr>
<td>06009</td>
<td>試料調整装置</td>
<td>ダイオネクスDAS-80</td>
<td>1,416,095</td>
<td>影響調査研</td>
</tr>
<tr>
<td>06010</td>
<td>スペクトロメータ</td>
<td>オプトリサーチIS-500特注</td>
<td>7,189,400</td>
<td>生物情報計測研</td>
</tr>
<tr>
<td>06011</td>
<td>低バックグランド放射能測定装置</td>
<td>アロカLBC-482-Q</td>
<td>7,416,000</td>
<td>分析法研</td>
</tr>
<tr>
<td>06012</td>
<td>大気メーター測定装置</td>
<td>福原GA-360E</td>
<td>4,851,300</td>
<td>気象特性研</td>
</tr>
<tr>
<td>06013</td>
<td>標準ガス発生装置</td>
<td>エステックSGGU-/600L</td>
<td>2,966,562</td>
<td>気象特性研</td>
</tr>
<tr>
<td>06014</td>
<td>パーソナルコンピュータ</td>
<td>アップルPowerMacintosh8100/80</td>
<td>1,179,350</td>
<td>気象生態研</td>
</tr>
<tr>
<td>06015</td>
<td>環境測定装置</td>
<td>盟和LAI-2000</td>
<td>2,258,893</td>
<td>気保全研</td>
</tr>
<tr>
<td>06016</td>
<td>研磨機</td>
<td>マルトーププラットMG-300</td>
<td>1,597,530</td>
<td>土壌調査分類研</td>
</tr>
<tr>
<td>06017</td>
<td>多元素同時定量解析装置</td>
<td>Aptecl S40908</td>
<td>1,545,000</td>
<td>土壌生態研</td>
</tr>
<tr>
<td>06018</td>
<td>分光光度計</td>
<td>日本分光FT-IR-300湿度可変型</td>
<td>4,995,500</td>
<td>土壌コロイド研</td>
</tr>
<tr>
<td>06019</td>
<td>分光光度計</td>
<td>パリアンSpectr AA-800</td>
<td>11,455,748</td>
<td>土壌コロイド研</td>
</tr>
<tr>
<td>06020</td>
<td>リン酸分析装置</td>
<td>マイリストーンM.LS-1200 MEGA</td>
<td>5,424,804</td>
<td>土壌生態学研</td>
</tr>
<tr>
<td>整理番号</td>
<td>機械名</td>
<td>型式</td>
<td>購入金額(円)</td>
<td>所属研究室等</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>06021</td>
<td>有機培養システム</td>
<td>ダイレック特注</td>
<td>3,987,748</td>
<td>土壤有機物研究</td>
</tr>
<tr>
<td>06022</td>
<td>データ処理装置</td>
<td>オアシスREBUS-O</td>
<td>1,222,610</td>
<td>水質特性研究</td>
</tr>
<tr>
<td>06023</td>
<td>大気濃度解析装置</td>
<td>日本サンマイクロシステムズSPARC502MP</td>
<td>4,880,140</td>
<td>水質特性研究</td>
</tr>
<tr>
<td>06024</td>
<td>吸着着実験装置</td>
<td>東京理化NCB-2300特注</td>
<td>2,293,804</td>
<td>水質動態研究</td>
</tr>
<tr>
<td>06025</td>
<td>土壤呼吸測定システム</td>
<td>アキッ計測PHT-M33</td>
<td>3,944,900</td>
<td>植生生態研究</td>
</tr>
<tr>
<td>06026</td>
<td>DNA增幅装置</td>
<td>バーキンエルマーDNA ThermalCyler480</td>
<td>2,643,880</td>
<td>寄生菌動態研究</td>
</tr>
<tr>
<td>06027</td>
<td>電気泳動装置</td>
<td>ファルマシアMultipbor</td>
<td>1,490,573</td>
<td>土壤微生物分類研究</td>
</tr>
<tr>
<td>06028</td>
<td>諧音形態画像解析装置</td>
<td>ピアスPIAS-TV/HDTV</td>
<td>11,240,390</td>
<td>線虫小動物研究</td>
</tr>
<tr>
<td>06029</td>
<td>行動制御物質分取装置</td>
<td>ジーエルサイエンス特注</td>
<td>3,698,112</td>
<td>昆虫行動研究</td>
</tr>
<tr>
<td>06030</td>
<td>液体クロマトグラフ</td>
<td>横河アライテイカルシステムズHP1060</td>
<td>3,724,686</td>
<td>昆虫行動研究</td>
</tr>
<tr>
<td>06031</td>
<td>ワークステーションシステム</td>
<td>アクシアルAxil-320</td>
<td>1,193,976</td>
<td>天敵生物研究</td>
</tr>
<tr>
<td>06032</td>
<td>植物現存量非破壊解析装置</td>
<td>ネクサスQube</td>
<td>4,287,000</td>
<td>個体群動態研究</td>
</tr>
<tr>
<td>06033</td>
<td>電気泳動装置</td>
<td>ミリボアBioimage40s</td>
<td>5,497,110</td>
<td>植物薬耐性研究</td>
</tr>
</tbody>
</table>

(4) 特許等一覧表

<table>
<thead>
<tr>
<th>発明の名称</th>
<th>発明者</th>
<th>出願年月日</th>
<th>特許・出願番号</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-アルケン11-オニン化合物及びこれ</td>
<td>湯崎健, 玉木佳男, 川崎健次郎</td>
<td>51.12.17</td>
<td>特許第10633275号</td>
<td></td>
</tr>
<tr>
<td></td>
<td>都市ゴミのコンポスト化処理方法</td>
<td>金木正幸, 森本国夫, 伊藤敬彦</td>
<td>53.7.19</td>
<td>特許第1369268号</td>
</tr>
<tr>
<td>塀木電気センサー</td>
<td>金子忠男, 高橋正基</td>
<td>57.7.14</td>
<td>特許第1613187号</td>
<td></td>
</tr>
<tr>
<td>農園芸作物病害防除剤</td>
<td>上杉隆彦, 片桐政子</td>
<td>58.2.21</td>
<td>特許第1287114号</td>
<td></td>
</tr>
<tr>
<td>14-メチル-1-オクタデセン, その製造法</td>
<td>玉木佳男, 藤倉正昭, 佐藤幸郎, 杉江元</td>
<td>58.7.26</td>
<td>特許第1312765号</td>
<td></td>
</tr>
<tr>
<td></td>
<td>オキサランシャクシコメキ用性</td>
<td>玉木佳男, 杉江元, 長谷川昭, 金城美恵子</td>
<td>59.6.28</td>
<td>特許第1389525号</td>
</tr>
<tr>
<td></td>
<td>塀木テトラデカンニトリルアセタート, その製造法</td>
<td>玉木佳男, 杉江元, 川崎健次郎, 奥田正, 氏家友, 本間健平, 平野千里</td>
<td>59.12.3</td>
<td>特許第1609865号</td>
</tr>
<tr>
<td></td>
<td>5-テトラデカン酸メチルの製造法</td>
<td>玉木佳男, 杉江元, 野口浩</td>
<td>59.12.3</td>
<td>特許第1589436号</td>
</tr>
<tr>
<td>土壌水分測定装置</td>
<td>柏野み昭</td>
<td>60.4.9</td>
<td>特許第1909283号</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ジメチルカルバメートよりなる殺虫</td>
<td>宮野孝, 昆野安彦</td>
<td>61.5.23</td>
<td>特許第1646045号</td>
</tr>
<tr>
<td></td>
<td>土壌熱伝導率表示装置</td>
<td>速水和彦, 久保田徹, 柏島辰范, 東野孝, 鈴井千明, 鈴木美生</td>
<td>61.11.8</td>
<td>特願昭61-266342号</td>
</tr>
<tr>
<td>発明の名称</td>
<td>発明者</td>
<td>出願年月日</td>
<td>特許・出願番号</td>
<td>備考</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>------------</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>カンシノシンクイハマキ用性誘引剤</td>
<td>玉木佳男, 栗江元, 金城美恵子</td>
<td>62.2.28</td>
<td>特許昭62-046253号</td>
<td></td>
</tr>
<tr>
<td>オクタデカージエン・テトラインカルボン酸誘導体及びその製造法</td>
<td>西山幸司</td>
<td>62.8.7</td>
<td>特許昭62-196431号</td>
<td></td>
</tr>
<tr>
<td>(E)-7,9-デカジエンアセタートを追加成分とする昆虫誘引剤</td>
<td>玉木佳男, 栗江元, 長橋将昭, 金城美恵子</td>
<td>63.7.22</td>
<td>特許第1906565号</td>
<td>共同出願</td>
</tr>
<tr>
<td>9,11-デカジエンプチレートと9,11-デカジエンヘキサソードを追加成分とする昆虫誘引剤</td>
<td>玉木佳男, 栗江元, 長橋将昭, 金城美恵子</td>
<td>63.8.18</td>
<td>特許第1906566号</td>
<td>共同出願</td>
</tr>
<tr>
<td>植物生育場地水分制御法</td>
<td>久保田徹, 岩間秀旭, 加藤英孝, 落沢省子</td>
<td>63.9.20</td>
<td>特許第1661053号</td>
<td></td>
</tr>
<tr>
<td>(Z)-7-デカジエンアセタートと(Z)-9-デカジエンアセタートを有効成分とする昆虫誘引剤</td>
<td>玉木佳男, 栗江元, 川崎健枝郎, 北村実木彬</td>
<td>63.9.29</td>
<td>特許第1778711号</td>
<td></td>
</tr>
<tr>
<td>土壌病害防止・植物生長促進剂</td>
<td>小林紀彦, 飯島宏一</td>
<td>63.10.19</td>
<td>特願昭63-261827号</td>
<td>共同出願</td>
</tr>
<tr>
<td>シュードモナス属細菌P-4菌株、土壌病害除去及ぶ土壌病害防除方法</td>
<td>賤木孝仁, 成田勇</td>
<td>元.2.14</td>
<td>特願平1-32647号</td>
<td>共同出願</td>
</tr>
<tr>
<td>土壌耕作特性測定方法及び測定装置</td>
<td>久保田徹, 岩間秀旭, 麻生尚, 森広史</td>
<td>元.6.29</td>
<td>特願平1-165283号</td>
<td>双向出願</td>
</tr>
<tr>
<td>5-テトラデセン酸メチルを有効成分とする昆虫誘引剤</td>
<td>玉木佳男, 栗江元, 野口浩</td>
<td>元.7.21</td>
<td>特願第1628011号</td>
<td>分割出願</td>
</tr>
<tr>
<td>シバットガの配偶行動規制剤</td>
<td>杉江元, 野口浩, 清水善一, 河名俊幸, 福田寛, 山本昭, 福本穂彦, 井原俊明</td>
<td>2.12.27</td>
<td>特願平2-414676号</td>
<td>共同出願</td>
</tr>
<tr>
<td>宿主ベクター系</td>
<td>福本文良, 佐藤守, 美濃部俊三</td>
<td>3.4.19</td>
<td>特願平3-179089号</td>
<td></td>
</tr>
<tr>
<td>形質変換されたイネ細胞オリュス抵抗性イネおよびその製造法</td>
<td>島山重光, 木村幸</td>
<td>3.12.2</td>
<td>特願平3-318211号</td>
<td>共同出願</td>
</tr>
<tr>
<td>シバットガの誘引剤</td>
<td>杉江元, 野口浩, 清水善一, 河名俊幸, 福田寛, 山本昭, 福本穂彦, 井原俊明</td>
<td>4.1.27</td>
<td>特願平4-35665号</td>
<td>共同出願</td>
</tr>
<tr>
<td>芝生寄生虫の配偶行動規制剤</td>
<td>杉江元, 野口浩, 清水善一, 河名俊幸, 福田寛, 山本昭, 福本穂彦, 井原俊明</td>
<td>4.1.29</td>
<td>特願平4-38544号</td>
<td>共同出願</td>
</tr>
<tr>
<td>ヨトウガの誘引剤</td>
<td>杉江元, 野口浩, 清水善一, 河名俊幸, 福田寛, 山本昭, 福本穂彦, 井原俊明</td>
<td>4.3.10</td>
<td>特願平4-86471号</td>
<td>共同出願</td>
</tr>
<tr>
<td>シュードモナス・クロロラフィス処理によるクロム抗性細胞起因物病害防除法</td>
<td>嶋上耕児, 伊藤充, 杉江元</td>
<td>4.5.1</td>
<td>特願平4-155549号</td>
<td></td>
</tr>
<tr>
<td>3次元自由曲面設計装置</td>
<td>竹澤邦夫</td>
<td>4.10.22</td>
<td>特願平4-324576号</td>
<td></td>
</tr>
</tbody>
</table>
4. 図 書
平成6年度の受入れ図書・資料冊数およびサービス件数は次のとおりです。

受け入れ図書・資料冊数

<table>
<thead>
<tr>
<th>区 分</th>
<th>購 入</th>
<th>寄 贈</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>単 行 書 (冊)</td>
<td>和</td>
<td>420</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>洋</td>
<td>398</td>
<td>2</td>
</tr>
<tr>
<td>資 料 (冊)</td>
<td>和</td>
<td>0</td>
<td>437</td>
</tr>
<tr>
<td></td>
<td>洋</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>雑 誌 (種)</td>
<td>和</td>
<td>75</td>
<td>1,162</td>
</tr>
<tr>
<td></td>
<td>洋</td>
<td>197</td>
<td>349</td>
</tr>
</tbody>
</table>

サービス件数

<table>
<thead>
<tr>
<th>貸 出</th>
<th>書庫内図書の返却数</th>
</tr>
</thead>
<tbody>
<tr>
<td>人 数 (人)</td>
<td>番 数 (冊)</td>
</tr>
<tr>
<td>598</td>
<td>971</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>レファレンス</th>
<th>外部への複写依頼</th>
<th>外部からの複写依頼</th>
</tr>
</thead>
<tbody>
<tr>
<td>省 内</td>
<td>121件</td>
<td>385件</td>
<td>2,481件</td>
</tr>
<tr>
<td>省 外</td>
<td>44件</td>
<td>287件</td>
<td>59件</td>
</tr>
<tr>
<td>計</td>
<td>165件</td>
<td>672件</td>
<td>2,540件</td>
</tr>
</tbody>
</table>

他場所へのモデル・シートを提供
農林試験場内他機関からの来館者
筑波研究学園内他機関からの来館者
一般（大学、学術機関他）からの来館者
農林試験場内他機関利用
66冊（のべ 1,477冊）
169人（コピー 3,433枚）
17人（コピー 907枚）
283人（コピー 9,014枚）
12人
5．刊 行

平成6年度中に当初から出版された刊行物は次のとおりである。なお、資料に収録された論文題名は「IV．研究成績の発展および広報」に掲載してある。

<table>
<thead>
<tr>
<th>種 別</th>
<th>発 行</th>
<th>頁 数</th>
<th>発行数</th>
</tr>
</thead>
<tbody>
<tr>
<td>農業環境技術研究所年報</td>
<td>平成5年度</td>
<td>7.3</td>
<td>148</td>
</tr>
<tr>
<td>農業環境技術研究所報告</td>
<td>第11号</td>
<td>6.6</td>
<td>323</td>
</tr>
<tr>
<td>農業環境技術研究所資料</td>
<td>第16号</td>
<td>7.3</td>
<td>215</td>
</tr>
<tr>
<td>農業環境技術研究所資料</td>
<td>第17号</td>
<td>7.2</td>
<td>79</td>
</tr>
<tr>
<td>農業環境技術研究所資料</td>
<td>第18号</td>
<td>7.2</td>
<td>84</td>
</tr>
<tr>
<td>農業環境研究成果情報</td>
<td>第10集</td>
<td>6.9</td>
<td>72</td>
</tr>
<tr>
<td>要覧 スペイン語版</td>
<td></td>
<td>6.12</td>
<td>1,000</td>
</tr>
<tr>
<td>農環研ニュース No.26</td>
<td></td>
<td>6.7</td>
<td>18</td>
</tr>
<tr>
<td>農環研ニュース No.27</td>
<td></td>
<td>7.2</td>
<td>16</td>
</tr>
</tbody>
</table>

6．視察・見学者数 4,372人

<table>
<thead>
<tr>
<th>月</th>
<th>農業関係者</th>
<th>一 般</th>
<th>学生</th>
<th>公務員</th>
<th>外 国 人</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>4月</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>111</td>
</tr>
<tr>
<td>5月</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>160</td>
</tr>
<tr>
<td>6月</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>276</td>
</tr>
<tr>
<td>7月</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>8月</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>31</td>
</tr>
<tr>
<td>9月</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>10月</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>11</td>
<td>267</td>
</tr>
<tr>
<td>11月</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>17</td>
<td>197</td>
</tr>
<tr>
<td>12月</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>15</td>
<td>80</td>
</tr>
<tr>
<td>1月</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>79</td>
</tr>
<tr>
<td>2月</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>126</td>
</tr>
<tr>
<td>3月</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>127</td>
</tr>
<tr>
<td>402</td>
<td>382</td>
<td>478</td>
<td>404</td>
<td>429</td>
<td>2,095</td>
<td></td>
</tr>
</tbody>
</table>

一般公開 2,277人
国内94件 1,666人
外国68件 429人
7. 委員会

委員会（随時開催）は、各部門の研究・連絡調整・研究施設の運営等に関する事項を審議することを目的としたものである。

委員会一覧表

<table>
<thead>
<tr>
<th>委員会名</th>
<th>委員</th>
<th>審議内容</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>さわやか行政サービス推進委員会</td>
<td>総務部長ほか</td>
<td>行政サービスの改善及び合理化に関する事項</td>
<td></td>
</tr>
<tr>
<td>健康安全協議会</td>
<td>各部関係者</td>
<td>職員の健康管理及び機械、設備等の安全管理に関する事項</td>
<td></td>
</tr>
<tr>
<td>厚生委員会</td>
<td>各部関係者</td>
<td>職員の福利厚生に関する事項</td>
<td></td>
</tr>
<tr>
<td>職務発明審議会</td>
<td>各部長等</td>
<td>職務発明の認定及び特許権の承継等の審査</td>
<td></td>
</tr>
<tr>
<td>防災対策委員会</td>
<td>各部長等</td>
<td>消防計画の立案及び変更、防災対策の構造及び避難施設並びに消防用設備等の維持管理に関する事項</td>
<td></td>
</tr>
<tr>
<td>筑波機械整備委員会</td>
<td>各部関係者</td>
<td>筑波機械整備に係る研究用機械の計画的導入に関する事項</td>
<td></td>
</tr>
<tr>
<td>施設整備・運営委員会</td>
<td>各部関係者</td>
<td>施設の設備、用地、庁舎及び別棟等研究施設の整備、エネルギー対策に関する事項</td>
<td>専門部会を置く</td>
</tr>
<tr>
<td>共用機器委員会</td>
<td>各部関係者</td>
<td>所共用機器類の整備及び管理運用並びに必要経費等に関する事項</td>
<td>専門部会を置く</td>
</tr>
<tr>
<td>アイソトープ委員会</td>
<td>各部関係者</td>
<td>アイソトープ施設の共同利用の調整及び放射線の管理</td>
<td>専門部会を置く</td>
</tr>
<tr>
<td>エックス線障害防止委員会</td>
<td>各部関係者</td>
<td>エックス線装置等による放射線障害の防止に関する事項</td>
<td></td>
</tr>
<tr>
<td>組換えDNA実験安全委員会</td>
<td>所内関係者</td>
<td>組換え体利用に関する業務の安全生、適切な実施を図るための規則の遵守に関する事項</td>
<td>専門部会を置く</td>
</tr>
<tr>
<td>組換えDNA実験安全委員会</td>
<td>所外学識者</td>
<td></td>
<td></td>
</tr>
<tr>
<td>副場委員会</td>
<td>各部関係者</td>
<td>園場及びこれに附随する施設並びに防風林の使用、管理、保全に関する事項</td>
<td>専門部会を置く</td>
</tr>
<tr>
<td>広報委員会</td>
<td>各部関係者</td>
<td>広報基本計画、一般公開、広報関係作物等の管理</td>
<td>専門部会を置く</td>
</tr>
<tr>
<td>図書委員会</td>
<td>各部関係者</td>
<td>図書館の管理運営、図書資料の購入、収集、管理、整理、貸出、複写、レンタルサービスに関する事項</td>
<td>専門部会を置く</td>
</tr>
<tr>
<td>所報告、資料掲載論文審査会</td>
<td>各部長等</td>
<td>報告・資料に掲載しようとする論文の内容及び掲載可否の審査</td>
<td></td>
</tr>
<tr>
<td>受託研究等審査委員会</td>
<td>各部長等</td>
<td>国内外から受託を受けて行う試験研究及び調査に関する事項</td>
<td></td>
</tr>
<tr>
<td>派遣・留学候補者選考委員会</td>
<td>各部長等</td>
<td>科学技術庁関係の海外派遣・留学制度に係る候補者の選考</td>
<td></td>
</tr>
<tr>
<td>印 行 物 企画委員会</td>
<td>各部関係者</td>
<td>定期刊行物、新規刊行物、その他の必要刊行物の企画、審議に関する事項</td>
<td>専門部会を置く</td>
</tr>
<tr>
<td>研究技術情報高度化委員会</td>
<td>各部関係者</td>
<td>研究技術情報の高度化推進方策、試験研究の推進、研修、指導、交流促進等に関する事項</td>
<td>専門部会を置く</td>
</tr>
</tbody>
</table>
案内図

【交通機関】
最寄駅 常磐線牛久駅西口下車
関東鉄道バス（15分）
筑波大学中央行き
谷田部車庫行き
筑波大学病院行き
畜産・昆虫農業技術研究所

常磐高速バス 筑波山行
農林通信中央下車
農業環境技術研究所年報
（平成6年度）
茨城県つくば市観音台3-1-1
農林水産省農業環境技術研究所
電話 0298-38-8186（情報資料課広報係）
印刷所 アサヒビジネス株式会社
茨城県つくば市竹園2-11-6

本誌から転載・複製する場合は、当所の許可を得て下さい。