目次

提言 .. (1)
日本蚕糸業の発展と中国問題 ... 菊池 邦作 (2)

特集 ～公害～
農薬と養蚕農民の健康 ... 栗林 茂治 (12)
フッ素汚染による被害対策と養蚕技術上の問題 …… 三木 六男 (24)
製糸廃水による公害 ... 松井 善雄 (29)
カドミウムにおける諸問題 ... 本間 慎 (35)
繊維加工と繊維製品の安全性 .. 山口 雪雄 (45)

私の履歴書 ... 鶴見 亮雄 (59)

本場試研究会報告 .. 蚕糸本場研究会 (64)
幹事会報告 ～シンポジウム「蚕糸技術研究の現状と問題」～のとりくみについて ... (65)

編集後記 ... (67)

民主主義科学者協会 蚕糸技術研究会
提 言

「日本列島改造論」と日本農業・蚕糸業

政府は、10月20日の閣議で工業再配置促進法にもとづく“線引き”（地域指定）に関する政令を正式に決定し、これを25日から施行することになった。これは、日本の全国土を“移転促進地域”と“誘導地域”に分け、移転促進地域にとどまる工場には“追い出し税”をかける、“誘導地域”に移転する工場には各種の懸案を与えるというものです。これによって、「日本列島改造論」は具体化の第1歩を踏み出したことになる。

国民のきびしい批判のもとで運営した佐藤内閣は、自民党政治に対する国民の不信と怒りをおさえるために、外交政策としては日中折衝、国内政策としては「日本列島改造論」という二つの目玉商品として売り出し、また、今後の自民党政治路線は全く異なる道を歩み出したという印象を国民に与えようとしている。

この「日本列島改造論」は、「高度成長」がゆきづまってきたこと、円の大切上げなど日本経済の安定化と、 Arabian Sea 地帯の輸出拡大・住民の公害対策の高まりなどによって新しい工場立地が困難となったことなどを見直し出してきたもので、この大きな矛盾を目の前で解決し、ひきつづき「高度成長」を資本の要求にこたえて保障しようとするものである。その中心は、現在太平洋ベルト地帯に集中している工業を全国的に再配置することである。そして、そのためには「移転促進地域」の工場に課せられる「追い出し税」は、現在計画的で法人税等に加くされている17.5％から払えるようにするだけであり、「誘導地域」に移る大企業には固定資産税の25年削減免、設備・建物などの特別償却補助金をただすという資本本位のものである。

このような「日本列島改造」は、その膨大な投資を国民の負担でまかなうことを必要とし、公害を全国に拡散するなど、国民の大きな犠牲の上にすすめられるものであるが、もっとも大きな打撃を与えるものに、日本の農業・蚕糸業がある。

政府の“線引き”によると、蚕糸業の中心地はすべて“誘導地域”となっている。これまでの構造改革農政では期待通り“農民の追い出し”がなかった政府は、現在の実状を利用し、資本を農業の地に導き出す、土地と労働力の獲得をはかるというものです。「改造論」では、全就業人口に占める一次産業の割合（現在17.4%）を昭和60年までに7%前後に下げて800万人前後の労働力を二・三次産業に活用しようとしている。

そのためには、「経営の大規模化、機械化」をし、「農業から流出」させる労働力を「地元で吸収を第一」とし、「農工一体化」をはかるのだろう。それは農地法を廃止し、現在の農地から膨大な用地を工業にまわして残りを農業にあてるという「残地農業論」によって実現しようというものであろう。これらの措置によって、現在の日本農業は根拠からゆり動かされることになる。

私たちは、農民と農業・蚕糸業を守る立場から、広く「日本列島改造論」の批判をする、予想される総選挙にも十分私たちの意志を反映させることが必要であろう。
日本蚕糸業の発展と中国問題

蚕糸経済役務主幹 菊池邦作

まえがき

9月29日，北京において日本の田中総理と中国の周総理との間に，日中正當化に関する共同声明が調印され，正式に発効した。これは約半世紀に亘る日本軍国主義の中国侵略の歴史に終止符を打ち，長い両国人民の不幸な時代を清算して，真に日中友誼の新しい時代の第一步を踏み出したことを意味している。これによって，わが国と中国との間に根深く横たわっていた政治外交上のわだかまりが解きほぐされ，新しい協力体制のトピラが開かれたことはもとよりであるが，従来政府間交渉が錯され，僅かに民間ベースに委ねられていた各商品別の貿易上の諸問題については，政府間交渉を中心にして新しい時代が訪れることが確実になった。もちろん生糸もその例外ではない。

(A) 日中共同声明までの経過

日中蚕糸業首脳部の話し合いの問題は，きた昭和42年4月に添添中蚕会長一行が，中華人民共和国を訪問し，中国蚕糸業要人と醐醕した際，返礼として中国関係要人を日本に招くことに話し合まり帰国したのであるが，その後中国は，いわゆる文化大革命の嵐が全国をもって，政治的混乱が伝えられたみで，中国蚕糸関係要人招待の話は立ち消えとなり，そのまま今日に至っている。もとより中央蚕糸協会においては約束履行の責任を感じ，この関係者の民間ルートや機関を通じ，中国側の意向を打診する努力は試みたようであるが，それらの試みは数のつぶての片道交通ですべて不発に終わったようである。

その後文化大革命の混乱も治まり，彼我の民間貿易も回復して日中覚書貿易当局，日中友好協会（正統派本部）や国際貿易促進協会の努力により，生糸の輸入が増大するに従い，とくに広東広州交易会を舞台としてわが商社筋と中国関係要人との交渉が頻繁となり，彼我接觸の機会は増大したが，それらは生糸貿易に関する事務的折衝の範囲を出ず，両国蚕糸業に関する政治的話し合いに発展する性格のものではなかった。

たまたま，昨年9月日中友好協会正統派本部の果原俊夫常務理事の斡旋により，群馬県蚕糸会長坂田恒雄，群馬友好貿易KK布施社長，蚕糸事業団理事福島次男の群馬県民四氏が中国側の招請を請けて中国を訪問したが，このときは福島理事によれば，専ら事業団法による安定価格の二重構造を説明するのにエネルギーを消費した（情報555号参照）以外には特別の取り決めもなく，折角期待して行った視察旅行もいわゆる林彪事件のアクシデントに遭遇した為，中止のやむなきに至った（同上参照）と報告されている。

この前後からニクソンの訪中声明とこれに引きついて起きたדולשףックによる影響が全国産業界に深刻に現われ，蚕糸業もその焼けをうけて糸価の低落，輸入の増大など悪材料の統出に蚕糸事業団は6月28日に生糸の買上げを開始するに至り，一方全国の養蚕農民は10月1日九
段会館の「全国養蚕業危機突破大会」に締結して① 生糸の輸入規制（秩序ある輸入）、②現行関税の堅持、③ 適正値の保持を含む2項を決議し、これが実現を期して政府当局並びに国会に陳情した。この段階では、養蚕科の要請があったにもかかわらず、山添中蚕会長は時期尚早の故をもって全国大会開催への協力を拒否した。ところが、その後糸値の不安は一層かえりまり、輸入の増大も止むところなく、さきに発効した養蚕事業団の生糸買入れ業務もようやく多忙を極めるに至り、事態はいよいよ深刻となってきたので、中央蚕糸協会山添会長も遂に腰を上げ11月16日常生活会を招集し、日本蚕糸業界は自衛のため「生糸の秩序ある輸入」措置の必要を認め、これが実現のため対策本部を設置して議員立法（案）の提出を政府と国会に陳情し、併せて「全国蚕糸業者大会」の開催を決議するに至った。かくの如くしてこの議員立法は12月14日、両国大講堂における「全国蚕糸業者大会」の決議となり、12月24日与野党満席一致という異例の国会決議となって、いわゆる「生糸の輸入規制」に関する議員立法が成立したことは、世人の記憶に新たなところである。まことに一陣の突風が曇野をよぎるようなあわだしきも、あがれきほどの早業の議員立法の成立であった。

政府も業界も当初この法律の施行は、全国の生糸輸入業者に輸入組合をつくるさせ、その実務の衡にあたることであった。ところが、この試みは国際協（国際貿易促進協会）の猛烈な抵抗に遭遇し、早くも失敗に帰した。すなわち輸入組合の結成には輸入数量において全量の7割以上、業者数において5割以上の賛成を得なければ、設立の法的条件が充たされないのである。当時生糸輸入の実績をもって、いわゆる友好会社として日中友好協会に加盟しており、輸入組合に加盟する資格者は89名を数えたが、生糸輸入の実績においては上位10社（グンゼ、神栄、伊藤忠）など、従来から日本生糸輸出組合に加盟しているメンバーが同数の7割を占めており、これらの大手商社は輸入組合の結成を支持したのに、組合の条件においては問題なかったが、頭数の組合員の要数においては、国際協の組合結成反対派が圧倒的多数を占めていたため、政府及び業界側の生糸輸入組合結成の計画は完全に崩壊したのである。

一方政府は、法律施行の手続き作業を進めており、2月26日の共に記者会見で荒蹄蚕糸高協議局は、実の立法手続きの完了を待って、いつでも条件（最低基準糸値6,800円が観念されるとき）さえ整えば新興家の宝刀（輸入規制法）を抜くことを内外に宣言したのである。この間、国際協は2月「日本蚕業発展の道」なる文書を発表し、議員立法による生糸輸入規制に絶対反対を声明し、これが紛れのため全国を挙げて抵抗し全国各地の業者に反対の集会開催を呼びかけ、3月26日京都において全国大会を開催して、反対運動の全国的な収束に成功した。しかもそれらはその余勢をかって、肥料、鉄鋼等の主幹業の関係者まで反対運動に駆り立てて至った。このような国内対立の激化によって、せっかく秩序ある輸入によるわが国蚕糸業の自衛措置の前途には暗雲がただごと至った。

この暗雲をさらに著者にして国際協側を刺戟し、中国関係者の誤解と反感を一層深めたものは、わが国蚕糸業最高指導者藤川氏にて極めて甘い態度であった。

その一つは、今後の生糸輸入数量の基準を、中国3、韓国3、その他1と定め、1月22日荒蹄局長がこれを公表した（アジア貿易による）ことである。これについて山添中蚕会長は筆者の質問に答え

— 3 —
て「単に過去の客観的事実（統計数字）を表明したにすぎないから問題はない。」とうそぶいたが、これは国税倉と国税倉の注進によってこの基準数字を知った中国側の激昂を買い、さらに態度を硬化させてしまった。

その二つは、いわゆる不平等関税に対する日本側の暖昧な態度である。さきに示したとくに、10月1日の全国優遇農業牧会開催の決議の一つに現行関税の抑制が挙がれているが、これより直近9月4日の中華緊急常任理事会でも「R関税均廃対策」を決議しており、これをうけて荒倉逃税団長も10月13日新聞記者との共同会見で「現行関税の維持に全力投球」を約束など、この問題については政府業界とも強硬であったが、その後議員立法が成立し、これに対する国税倉並びに中国側の態度が軟化するにしたがって、政府も業界も態度が若干軟化暖昧になっている。たとえば、2月3日赤坂山の茶で議員懇談会が開催された際、川合関係課長は、記者の「中日話し合いに先立って対中関税のR関税均廃を声明するのが上策と思うが如何ですか」と質問したのに対し、「結局今後対中話合いの土俵の上で決めるより外はない」と答えており、荒倉局長も「関税問題は、日中話し合いの途中で、今後どうなれば信頼できたときにでもおそらくない」という態度にとってきた。しかし、遂に局長も課長も転任するまで公式的には不平等な関税撤廃に踏み切ることはできなかった。

その三つは、山添、坂田、高田、立川等業界首脳訪中団の結成とその独善的取り決めであった。山添内相参事会長は昨年12月、議員立法の成立と同時に訪中を決意し、前記首脳をもって訪中団を組織し、中日倉庫貿易の岡崎嘉平太氏を通じて本年2月25日訪問できるよう斡旋方を依頼し、前後3回くらい岡崎氏と会談してその促進を要請した。しかし、岡崎氏は中国側の空気を察知し、3月5日、先方（中国側）に山添会長の意志を伝えることなしにこの斡旋依頼を断ってしまったのである。このことは筆者も直接岡崎氏と会見し確認している。（産経経済情報517号）

以上の三者は、日本の業界がいかに中国側に対し、甘い考えであったかを証明して余りある。それは、次の「アジア貿易」（日刊新聞で国税倉関税関係の性格）の記事で明瞭である。

(1) 現在、関税上でも不当な措置をしている、そのうえさらに差別的な輸入規制を発動しようとしている。一部ではこの輸入規制措置は、山添会長らが中国で「自主規制を提案する際の『圧力手段』」と見る見方もあるが、このような差別を前提として中国側と話し合うわけではない。 （「アジア貿易」1月21日号）

(2) 山添中央優遇会長は、このほど中日參考の輸入問題をめぐって訪中の希望を表明、一般新聞報道は、中国紡織公司でもすでに受入れの意向を伝えていると報道しているが、国税倉協会事務局では20日、このような事実はないことを明らかにした。（同上）

(3) 国際貿易促進協会を中心とした中国参考の輸入規制反対運動は、別項のようにさらに大きく盛り上がろうとしているが、2月29日、同協会北京派遣員から入った通絡によると、中国紡織品公司が「国際貿易協会を中心とした日中友好貿易業界の活動方針は正しいし、公司としても一贯して支持する」との見解を表明したという。（アジア貿易3月3日号）

山添会長としては議員立法が成立した以上、一刻も早く訪中し、これが日本の業界にとって全く自衛手段であることを強調し、秩序ある輸入によって両国紡織業界の善意ある交流と理解を深め，
めるための発想と思われるのである。しかし事実は全く逆で「圧力手段」のタヌレラ（輸入規制法）を掲げて中国に乗り込むというように誤解されていることが明らかである。中国を通じて知られている岡崎嘉平太氏が、これら中国に巻きている反日、反輸入規制の空気を知らない者はなく、これを察知して、山添会長の訪中申し入れの斡旋を断ったのはむしろ当然といえる。しかるに、これらの情勢分析をすることなく、ただめぐらめぼうの中国訪問の準備を進め（旅券まで用意）た甘さは反省すべきである。ときに前年9月訪中している坂田全養連会長が、その後の情勢の変化を少しも計算に入れず、いつでも訪中が歓迎されるとの甘い判断で、全国至於ところの中国訪問が決定しているかの如き演説を打って歩いたことが却って中国側の反感を買ったと言われる。

その反省の結果と想像されるが、山添中養会長は本年4月10日付けをもって、五月の広州交易会に出席の日中友好貿易協会の要請に払う、いわゆる「山添書簡」なる文書を中国紡織公司当局宛提出した。その全文は次のとおりである。

山添書簡

繭糸価格安定問題と中日関係者話し合いを希望する件についての養蚕団体をはじめ、すべての養蚕関係者の意見は次の通りである。

1. 我々の希望し、かつ目的とするところは、糸価を繭糸価格安定法による安定帯の中に維持安定させることがある。即も基準価格と事業団の中間売却価格との間で安定させることである。このことは、養蚕者に対する繭糸の支持及び生産需要の増大のために不可欠の要件である。

2. 従来は日本養蚕事業団の為替操作だけでなく、上記の目的を達成する仕組みになっていても世界的に見た現在の生産事情を考えて、また昨年の経験から考えても、今後は事業団の責任と能力だけで目的を達することは到底不可能と思われる。従って我々は、関係国の理解と協力を得て生産の輸入数が、我国の需要状況に適合するように、かえってバランスが生ずることのないように、またその心配によって市場が動揺することのないように、実際的で有効な国際的協調関係を樹立することを求める。

3. 我々が提案し、協議したいのは、次のようた構想である。
 A. 生産者、消費者及び関係業者で構成する協議会を設け、そこで生産の需給見通しに基づいて、適当な年間輸入目標を設定する。もし、著しい事情の変化が生じたときは適宜に上記の目標を変更するが、過去の統計実績からみればそのような必要は稀にしか生じないと思われる。
 B. 輸入の調整事務は、輸入組合を設立して、それによることとするが、中国についてはその自主的協力に期待する。

4. 話し合いの前提として、法律の発動をしないこと及び関税を平等にしなければならぬということは十分に了解している。一方的規制は貿易に甚だしい障害を生ずるし、両国の将来
の蚕糸業の安定、発展のためにも採るべき道ではない。大切なことは協力、協調である。話し合いが成功すれば、関税の不平等は速やかに是正したいというのが我々の意図である。

(ゴシックは筆者）

1972年4月10日
中蚕会長 山添 博 作

しかし、時すでに遅しというか、この書簡にはハッキリと輸入規制法を発動しないことと不平等関税の撤廃が表明されているにもかかわらず、遂に中国側からは何の回答もなく今日に至っている。また、業界各一の中国通で日中生糸貿易の大手である神栄の村上会長も、山添会長の依頼に応じて仲介の労をとったが、これまた発効するに至らなかった。なお、田中内閣が成立した直後の7月28日、全蚕運営会長星藤洋三氏は、新潟県蚕運営会長星藤一郎の紹介で田中総理を目黒の自宅に訪問し、日中蚕糸会談の促進に特段の配慮を願わしたいとの陳情を行なった。

以上が議員会田の成立を中心とする日本蚕糸業と中国問題の経過の概略である。

(B) 今後の展望

日中両国間交渉が発表された日から3日後の10月2日正午、中央蚕糸協会では東京パレスホテルに常任理事会を招集し、共同声明後の日中蚕糸対策を協議検討したあと、国賃鉄の撤廃と田中第一部長を招き昼食を共にしながら面談した。これに対し、「蚕糸経済」第557号は「動き出した日中話し合い」「中蚕理事会、国賃鉄と交渉」と題し、次の如く報じている。

中央蚕糸協会では、10月2日正午から東京パレスホテルにおいて常任理事会を開き、当面の時期対策を協議したあと、来る10月15日から11月15日までの中国の広東省に参加のため、近く中国に出張する日本国際貿易促進協会の幹部を招き、昼食を共にしてから、今後の日中蚕糸話し合いの促進に関し、意見交換を行なった。これについて山添中蚕会長は会終了後、蚕糸会館において次のごとく話した。

「今後の催し、近く広東広州商務局に出席する国賃鉄幹部の送別会であった。その内容は

① 日中蚕糸関係者の話し合いはまず相互の理解が必要であるからその機会をもたたい。たとえば、これから4-5年間の日本で必要とする生糸の生産、消費について、われわれはいつでもその数字を示すことができるから、先方が中国側で、その生産計画の中に日本の需要も含めこんで考えてもらいたい、ということが一つ。

② 5年前の1967年にわれわれが中国へ行ってお世話になったが、まだそのお返しが残っているので、ぜひ先方の代表者に日本にきてもらいたい。

以上2つのことを広州商務局に出席した際、中国側の要人に伝えてほしいと依頼した。それだけである。

さらに、本協会の役割について

中央蚕糸協会の役割は

記者、その2点はこちらからお願いした伝言というかメッセージというか、こちらからお願いしたことと考えますが、何か先方からの要望なり、要求はなかったのですか。

山添会長：ああ、それは差別的な不平等関税の撤廃の問題が出た。これは当然のことであるから

- 6 -
当方として全員異議なく賛成した。しかしこれはわれわれがやるのではなく、政府の仕事であるから、われわれとしては、政府に要請することを約束すること以上のことはできないので、これが実現に向けて努力することを約束した。

記者—その外に何か、例えば昨年の暮れに成立した議員立法、あれは日本側としては当時の状況としては当然の措置として、秩序ある輸入ができるようにしたのですが、先方としては、その後ずっとこれに反対しつつて撤回を主張していますね。これに対して、たとえば山添構想を示して、中国側の理解を求めるといった話し合いはなかったのですか。

山添会長—そんな話はしていない。しかし情勢は大きく変わったことは事実なんだから、そういうことは話し合いが始まれば、その過程で解決していくよりほかはない。

記者—前回会長にお会いした際、先方のお客さんを迎えるのは来年の春葉ごろがよましいという会長のお話しでしたかが、それは情勢が急変している今日でも変わりませんか。

山添会長—そういうことは決めていても意味がない。先方の都合もわからないし、いままで何回手紙を出して要請しても返事がなかったような事実だからちょっとだけの願望で決めるわけにはゆかない。

一方、政府としては近く中曾根通産大臣を中国に派遣し、日中貿易全般に関する協定を審議させることになっていると報せられているが、これより先に、奄美国交局として、9月28日付け市川書記課長の個人名をもって次のような書簡を北京浜口駐在員を通じて送り、日本の態度を明らかにしている。

市川書簡

「一 中国からの生糸の輸入については、わが国蚕糸業に与える影響が大きいところから、日中相互に理解を深め両国協力して輸入の秩序化、需要の拡大、両国蚕糸業の発展が図られるような方策を見出す必要があると考えており、まずもって相互理解の話し合いを強く希望しております。ご承知のとおり、話は一向に進展しないまま、現在に至っております。今後の課および生糸の生産については、生産性の高い安定的経営を育成しつつ、その振興を図っていく政府の方針には変わりなく、このためには秩序ある輸入体制の確立を図ることが不可欠の前提になります。したがって政府レベルにせよ、民間レベルにせよ、できるだけ早い機会に中国側と話し合いに入れますよう、先方の意向の打診等ご尽力をお願いします。」（要旨）

これは市川書記課長の個人の資格において発信しているが、その日付けが9月28日で、共同声明発表以来になっているところに重大な意義があり、政府がいかにこの日の来るのを待ちあぐんでいたか、日中話し合いがわが国蚕糸業の発展のために、いかに喫緊の要務であるかを立証してあまつさる。

次に中央蚕糸協会事務局会議は、9月2日蚕糸会館において対中国問題を討議の結果、次のような業界の態度と見解を明らかにした。

中国に対する日本蚕糸業界の見解

日中両国の友好関係樹立を機会に、日本蚕糸業も日中蚕糸細業の友好協調と、発展振興のためにいっそうの努力を続けて、両国蚕糸関係者の話し合いが早急に実現するよう希望する。
日本蚕業界は代表機関である中央蚕業協会を窓口として、その見解を日本国際貿易促進協会を通じ中国側に申し入れてきたが（4月10日付・山添中蚕会長文書）現在もその内容は変わらない。したがって、今後も訪中談話の機会が実現するよう国際貿促を通じて、引き続き斡旋依頼を重ねる。なお日本蚕業界の中国蚕業業に対する姿勢は次の通りである。

（1）日中両国蚕業界にともなう人為的障害を排除し、善隣友好的精神のもとに協調に努力する。なお、日中両国が世界有数の蚕業生産国であるという立場を尊重理解し、平等互恵の原則に基づき両国蚕業界的共存に努力する。
（2）日中両国間の蚕業技術の交流を盛んですし、世界の経済発展に尽力する。
（3）日中両国間の生産貿易協定を行ない、安定した取引関係を維持するよう希望する。
（4）日中蚕業関係者による話合いの早期実現を切望する。

42年訪中行の事業継続について
昭和42年4月、アジア農業交流懇話会をもって行なわれたアジア農業交流懇話会の招集により日本蚕業界代表団の訪中に至り、約束された日本側代表団の日本訪問について、これが実行されるよう折衝を行うことと共に、中蚕役員会の決定を再確認する。

なお、日中両国の国交正常化にとどまらず、世界における日本蚕業の地位を向上させることを目的として、政府を通じて政府の若者を発表することに、現在の取引を通じての一連の動きは、中華民国蚕業界の日中貿易交渉以前に、日本の関係業界並びに主導業界の態度に反して、もと中国側に伝え、実態を検討するために採られた努力の現れと思うのである。

以上の日本の業界並びに政府の意図の表明に対して、中国側はどんな出方（回答）をするかも、目下のところ不明であるが、従来の如く日本蚕業の位置は大きく変わらない。しかし、この問題を解決するために必要な手順は確立されていないことが分かった。

その理由の一つは、中国の経済における蚕業業の地位である。現在日本の蚕業業界の大きな問題は、1971年度の総生産額325,172千ドルで、内73.1％を占める農産物で、生糸は農産物中の22.3％、総輸出額の16.3％を占めているという現状である。現在中国側が日本の輸出される農産物には、穀物、雑穀、しょうゆなどであるが、それらの農産物の輸出は柵をはさむ若しくは敵を示しているにすぎないが、生糸は年々増加し、特に昨年度は前年に比し増加において2.4％の増加を示している。

<table>
<thead>
<tr>
<th>年度</th>
<th>輸出総額（千ドル）</th>
<th>B/A</th>
<th>全農産物（千ドル）</th>
<th>C/B</th>
<th>生糸（千ドル）</th>
<th>C/M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1968</td>
<td>224,185千ドル</td>
<td>74.0％</td>
<td>165,898千ドル</td>
<td>6.5％</td>
<td>10,784千ドル</td>
<td>4.8％</td>
</tr>
<tr>
<td>1969</td>
<td>254,540千ドル</td>
<td>69.9</td>
<td>164,939千ドル</td>
<td>12.3%</td>
<td>20,152千ドル</td>
<td>8.7%</td>
</tr>
<tr>
<td>1970</td>
<td>253,818千ドル</td>
<td>70.6</td>
<td>172,195千ドル</td>
<td>14.1%</td>
<td>25,084千ドル</td>
<td>9.2%</td>
</tr>
<tr>
<td>1971</td>
<td>323,172千ドル</td>
<td>73.1</td>
<td>236,100千ドル</td>
<td>22.3%</td>
<td>52,901千ドル</td>
<td>16.3%</td>
</tr>
</tbody>
</table>

（農林省蚕業団体局黒糸課調査）
本年はさらに急増をつづけ、1月から8月までの日本生糸輸入量は109,101俵で、内中国生糸は、69,150俵の63%に達しており、この平均数で本年12月までの生糸の輸入総額を推定すると157,100俵の輸入で、内中国生糸の年（歴年）間輸入量は、実際に10万1千俵に達し、価格（1－6月までの横浜当値平均クロ7,425円で換算）にして14,342万ドルで、これまで前年比増大である。

統計によれば、1970年の中国生糸生産量は11,124トン（日本紡業協会）で、値直して約18万4,000俵であるからその生産の半分以上を日本に輸出し、外貨を稼いでいることになる。これによって日本が、国力の維持と発展を対外生糸輸出に依存していたの全く黒を一つにしているのである。であるから中国としては、生糸を造らざるを得ず、造った生糸は売らざるを得ず、売る相手としては世界最大の市場である日本に依存せざるを得ないのである。

その理由の2つは、従来（共同声明以前）中国あるいはその出先機関の役割を果してきた日中友好協会（正統派）本部または国交促進、あらゆる機会または文書（たとえば、国交促進発行「日本経済発展の道」）で、

(1) 中国は日本で生糸が不足し、欲しいというので売って（輸出）いるのであって、決して無理に押しつけるのではないと言っている。（無有相違の原則）

(2) 中国は日本に生糸を売ることによって日本の農民に迷惑をかけたり、損害を与えるようなことはしない。 （互恵平等の原則）

(3) 中国は社会主義国家で、計画経済の国であるから日本で年間およそその位の生糸を必要とするのか、予めその数量を知らせてくれれば、その数量を生産計画の中に入れて生産し、日本の需要に応ずる用意がある。（社会主義国の貿易原則）

ということを声明している。これを筆者は中国の対日生糸貿易の三原則と唱えている。世間には、社会主義国家である中国と自由主義経済の日本との貿易は、その間の調整がむずかしく、この三原則は即座に両国貿易の発展を図る要因になるだろうと心配している向きもあるが、筆者は両者黒自由主義経済国であって、お互いにエコノミック・アシスタンスをむき出しに張り合うようでは、却ってうまくゆくと思うのである。すなわち、日本の業界が精神統一をして社会主義国家である中国の計画経済の歯車に合うように対処すれば、掛引きはもちろ、相手のあがり合いもいちど、即座にスムーズにゆくと思うのである。この点に関しては、さきに示したくわゆる山添書翰との9月2日の国交促進部と中産会事務局との懇談会で取り交わした意見の交換で充分遅らせると考えられる。すなわち、山添書翰では「輸入規制法を発動しないこと」「不平优于鉄を撤廃すること」が唱われており、2日間の懇談では「不平等関税を撤廃すること」から「中国の生糸の生産計画に日本の需要も織込込んで考えてもらいたい」とこれほど明確に示しているのであるから、これで中国と日本の歯車がうまく咬合しない筈はない。

ただ若干懸念される問題は、景気の変動、天災などによる不測の需給の変化のため、約束の数値を引きとれない条件が生じた場合、またはその逆の場合であるが、これがついては、幸いに繊糸事業団があり、この機能を拡大強化して生糸需給の調整の機関にあてればよい。
しかし、今後実際に日中関係の避けられない問題は、中国側にあるのでなく日本国内にあるのである。今後も広州交易会に表明された日本商社の輸入生糸割当の要求は、総額20万俵を越えていたと言われる。これに対し、中国側が実際に承認した割当数量は不確定であるが、8,000俵と一般に信ぜられている。もしこれが事実とすれば、日本輸入商社のエコノミック・アニマル丸出しふ、ただあきらめのみである。20万俵といえば、世界で公認されている中国の1ケ年の生糸生産量18万俵（1970年）をはるかに越えた数値である。中国では毎年春の2回広州交易会を開いて、その年の半年間の貿易協定を結ぶならわしがなっている。仮に中国が生糸を全部日本で消化としても、供給可能数量の4倍を要求している勘定である。これは、なりふり構わない我が利害利害者の正体をバクロしたものといえる。これに関連して、組合製糸天竜社の岩崎専務は次のとおり語っている。

「先だって関西に行った帰りに伊藤忠に寄って商務に会い、いろいろ対中貿易に対する抱負を聞いてきた。種々の思いつきはあったが、要するに友好地位をめぐっても生糸が日本に上陸したトンに利潤進及の営利位を求める、巨大資本を奉仕する必要が大分あるという感を深くした」と言い放った。（産経経済評論518号）

伊藤忠といえば、わが国エコノミック・アニマルの代表選手の一人であるから、これはいささか興味深いと思う。それが海外の友商社と称する従業の中には、中国にあって先方の要人と商談をとり決めてしまう、マルクス・レーニン主義を強く、毛語録をふりかざし、率直に一貫した常識的態度は誠実なる実践を誇いながら、一旦確立が成立した途端に、室の中ではマルクス・レーニン主義をかかかり捨て、利潤進及び利が国後の生糸の売りさばきとそれによって生ずる利潤の動向に大いにあぶり、いかに多いかを知る一つの指標である。これらの従業者は、生糸に関する専門的な知識もなく、生糸を売るルートも加工する施設もたず、経済、グング・伊藤忠・総裁・その他の大手商社にその（生糸の）処分を委せるより外にないのである。これは、商取引として解決するには正当な姿といえない。何か彼らが過去長い間、政府の中国外貿政策の中心にあって、政府から白眼をされながら対中貿易の維持発展のために尽くしてきた功績を高く評価することに踏踏むものではない。しかし、これのために従業、援助物資の上にあぐらをかき、法外の利潤を独占してきた態度は反省されなければならない。

これを要するに、中国生糸の輸入に関して何らかの不安や振動など、日本生糸業者がかすかに要因があったとすれば、それはむしろ内部要因であって、それらの秩序ある輸入体制を好まず、特権の上にあぐらをかいてきた利潤進及び独占者の存在にあったといえる。だからかれば、生糸輸入組合の結成に反対し、内部分裂を策動し、その間で長く自らの特権の上に生きようとしてきたのである。

しかし、いまだ情勢は一変し、対中貿易はかれらの独占舞台ではなくなってきた。既に日中両国首脳による相互尊重が示唆され、国交が正常化し、政治、外交、経済、貿易、文化あらゆる面に亘って政府間交渉による新しい交流、交流の分野が開けてきたのである。生糸貿易も、もはやかれらの特権的独断独歩ではなくなってきたのである。もとよりかれらの過去の実績は、そのまま承認されねばならないし、承認されるであろう。しかし、従来の如く自ら何かの手を施すことな
くいわゆる特権の上にトンネル料を稼いできた商取引は、今後逐次清算されねばならない。また必らず清算されるであろう。よって速かに、かれらも自らの立場を守るために、従来反対しつつしてきた輸入組合の結成に賛成し、自ら進んでこれが一員となって、中国政府の本心である対日本生糸貿易三原則の実践者として、日中蚕糸紡業の発展に挺身することこそ堅明な態度であると警告するものである。

言うまでもなく生糸輸入組合は、中国の計画生産とこれに対応する日本側の生糸需給の予測を円満に営み合わせる経済組織であって、今後輸入規制法を発動することなく秩序ある生糸の輸入を促進するためには、どうしても必要な組織である。従来の如く輸入商社が、銘々勝手に中国承認の割当数量の数倍もの割当を求めような無法者が跳ねようする場合の下では、日本が希望し、日本がこれに対応して提出する予約取引など到底望めるものではない。

よって日中生糸貿易の円満なる進行を期するため、日本政府並関係業者は蚕糸事業団法の改正法案を来通常国会に提出し、日中共同声明後の新しい蚕糸情勢に対応する万全の策を講ずるべきである。

さいごに中国政府当局に望むことは、昨年議員立法以来、国貿促や日中友好協会正統派を通じて示された中国側の日本の生糸輸入規制措置に対するいづれの反論や攻撃の中には、当方（日本側）の外交の拙劣さや誤解を招き易い言動も多々あったことによる無理かぬ結果と思われるがいまやそれらの問題は、前記「山添書翰」、10月2日の「国貿促との話し合い、9月28日の「市川綿糸課長の書翰」によって、充分処理された筈であるから、中国側でも過去の一切のわだかまりを捨て、先年の「山添訪中」の時点に立ち帰り、当時両国代表で取りかかった約束を忠実に果そうとしている当方（日本側）の誠意を了とし、一刻も早く、貴国蚕糸代表の来日を実現し、日本蚕糸業の実態を見学すると同時に、日本全土に渡る日中友好の空気とムードに接し、新しい日中蚕糸関係の調整に協力されるることを切望するものである。これは単に日中蚕糸関係の改善に止まらず、世界蚕糸紡業の発展に貢献することであることを固く信じて疑わいない確信に基づいての提言である。
特集＝公害
農薬と養殖農民の健康
畜糞試験場中央支場 果林 茂治

農薬による人畜、有用動植物などの危被害や環境汚染問題などが近年よくに大きくクローズアップされている。それらのなかには問題の実態を科学的に十分把握せず、抽象的な推定によって危険性を過大視しているものもいるといえないと、農薬の増収や品質の向上、生産費の低減などにはいかに有効な化合物であったとしても、その使用によって結果的に人類に不幸をもたらすものであっては、排除されなければならないから、そのような危険性のある農薬については正しい意味で疑ってかかる、試験や論議を重ね、その作用性や安全性などを見きわめる態度は大切なことと思う。農薬はその作用機構やそれによる危被害の危険性などを正確に把握することによってはじめて安全的確な利用がはかるものであるからである。

農薬のもつ悪い副作用はいろいろあるが、本稿では人体に対する影響について、とくに養殖農民の健康との関係を中心に考えてみたい。

1. 農薬による人の被害の実態

農薬による人の被害の実態は、厚生省の統計によれば第1表のようである。この10年間、毎年約800人の人が農薬によって死亡している。

第1表 農薬による人の被害の年次別発生状況

<table>
<thead>
<tr>
<th>年次</th>
<th>昭和34</th>
<th>昭和35</th>
<th>昭和36</th>
<th>昭和37</th>
<th>昭和38</th>
<th>昭和39</th>
<th>昭和40</th>
<th>昭和41</th>
<th>昭和42</th>
<th>昭和43</th>
<th>昭和44</th>
</tr>
</thead>
<tbody>
<tr>
<td>中毒</td>
<td>558</td>
<td>610</td>
<td>245</td>
<td>105</td>
<td>288</td>
<td>470</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>自他殺</td>
<td>54</td>
<td>92</td>
<td>71</td>
<td>107</td>
<td>126</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>小計</td>
<td>592</td>
<td>728</td>
<td>340</td>
<td>227</td>
<td>430</td>
<td>595</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

合計：1,359 1,591 1,198 1,035 1,145 1,430

注：厚生省業務局薬事課の調査資料による。

このような死亡事故の大半は自殺によるものであるが、このような大数は、今日、農村の実生活の中で農薬の管理が不注意だと言う問題をも含めて考慮するわけにはいかない。

農薬散布中の事故は年次により変動がみられるが、年間100～600件程度が発生していることになっている。これは厚生省の統計によるものであるが、長野県の佐久総合病院の調査結果によると第2表のようである。病院付近の山間8部落の農家という範囲内だけでも年間400回以上にも及ぶ農薬中毒が発生されている。これによると農民は農薬散布13回のうち平均1回は中毒を起こ
第2表 農薬散布中の中毒事故状況

<table>
<thead>
<tr>
<th>農薬使用者</th>
<th>農薬中毒の経験者</th>
<th>農薬使用者に対する中毒の経験者の比率</th>
<th>農薬使用の延回数</th>
<th>農薬中毒をした延回数</th>
<th>農薬使用に対する農薬中毒の延回数の比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(B)</td>
<td>(B/A)</td>
<td>(C)</td>
<td>(D)</td>
<td>(D/C)</td>
</tr>
<tr>
<td>男</td>
<td>295</td>
<td>85</td>
<td>28.8%</td>
<td>4,782</td>
<td>327</td>
</tr>
<tr>
<td>女</td>
<td>134</td>
<td>24</td>
<td>17.9%</td>
<td>1,118</td>
<td>78</td>
</tr>
<tr>
<td>計</td>
<td>429</td>
<td>109</td>
<td>25.4%</td>
<td>5,900</td>
<td>405</td>
</tr>
</tbody>
</table>

注：佐久総合病院健康管理部の昭和41年度の調査資料による。
調査対象は長野県佐久郡の山間部に位置する8部落。

している計算になる。
また、日本農村医学会が全国3,947人の農薬散布従事者について行なった農薬中毒の実態調査の結果によると、農家において農薬を使用する日数は1ヶ月間平均男4.1日、女3.8日、平均4.0日であり、農薬散布によって中毒した比率は男44.6%、女35.8%、平均42.3%になっている。これらのおいずれも治療を受けるほどの重症中毒者ということではないが、農薬散布従事者の4割が何らかの中毒の所見を訴えるということは憂慮すべきことである。
なお、厚生省の統計がなぜ実態より過小の数値になるかについては、厚生省のものは保健所または警察で集計した全ての重症例で、しかもその原因がはっきり農薬による中毒と公認されたもののみであるということにもなるが、面接調査をすれば数100件の中毒があるのに、医者にかかる農民は僅かにその5%程度しかいないこと、また農民は苦しくてもかまんすのが得意で「1日以上、仕事をしてなければならなかった」というような重症でもなかった医者にかかろうとはしないことなどが原因としてあげられる。
つぎに、農薬散布中の中毒事故の原因について日本農村医学会の調査資料によってみると第3表のようである。

第3表 農薬散布中の中毒事故の原因

<table>
<thead>
<tr>
<th>原因</th>
<th>昭42</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>防備不十分</td>
<td>112</td>
<td>85</td>
</tr>
<tr>
<td>本人の不注意</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>健康状態の不良</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>散布機具の不良</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>天候状況（風が強かった、暑かった）</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>その他</td>
<td>24</td>
<td>21</td>
</tr>
<tr>
<td>不明</td>
<td>37</td>
<td>114</td>
</tr>
<tr>
<td>計</td>
<td>231</td>
<td>271</td>
</tr>
</tbody>
</table>

注：日本農村医学会農薬中毒研究班の調査資料による。

防備不十分によるものが最も多いが、これはマスクをしなかったり、手や足のまま、あるいは長袖や半ズボンなどの露出部が多い状態で農薬を散布した場合などに起きている。
ついて「本人の不注意」は「健康状態の不良」が高く占めているが、本
人の不注意というのは農薬の取り扱いが雑である、散布後に手足などを洗わないと、前の方が強いても手足を洗わないと、散布後に多量の薬を飲むなどする、前の方が強いても手足を洗わないと、健康状態の不良というのは体が悪く、無理をして散布した、労働状態が続いていた、手足を洗わないと傷があった、などである。

結局、農薬散布中の中毒事故の多くは、農薬に対する知識の不足、安易さなどが原因となって起きていることができる。

農薬の誤用による事故は、中毒と死亡を合わせて毎年約50件が毎年発生している。幼児が誤って授与を食べたり、ジュースの空ビンなどにとっておいた使用済みの農薬を飲んだり、粉剤を小麦粉に混ぜて菓子の材料に使ってしまったといったものなどがこれに含まれる。

つきにこのような農薬による中毒事故がどのように人体疾患としてあらわれているかを日本農村医学会の調査資料によってみる第4表のように、全身症状を示す急性中毒と皮膚炎が最も多く、ついて結膜炎、角膜炎の順となっている。農薬による人体疾患の大部分はこれらの4つに含まれるとみてよいようである。

さて、以下の大部分は農薬の急性中毒によるものであるが、これ以外に慢性中毒によるものがある。

農薬による人の被害は、まず目に見えるものとしてそれを取扱う農民とそれが散布された周囲の人々の災害の危険ということではじまったが、そのような大量使用の結果は次第に目に見えないかたちをとって、農薬中に残留したり、また散布された田や畑の土壌に、水は用水から川に、そして飲料水に、というかたちで広範な環境汚染となって一般大衆をもおびやかす、いわゆる公害的な性格を帯びてきた。

農薬中に残留した農薬によって人が被害を受けたというのは実際にはきわめてわずかしか報告されていないが、可能性は大きく、とくに農薬を新鮮なうちに自家消費する農民において、一般大衆以上の被毒の危険性が考えられる。さらに農薬は農薬散布時の急性中毒の危険性と農薬中に残留することによる残留農薬による慢性中毒の危険の二重の危険にさらされているといえるのである。最近、残留農薬の食品への蓄積を通じて一般大衆への影響がうんぬんされるようにになったが、以上のようなことから農薬による障害を真先にこうむっているのは何といっても農薬を直接取扱う農民であることに関わらない。
2. 農薬の人に対する毒性

農薬は、本来、害虫や病原菌、雑草などによく効くようにつくられた高度の生理活性をもつ化学物質であるため、その多くは人に対しても毒性をもっている。したがって農薬工場で働く人や農薬散布に従事している人、あるいは散布場所の付近に居あわせた人などの皮膚にふれたたり呼吸器などから吸入されたりすることによって毒作用を示す危険性をもっている。散布農薬が残留する農産物を摂食する人、故にあるいは誤って農薬を服用した人などに食中毒としての毒作用を示す危険性をもっている。

これらの毒性のあらわれ方にはいろいろあるが、大別すると比較的量の農薬が短時間のうちに作用することによって示される急性毒性と、比較的微量の農薬が長期間にわたって摂取されることによって示される慢性毒性となる。前者は農薬散布従事者やその周辺の人々、あるいは故意にこれを服用した人などに起こるもので、過去に実際に起きた農薬被害の大部分はこれによるものである。後者は農薬工場の従業員や農薬散布従事者にも起こることはあるが、大きな問題としては、すでに広く知られている農薬中に残留する農薬によるものである。

急性毒性の問題は、現実に人において被害例が起こっているという意味では重要であるが、その対象は農薬に関係のある一部の人間に限られているのが普通である。一方、残留農薬による慢性毒性については日常不可欠な食品衛生の問題であるとともに、その影響の及ぼすおそれのある人の範囲が国民のほとんど全部であること、その的確な防止対策の樹立がきわめて困難であるなどの点で急性毒性より難しめの問題を含んでいる。

つきに農薬毒性の人体に対する障害作用がどのような疾患としてあらわれかかるかを見てみよう。農薬の害作用には大別して局所作用と全身作用とある。局所作用とは農薬が触れた部分だけに起こる害作用で、皮膚や眼、呼吸器系などに刺激や障害などを及ぼしたりするものである。皮膚にあらわれる障害は俗に皮膚かぶれといい接触性皮膚炎の1種である。有機水銀剤、有機塩素剤、有機りん剤、いおう剤などはこの炎症を起こしやすい。また農薬には眼の結膜を刺激して、角膜に障害を与えるものがあるが、プラストサイジン剤、有機りん剤、有機塩素剤、石灰いおう合剤などがこの障害を起こしやすい。

全身作用は体の一部から吸収された農薬の影響が全身に及びもので、中毒と過敏症がある。農薬の人体に対する作用のうちで最も重要なものは中毒で、中毒はその起こり方によって急性、亜急性、および慢性などに分けられる。農薬の種類、摂取薬量、摂取回数などによってこのような中毒発現の様相が異なってくるが、これは結局、毒性的強さと同時に体内における蓄積性や分解、排泄の難易などに基づいている。有機りん剤やカーベメート系殺虫剤などは体内で分解・排泄されやすいので、一般に慢性中毒はないと考えられており、有機塩素剤や有機水銀剤などは分解・排泄が困難で蓄積されるので、慢性中毒が起こりやすいことが知られている。

過敏症は普通の人では起こらない程度の農薬で中毒や皮膚炎を起こすことをいう。これはアレルギー反応の一種で、体内に生成された抗体が抗原となる農薬に接触することによって抗原—抗体反応を起こすことによって、有機塩素剤やいおう剤などは皮膚炎と同時に過敏症も起こしやすいことが知られている。
さて、農薬のような医薬用外の化学物質はその致死量や使用方法からみた被毒の危険性などを考慮した毒性の強さに応じて、毒物および薬物取締法に基づいて、特定毒物、毒物、薬物、普通物のいずれかに格付され、所定の規制を受けている。この格付の基準は第5表に示すように体重1Kgあたりの致死量である。

第5表 農薬の格付けの基準

<table>
<thead>
<tr>
<th>毒物</th>
<th>剤物</th>
<th>普通物</th>
</tr>
</thead>
<tbody>
<tr>
<td>経口投与による致死量</td>
<td>< 30 mg</td>
<td>30 〜 300 mg</td>
</tr>
<tr>
<td>皮下注射による致死量</td>
<td>< 20 mg</td>
<td>20 〜 200 mg</td>
</tr>
<tr>
<td>静脈内注射による致死量</td>
<td>< 10 mg</td>
<td>10 〜 100 mg</td>
</tr>
</tbody>
</table>

注：数値は体重1Kgあたりの致死量

このような農薬の毒性の強さは、普通、薬剤をソソドという細い管を通じてハツカネズミなどの実験用動物の胃に注入して取り、試験された動物の半数が死亡する薬量の大小によって決める。これが経口毒性といわれているが、このほか体内に注射して求められる皮下毒性や薬剤を細かい霧状にした中で呼吸させる吸収毒性などがあり、さらに実際の取扱い上の危険性に応じて薬剤を皮膚に塗って求められる経皮毒性も調べられている。

このような方法で調べた毒性が特に強く、人体に危険なものには「特定毒物」として指定されている。特定毒物の基準は経口毒性の致死量が体重1Kgあたり20 mg（成人1人あたり17mg程度）以下か、皮膚に触ることによって著しく中毒を起こしやすいか、蓄積性の中毒を起こしやすいか、中毒が回復にくく、後遺症が残るか、中毒の治療法が見出されていないか、などであり、これらを総合的に考慮したうえで決定されている。特定毒物の農薬は使用法も規定され、個人の使用または保管が禁じられている。農薬などの団体の決められた用途に、危害を完全に防ぐ方策を講じたうえで共同防除でのみ使わなければならない。

毒物に指定された農薬は、成人が飲んだ場合、1〜3 g程度で死ぬほどの毒性をもっている。特定毒物のように使用上の制限はないが、毒性はかなり強いものなので、ラベルなどに表示されている注意事項によく留意して使うようにしなければならない。

薬物に指定された農薬は、成人が飲んだ場合、3〜50 g程度で死ぬほどの毒性をもっている。薬物に指定されたものもより毒性は弱いが、人体に障害を及ぼす危険性は大きいので取り扱いにはよく注意しなければならない。

毒物と薬物扱いの農薬は「普通物」として扱われ、法律的にはその規制も受けない。しかし人体に全く無害というわけではない、飲んだ場合の致死量が30 g程度以上というところ、毒性や薬物より毒性が少ないということだけである。このような「普通物」扱いの農薬でも实际上は中毒事故がしばしば起こっているので、取り扱いは慎重にしなければならない。

農薬の分野で比較的多く使われている農薬について、その人体に対する毒性を示すと第6表のようである。

第6表 主な農薬用農薬の人体に対する毒性

<table>
<thead>
<tr>
<th>薬剤名</th>
<th>体重1Kgあたり致死量</th>
<th>格付</th>
<th>検定方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>モノフルオル酸酐塩</td>
<td>12.7mg</td>
<td>特定毒物</td>
<td>マウス経口</td>
</tr>
<tr>
<td>A P O</td>
<td>24.5</td>
<td>劇物</td>
<td>マウス経口</td>
</tr>
<tr>
<td>メチルジメトン</td>
<td>40.0</td>
<td>特定毒物</td>
<td>マウス経口</td>
</tr>
<tr>
<td>D D V P</td>
<td>50.0 ～ 70.0</td>
<td>劇物</td>
<td>ラット経口</td>
</tr>
<tr>
<td>E S P</td>
<td>57.8</td>
<td>劇物</td>
<td>マウス経口</td>
</tr>
<tr>
<td>F C P</td>
<td>82.0</td>
<td>劇物</td>
<td>マウス経口</td>
</tr>
<tr>
<td>サリチオニン</td>
<td>91.3</td>
<td>劇物</td>
<td>マウス経口</td>
</tr>
<tr>
<td>メカルバム</td>
<td>92.0</td>
<td>劇物</td>
<td>マウス経口</td>
</tr>
<tr>
<td>F A P</td>
<td>198.0</td>
<td>劇物</td>
<td>マウス経口</td>
</tr>
<tr>
<td>スプレクトマイシン</td>
<td>200.0</td>
<td>普通物</td>
<td>マウス経口</td>
</tr>
<tr>
<td>D B C P</td>
<td>221.0</td>
<td>劇物</td>
<td>マウス経口</td>
</tr>
<tr>
<td>純剤</td>
<td>300.0</td>
<td>劇物</td>
<td>ラット経口</td>
</tr>
<tr>
<td>マラソン</td>
<td>369.0</td>
<td>普通物</td>
<td>マウス経口</td>
</tr>
<tr>
<td>D E P</td>
<td>610.0</td>
<td>劇物</td>
<td>マウス経口</td>
</tr>
<tr>
<td>M E P</td>
<td>788.4</td>
<td>普通物</td>
<td>マウス経口</td>
</tr>
<tr>
<td>ホルマリン</td>
<td>800.0</td>
<td>劇物</td>
<td>ラット経口</td>
</tr>
<tr>
<td>C P C B S</td>
<td>2,000.0</td>
<td>普通物</td>
<td>ラット経口</td>
</tr>
<tr>
<td>キャプタン</td>
<td>2,000.0</td>
<td>普通物</td>
<td>ラット経口</td>
</tr>
</tbody>
</table>

なお、以上に述べてきたことは、農薬を1回だけ投与して調べたもので、急性毒性の強さは示しているが、長期の連続投与によってあらわれる慢性毒性については何らの知見も与えてくれない。

1回かぎりの摂取によっては何らの悪影響を生じに及ばない量の薬物も、これを継続して摂取した場合には、潜在的な中毒作用の持続、薬物の組織への蓄積、生体内における代謝産物の作用などが重なり合い、二次的、三次的ないくつかの影響を生じに与える可能性がある。

このような慢性毒性の検定のために現在が国でとられている方法は、ハツカネズミなどに90日間にわたって連続投与してみるというものである。そして飼料の摂取量、成長（体重）、死亡率、血液および尿の変化、組織別の重量比、各種臓器の病理組織学的検査、酵素検査などの結果をもとに、無影響量、最少中毒量、確実中毒量などを決める。さらにこれらと人の平均農薬摂取量や平均体重などをかんがいし、人間が一生の間、毎日摂取したとしても何ら障害のあらわれない農薬の農薬中に残存量、人の1日あたり摂取許容量などを算出するわけである。

こうした得られた数値には100倍というような安全のための係数を乗じて実際用途に適用させてはいるが、筆者には多くの農薬の作用機構が明確であるわけではなくてされている現状においては、人体に許容できる農薬の量などというものが簡単には決めるとは思わわれない。毒性検査をすることによってわれわれが確実に知りうることは、その作用機構がわからない限り有毒であるということだけであると思われる。
したがって厚生省が食品衛生法に基づいて決める薬剤残留許容量などは一つの目安にすぎないものと考え、これを過信しないようにしなければならない。

そして農薬の使用にあたっては、たとえ人畜などに安全とされているものであっても、その使用が人類の生存と福祉に絶大なメリットをもたらすときにだけ、最大の注意をもって最少の使用量におさえていくという態度でのぞむ必要がある。

３．農薬の養蚕農民に対する影響

養蚕農民といってもその大部分は稲作とか園芸作物、畜産などを複合的に行なっているので、一般農民の場合と特別に異なるところはないが、農薬に被毒する危険性という面からは、桑栽培や養蚕などの際に使用する養蚕用農薬による被毒の可能性という要素が別に加わっている。

また養蚕技術には、とくに今まで、きめ細かな面があったので、養蚕農民がそれに気をつけるあまり精神的、肉体的な過労を強いられ、健康を損っていたとすれば、それだけ農薬などに対する感受性が高くなっていたはずであるから、農薬の影響も受けやすかったのではないかと想像される。しかし技術革新が進んだからの近代養蚕においては、そういうことは考えなくて良いであろう。

さて、養蚕における化学薬品の使用ということで黒に付くのはホルマリンによる蚕室の消毒である（第1図）。ホルマリンはホルムアルデヒドを37％と、重合防止のためのメタノールを10％程度合む液体で、原液は劇物の扱いになっているが、蚕室蚕具などの消毒にはホルムアルデヒドとして2～3％になるように水でうすめて用いる。ホルムアルデヒドは化学的親和力が強く、細胞原形質のタンパクを凝固または変性させ、すべての細胞機能を抑制、死滅させる作用をもっている。人体に対しては、まず眼を刺激して催涙させたり、上部呼吸道を刺激してせきを起こさせるが、これが長くと角膜、気管、肺、皮膚などに炎症を起こし、さらに食慾減退、衰弱、不眠症などの原因にもなることが知られている。

蚕体蚕座散布用の粉剤として汎用されているパフソールも同じように強い刺激物をもったパラホルムアルデヒドガスを出し、使用の際にななりの苦痛を伴なうものである。

養蚕農民がこれからのガスによって重症の被害を起こしたという実際の被害例は、おもてに出てきているが、あの強烈な刺激臭や切迫感にたびたび触れることが人体に良いはずがなく、潜在的な被害はかなりあるのではないかと推定される。

第1図 ホルマリンによる蚕室の消毒

—18—
また養蚕では蠶座に粉剤を散布する作業がかなりひんぱんに行なわれるが、これを散布する際に空気中に散発する微粉は、たとえ作業者がマスクをしていても呼吸器に吸入される可能性があるし、目に入ることが懸念される。これらによる被害例もさすがに常時でてきていがい、実際に健康障害の一因となっていないとしたち苦しいである。

この他、高度さらし粉やPCP剤なども養蚕で汎用されているが、高度さらし粉には強い漂白作用があるため、この液にたたび触れると皮膚を痛めるし、PCP剤も厚重大きものは皮膚や粘膜を刺激する作用があり、微粉を吸入するとくしゃみを発する。

なお近年まで蚕の硬化病や蚕の副呼吸器などの防除に広く使われた有機水銀剤による養蚕農家の被害例としては皮膚炎がある。しかし本剤は使用禁止になったのでこれらの問題はなくなるであろう。また水銀剤にかかわって最近でてきた非水銀系農薬では今のところ人体被害が起きていない。

以上、養蚕用農薬によってもたらされる可能性のある人体被害について概略を述べたが、養蚕農民は農薬使用にあたってマスクや手袋、かばなど防護対策を十分にしているし、取り扱いもかなり注意深く行なっているので、実際にはあまり問題にするほどの事故はまっていない。

しかし養蚕用農薬も人体に有毒であることとは明らかであり、少しの不注意で重大な中毒事故がまぬかれないという課題はなお残されているので、取り扱いに一層の慎重さを要することはもちろんだこと、できるだけ危険性の少ない安全な農薬に切り換えていくという努力がつねに必要になるわけである。

4. 農業と農薬および養蚕業

農薬は各種農業生産の分野においていわゆる技術と密接に結び、生産の安定、品質の向上、労働の軽減などに大きな貢献をしているが、養蚕においても例外ではなく、昔は防除が困難であった蚕桑の病害虫の防除も可能にした。手さエネルギ行なわれていた桑園雛草防除の重労働からも人を解放した。また消毒剤の使用によって省力的、粗放的な飼育法でも蚕作の安定がはかるようになった。

このような利点が一般にも認められるにつれて、農薬の生産量および使用量ともに今年増大してきている。（第2図）

農薬の使用量の増大に伴い人畜や有用動植物などに対する影響、環境汚染問題などがクローズアップされるようになり、農薬の使用に批判的な動きも出てきたが、農薬の使用はとうとうどうとないとしていない。

これは、農薬も養蚕業も、現在では農薬の使用を前提としてその品種の選定や栽培管理、機械力の導入などの作業体系を組んでいるし、農薬による病害虫雛草の防除は他の方法よりも効果が確実でしかも効率的ので安定した増収と収穫物の品質の向上が期待でき、農薬経営が企業的になりつつある今日、これらの効果を農家の利益を放棄するわけにいかないことなどによっている。

農産物の需給が緩和した今日、病害虫を防除してまで反収を高める必要はあるまいというよう
第2図 農薬の生産額とその養蚕における使用量の年次別推移
（農林省植物防害課および統計調査部の調査資料による）
な声も聞くが、そう考えるのは為政者や農業をきらう消費者であり、農家は需給が緩和しているからこそ農産物価格の上昇を期待できないために、収穫を増大して生産費を相対的に下げようとした、品質の向上をはかって高い販売価格を得ようとするのである。

生産費を経営の規模拡大によっても下げられようが、これはわが国の農地事情ではないへん困難なので、農家は多収と集約的な病害虫等の防除によって収穫を上げ、単位生産費あたりの生産費を下げようと努力するわけである。

農薬の使用量が増大するにつれて防除効果は相対的に低くなり、農薬使用の経済性も相対的に下がってくるが、絶対的には有利であるために、農薬使用によって中毒を起こすことがあってもまた昆虫生態学者が農薬乱用に起因する害虫の発生激化を指摘し、ジャーナリストが環境汚染を書き立てても農家の農薬使用熱は衰ええない。

学者の指摘は学問的であり、農家の計算は経済的な損得である。農家に農薬の使用を思いとどまらせるには、農薬による防除方法よりも経済的に一層有利な実際的な方法を確立することのほうが得策である。

しかし、天敵や抵抗性品種の利用、栽培法の改善などの農薬に代わる防除手段は、農薬による防除のように、どの病害虫にも適用できるという普通性がないし、防除効果も農薬のように切れ味がないので、農薬による防除と違って費用がかからないにもかかわらず農家には魅力的でないわけである。

農林統計によると、昭和45年には水田の減反政策が実施され、作付面積が前年度の11％も減り、昭和45年（1970年）頃と同じ285万6,000haになったが、米の生産量は陸稈と合わせほぼ平年並みの12万3,000tにも達した。

このことは政府の減反政策が単位面積あたりの生産量をいよいよ増加させるきっかけをつくったことを意味している。またそれは例年に比べ単位面積あたりにより多くの農薬や肥料が投入された可能性を示唆しているといえよう。

内容の良し悪しご別として、それは減反政策に対する農民のささやかな技術的抵抗であるといえども知れない。

さて、養蚕においては蚕という農業上の敏感な昆虫が中心的役割を演じているために、農業をいつでもどこでも使用するというわけにはいかなかったことなどもあって、従来、その使用量は一般農薬などより少なかった。しかし、蚕室・蚕具の徹底消毒による蚕作の安定のように薬剤の効用ははっきりしてきたことや、蚕に低毒性ないし短期残留性の農薬が多数開発されてきたことなどによって、養蚕における農薬の使用量も増加の傾向にある。今後とも増えることはあっても減ることはないままである。

5. 農薬による人の被害の防止対策

農薬による人畜などの被害の危険性が露呈されるようになってから、すでにかなりの年数がたち、対応する施策も一応形をたどったと思えるのに、実効が必ずしもあがらないのは何故であろうか。
農薬散布中の事故については、確かに農民の不注意ということがあげられる。しかし不注意だけでは片づけられない場面も実際には多い。真夏の炎天下に防毒服と手袋といった完全武装で農薬散布を行なわなければならないようでは、汗をびしょにかくし、作業も自由に行なうことができない。さらに近年は人手不足のため作業に追われているから手早くやろうとする。そこでうっかり風を入れて農薬をあびてしまうという結果になる。

使用にあたってとくに武装をしなくてもすむような低毒性の農薬を使わないかぎり、このような被害は防げないであろう。

低毒性農薬については、幸い近年に研究開発が進んで、新農薬の登録状況をみても第7表のように年々その比率を増大させている。

第7表 毒性別にみた農薬の年次別生産額

<table>
<thead>
<tr>
<th></th>
<th>昭41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
<th>46</th>
</tr>
</thead>
<tbody>
<tr>
<td>特定毒物</td>
<td>3.2%</td>
<td>2.1%</td>
<td>1.7%</td>
<td>1.4%</td>
<td>0.4%</td>
<td>0.2%</td>
</tr>
<tr>
<td>毒物</td>
<td>21.5</td>
<td>14.4</td>
<td>9.1</td>
<td>9.1</td>
<td>6.8</td>
<td>4.7</td>
</tr>
<tr>
<td>劣物</td>
<td>37.9</td>
<td>38.4</td>
<td>39.9</td>
<td>39.0</td>
<td>39.0</td>
<td>4.7</td>
</tr>
<tr>
<td>普通物</td>
<td>37.4</td>
<td>45.1</td>
<td>49.3</td>
<td>50.5</td>
<td>53.8</td>
<td>95.1</td>
</tr>
</tbody>
</table>

注：農林省植物防疫課の調査資料による。

しかし人畜無害とされたような普通物扱いの農薬さえ、現実には人中毒事故を引き起こしているから困ったものである。したがって低毒性農薬の普及だけで農民が農薬禍から解放されると思わぬべき。やはりあらゆる農薬は有毒であるという認識に立って安全使用の徹底が必要である。

このためには「農薬の安全使用基準」にそった使用を行なうすることはもちろんなこと、散布技術上の細かい注意も必要である。たとえば散布に先立ち、体の調子の悪い人は絶対に参加しないようにすること、散布にあたっては風のないちから散布すること、皮膚の露出を避けること、マスクを着用すること、などの諸注意を守らなければならない。また農薬の付着した衣服は早く脱ぎ、皮膚はよく洗い、うがいを忘れてはならない。

また、特定毒物に指定されている農薬などでは危険を防ぐために共同防除が実施されているがその際に残った薬をこっそりかくしとっておき、あとで一人で使うということも事故の起こる原因の一つになっているから、このような事態や誤用、誤飲などによる事故を避けるため、農薬の保管や処理には十分気をつけるべきである。責任者を明確にし、さらに容器や包装などには間違われないように内容物についての記載を明かにし、一定の場所に置くようにしなければならない。

なお、農薬による人の被害を防止するためには、取締り法規や行政指導などの強化も必要である。農薬取締りに関連した法規として今まで農薬取締法とがあり、それぞれ農薬品質の保持向上、農薬による人の事故防止などに役立ってきたが、食品中の残留農薬対策や環境汚染対策などには直接ふれていなかったため、法の拡大適用や行政指導などによる措置がとられてきた。したがって法的な裏付けは必ずしも十分でなく、実効も上がりにくいかったが、近年の法改正や行政指導に
はこれらの点も考えたため、対策がかなり明確になってきた。
かくして現状では農薬による人の被害防止対策の体制は一応整ったと見なして良かろう。あとはこれを的確に実行に移すことである。
そのためには、保端における農薬使用の指導体制のあり方、たとえば防除指導員の増強と質の向上、現在の農薬事情に対応した防除組織の再編成と強化、なども必要である。さらに低毒性農薬の開発と普及、天敵の利用や抵抗性品種の採用のような農薬だけにたよらない防除手段の開発と普及、農薬とそれ以外の防除手段を有機的に結合した総合的防除技術の確立、なども必要であるし、一方、それらを可能にするための試験研究体制の強化などについても真剣に検討されなければならないと考える。

むすび
以上、農薬の人体、とに養蚕農民に及ぼす影響とそれによる被害の防止対策などについて述べた。農業における農薬の利用場面はきわめて広く、これからも一層活用されていくものと想定されるが、農薬経の問題をのりこえて農薬を安全で有効な生産資材としていくためには、研究面においては作用機関と選択毒性の両面からいま一層掘り下げた、それらを基礎とした新薬剤の開発および正しい使用法の解明が必要であり、実用面においてはそれらに基づく適正農薬の適正使用が切に望まれる。
農薬による人畜などの被害問題が毎年各地でひんぱん発していることは憂慮にたえないが、かといって極端に危険的になって農薬全廃を唱えるほどの必要性は全くない。重要なことは、農薬の作用性を正確に把握しあくまでわれわれの掌中で農薬を完全に制御しつつ使いこなすように努めることである。
このような努力の積み重ねが農薬と人間との関係をより改善し、農薬が現在より以上に農薬や養蚕業の生産性向上のための有力な武器となることを信じて疑わない。
特集

フッ素汚染による被害対策と養蚕技術上の問題

埼玉県蚕業試験場 三木六男

昨年5月より蚕の公害関係の仕事（主にフッ素）を担当して、フッ素汚染地域の調査、被害試験等を行なって来た。このフッ素汚染による養蚕の被害は埼玉県南部の住宅地や人口密集地帯の環境汚染とは異ったもので、県北部にある児玉町の瓦工場から排出されたフッ素が周辺の桑畑を汚染し、養蚕に大きな被害を与えている。県南部の大気汚染は鉄物の町川口市に住る480の工場のキューバラから排出される粉塵や、その他の工場からの排出物そして自動車の排気ガス等で、光化学スモッグによる被害もみられている。この県の北部による対策は過密と過疎の進行と同様に公害においても対照的で、県南部では汚染範囲が広く、人の生活環境の破壊が進むのに対して県北部では被害が局地的で範囲も狭く、農産物の被害が主である。我々の仕事も県北部における養蚕の被害が主であるが、とくに児玉町周辺のフッ素汚染による被害が大きい。そこでこのフッ素汚染による被害の調査および関係の試験を行なって来た中で感じたことについて述べてみたい。この地区の被害は戦後も少なく見られるようになり現在に至っているが、この間に適切な被害対策が行なわれた様子もなく、瓦工場の周辺の桑畑がなくなり、それに新たに瓦工場が建てられて被害範囲が拡げられるといったようなこともあった。そして現在は児玉町の町南部に赤黒15、黒赤30の工場が群立っている。

瓦焼きの煙による養蚕への害は安政の頃には認められ、幕府が対策を命じられ、被害救済の措置がなされたことが古文書に見られるが、養蚕の技術上の被害軽減法については、まだ有効な方法もなく現在に至っている。

このことは試験研究にたずさわる者として、その責任を痛感するものである。

昨年春蚕より被害農家に対してとられた対策は、桑葉および大気中のフッ素濃度調査により、汚染範囲の決定と汚染地域の桑葉の給与上の注意にとどまり、これとかも有効な対策といえない。大気および桑葉のフッ素濃度の調査は、汚染地域を約200mの間隔で採集目をに行ない、調査個所は児玉町周辺で20ヶ所であった。

昨年以来の被害およびその対策状況は、児玉町周辺で昨年春蚕の4眠前100分の農家で経過および体形の不揃いが著しく、就眠しない蚕が見られ、これらの農家では4眠起を持ってずに捨ててしまった。これは経験から瓦工場の煙によるハシのものであることを察知したためで、間もなくその他の数軒の農家で春蚕を断念する結果となった。

この被害は児玉町の一部約10ヘクタールと隣接する美里村の2箇所約20ヘクタールであるが、初秋蚕では顕著な被害が見られなかったが、晚秋蚕において再び被害があらわれ、桑葉および蚕体から多量のフッ素が検出された。これに対し県当局では6月上旬に、フッ素発生源とみられる児玉町の赤黒瓦工場の立地検査を行ない、県内のフッ素濃度が県の排出規制を越えたものとして、これらの工場に改善命令が出された。その結果赤黒瓦工場にフッ素除去装置が設けられ、本年4月より運転を開始した。本年の春蚕は4眠にやや不揃いとなり被害が心配されたものの

—24—
が数軒あったが、無事上箇して上作であった。

初秋蚕の養蚕は普通といえば、被害報告には挙げていない。毎年秋蚕については上箇前であるが、被害が見られ桑葉および蚕体から多量のフッ素が検出されている例もあり、養蚕が懸念される。

以上が昨年秋以来栃木県内を通じたフッ素汚染による養蚕の被害状況であるが、瓦工場による被害はこの地域では、児玉町地域内の桑畑において20年以上前からあったにもかかわらず、被害を防げなかったことについて考えてみる必要がある。昨年以降被害の調査に従事して幾度か予想もしなかった困難な問題があることを知った。フッ素汚染の被害を防止するためには発生源の工場に除去装置を取付けて完全に運転すれば、それでことは済むはずである。しかし第三者から見て簡単と思われるようなことでも、そこに内在する諸問題を深く掘り下げてみると、複雑な様相を呈し、行政、経済、社会、教育等のあらゆる問題と関連し、これらを一つずつ解きほぐすように解決して行かなければならず、許される範囲で時間をかけてこれに当たらなければならない。

人命に関する公害についてさえも、長い年月をかけてやっとその非を認めさせ、解決の糸口をつかんのが現状である。ましてやぐくむ狭い地域の事については、世論の支援がそれほど期待できず、同地区内でも利害が異なるための反目もあり、ときには力関係により「解決されるのが現状である。

例えば、地場産業としての瓦工場対農業の中の養蚕の対立や瓦産業の推進などの行政上の諸問題、さらにフッ素除去装置設置のための補助金が、瓦業界不況のために運転資金に化けてしまった例など、われわれ研究機関にいる者にとっては想像できないような問題が山積している。

一方、フッ素除去装置が確実に運転されていると言う証明はどこにもない。一方、農民側においても被害とはユーザーである。菌とそればもうけものといった安易な考えが一部にあり、これらの農家は養蚕被害者他の作目を転換したりなどして、結果がいいとはいえず、被害対策も不利に終わった点もあるが、現在確認している養蚕農家はまだとに固定を固めてしまっている。20年以上前から被害が認められていたのであるが、被害の大半は黒瓦工場の排ガスによるもので、汚染も接続する電で200m位の範囲で被害も少なく、行政上からも養蚕技術上から積極的な被害対策がなされなかったために、被害者数が減らしたものの多く、被害も表面化しなかったものと思われる。近年になって瓦工場も転換に転換するようになり、製造規模も拡大され、工場数も増加し、フッ素排出量も多くなり、隣近所に近い所に工場が建てられたために、昨年春蚕より大きな被害を受けるようになった。この被害対策について養蚕の技術上からは具体的で有効な方法は見出せない現在、早急に解決（防除）方法を確立して被害の軽減をはかりなければならないのである。しかしこれまでに効果的な防除技術が確立されなかったことについては反省されなければならない。

養蚕関係の工場排出物について（瓦焼きの工場も含めて）の研究報告は決して少ない数ではない。栗林氏（1966）の紹介総合に詳述されているが、研究の内容についてみると同氏が指摘するように、汚染の給与、汚染物質の毒性等による事例的な試験の範囲にとどまっているものが多い。また同氏の総合に当たつて（1965年7月）で養蚕に被害を与える工場排出の有毒物質に
に関する報告の中で、亜硫酸ガスとされていることが多いが、これらの中には重金属類、フッ素などによるものが含まれていることが近年明らかにされている。これまでの報告の多くが事例的なものであるため、本質的な解明がされていないために、被害対策を行う上に当たると考えたとしても、効果的な防御技術として積極的に取り入れられない。例えばフッ素汚染土を5令5日目以後ならば影響が少ないと言う報告があり、これは5令5日後にフッ素抵抗性がつくためと説明されているが、抵抗性がとるに及ぶものとは不明である。さらに5令9日後に抵抗性と、5令前半の害の大い点との関連性や、養殖の発育時期と抵抗力などについての解明をしないと、被害地域における技術指導も困難である。現象としては鳥かの事柄が知られているが、被害農家でも経験として知っていることが多い。しかし防御技術を確立するには不十分であり、一層の基盤的な研究が急がれている。今春より染つき瓦工場にフッ素除去装置が取付けられてその効果も現われているようであるが、排出規制値の10PPm以下であれば排出は認められることになり、その上30の黒瓦工場から排出される分を合わせると相当のフッ素によって養殖が汚染されることになる。実際に本年の養殖のフッ素量は昨年よりも誠にとっており、非汚染化に比較すればまだ高い値を示していることは、われわれの懸念していたことが現実になって来たのである。従って、汚染の程度は以降より低くなっても依然として危険性は存在し、まだ続くのであろう。

このような事態に対して早急にフッ素に対する防御技術を確立しなければならないのであるが、有効な資料が少ない中で改めて技術を確立するための作業を進めなければならない。それは単に養殖のフッ素量についてだけではなく、飼育環境、栄養条件、飼育技術などの外からの要因と養殖、発育時期、生理などの養殖に与える要因を追究しなければならないが、これらの諸要因との関連を解明するには多くの時間と労力と研究費を必要とする。研究を推進する上で有毒物質の性質によっても難易があり、工場排出物の多くは慢性中毒症状（発生期の近地で高濃度汚染の場合は急性中毒症状を示す場合もある）なので、被害の症状が現われるまでに時間がかかり、前述の環境、栄養、養殖の諸要因に影響される度合いも高く、たとえば病原性の違いと区別がつかない場合さえもあるので、被害（途切）の原因追求が困難な場合を生じる。工場排出物による被害は養殖に現れるためしか出さないものがあり、養殖に現れるその出さなくとも養殖を与える例が多いので、慢性中毒症状が多い点も加えて、研究上および被害対策に困難な点が多い。このようなことはこれまでに養殖の大気汚染関係の研究を進らされた一因になったのではないだろうか。汚染の判定は養殖の結果において調べることがある大気、養殖、養殖、養殖などの分析によるが、養殖に対する給与は低濃度では飼育条件により必ずしも症状が現われるとはいいえ、分析は設備や技術を必要とするのでこれが不足の場合は研究も対策も進まず、結局給与試験の範囲内にとどまらず得を得ません。これまでの研究にはこのような問題点があったために研究成果が上がらなかったともと思われる。以上のようにフッ素汚染による被害に対する研究面および技術面での遅れが、現在もなお被害を認めるような状態にあるが、とくに研究面での進展が見られなかった点について考えてみたい。

養殖において工場排出物を含めた環境とよばれている被害については古くから研究が行われ、その研究の多くは都道府県の養殖試験場が中心になって進められて来ている。被害は全国
各地で発生しており、それぞれの地域で被害対策が行なわれているが、発害に対する基礎的な研究は行なわれておらず、前記のような事例的試験が多い。従って学会関係の報告も少なく、現在に至っている。このことは工場排出物関係は蚕糸業界ではそれほど重要視されていなかったのではないかと思われる。被害は局地的でありとくに産業界に対する影響が著しく、病猟、経営などの分野に比較して小さいために重要視されず、研究面でも昆虫や植物の必須元素でないものが少なく、研究テーマとしてもあまり興味を持たれることも少なく、また深く究明されずに来たものと思われる。しかし、戦後とくに近年になって企業の地方進出が激しくなり、各種の工場が農村地帯に建てられるようになり、これらの工場から排出される有害物質による被害も見られるようになった。また従来の黒瓦工場によるような小規模な被害とは異なり、汚染範囲も拡がり、高濃度の汚染が現われるようになった。このような中で一部の人達により研究が続けられており、近年、これに関する研究機器の進歩により研究も進展して来ている。

研究費も増加しているが、世論の高まりによるような感があり、必ずしも蚕糸関係の積極的な要求とはいえないのではないだろうか。

ここで県の公害に対する機構と我々の役割について述べると、埼玉県では県庁に公害対策および規制の2課があり行政面での仕事を行ない、公害センターで調査、試験が行なわれているが、この外に県内各試験研究機関にも必要に応じて独自に研究が行なわれている。住民に対する窓口は県では保健所、市町村ではそれぞれ担当の課を設置している。被害が発生すると市町村または保健所から県の担当の課に報告や調査依頼が出され、担当者や公害センターが調査を行なうのである。養蚕関係の場合は保健所を経由しても養蚕試験所へ調べて来て、調査にはわれわれが当ることになっている。しかし多くの場合は農民から養蚕技術員に伝えられ、養蚕指導所を経由して来るか、現地から直接われわれに連絡なり、また養蚕を持参する例も多い。このことは県においては試験研究機関も行政機関の中の一つとして存在することを意味し、被害発生の際には問題処理のために参加する。しかし埼玉県の場合、養蚕に関することは養蚕試験場で行なわなければならないというよりは、公害センターが人手不足のためと、養蚕試験場でも分析ができない。公害関係の試験も行なっているために養蚕に関する公害の被害調査はわれわれが行なっている。従って被害調査の内容は養蚕に限らず工場排出物、水質関係、塩素などの内容で、このようなくものは他の県においても同様と思われるが、養蚕に関することでも“公害”として扱われる場合は養蚕試験場から離れて他の試験研究機関で扱われる可能性もある。これは分析のための設備、技術、人材などが不足していると起こり得ることであるが、養蚕の立場からみると調査の内容、試料数などに制約されるので、納得のできる調査をするのには自分達の手で分析をできるようにする必要がある。また行政上の問題として資料を要求され、それ自体としては地方自治体の一部としては当然のことはあっても、それのみで終わりそれ以上に究明や研究しようとした場合に、予算面や時間などに制約を受けるのが都府県の試験場の現状ではないだろうか。これは公害関係にとどまらず他の試験研究においても同じことがいえるであろうし、養蚕において大気汚染関係の研究が事例的試験で終ることの多いのもこのようなことも関係しているものと思われる。

以上われわれの行なっている仕事およびそれに関する問題点をあげてみたが、被害を受けて
いる農民によってはわれわれが想像する以上の苦しみがあるのではないか。養蚕地帯としてこれまで来たのであるが、煙害を機会に他の作物に転換するようになり、またそのように希望する者も多いのである。昨年の被害から養蚕は不可能と考えて野菜畑を変えたり、ビニールハウスが増えまった所さえもあり、今後の対策や行政いわんによっては汚染された20ヘクタールは桑畑が消すことさえもあり得ない事ではない。今年より養蚕規模を縮少して様子を見る農家が多く、桑を使用しないために立通しだしたために、夏秋蚕に使用して被害があったという話しも耳にしている。また使用せずに手入れだけをする労力の無駄や、アメリカショトリに荒されて駆除に悩む、また養蚕もできずに桑畑を放置しておくことに心を痛めるのは、休耕田が早に荒されることに訝するのと同様に、農民の苦悩を一層深めることではないだろうか。しかし農民の間からは被害に対する補償の要求の声も、工場の移転を望む声も出て来ないのである。それは自分達が“生きる権利”を主張するとともに他の人達（加害者側）の権利も認めているからであろう。要求はただ「安心して養蚕を続けられるようにして欲しい」それだけなのである。5年前に同地区において被害を受けたときに、加害者側の工場で数百万円の資金を準備して補償要求に備えているのであるが、農民側から補償要求がなかったために、フッ素除去装置を取付けたとの話しさえあるのである。

農民側の要求はフッ素排出に対する監視体制の強化であるが、最近（9月下旬）になって村内の積蓄瓦工場および児玉町の瓦製造組合との間に公害防止協定を結ぼうとする動きが出て来ている。これまでにも他の町村において工場排出物による被害あり、町の有力者の仲介により補償が毎年されているが、除去装置が付けられたが不完全であるために被害は続いており、一般的の住宅にまで及んでいる例もある。補償は根本的な解決策といえないのである。このことは最近のことではないが、昭和電工のアルミニウム精錬工場に対する被害対策で、長野県大町市の工場では農民の要求により除去装置が付けられたのであるが、福島県の喜多方市の場合は最近まで広範囲な汚染が続いていたのである。この両者の対策は公害に対する農民および自治体に働く者にとっていかに有効かを示してくれるものと信じているのである。とくに長野県大町市の昭和電工大町工場による汚染対策について行なわれたことは、多くの教訓とわれわれの進むべき方向を示してくれるのである。アルミニヒ素被害対策および被害調査の両委員会発行のパンフレットの冒頭に、「農民運動史の一頁を飾るものとした見解に立って」の一文は大きな感動を受けたのである。

養蚕に対する大気汚染物質の影響に関する研究はまだ不十分で、早急に行なわれなければならない問題である。企業の地方分散が推進されれば、深刻な事態も現出するのではないかだろうか。一日も早く基礎研究の進展により、養蚕の技術上の防御法が確立されるのであり、われわれ自身がそれを要求され、大きな責任を負っていることを自覚しなければならないであろう。
特集
製糸廃水による公害

信州大学繊維学部 桜井善雄

近年、人類の諸活動、特に工業を中心とする諸種の産業は、人類それ自身の生活環境に対して、かなり広範囲に及ぼし、時には全地球的規模の変質をひき起こすに至った。このような段階においてその最大の原因になっている工業は、自己の生産活動に伴なう原料やエネルギーの消費、工程から出る廃棄物、製品の消費過程と使用後の廃棄物などが、人類の生活環境に対してどのようにかわりあいをもっているかということを、改めて検討・反省する必要がある。

この小論では、製糸工場およびその関連工場から発生する生活環境の破壊、すなわち公害について考えるに当たる。富田および重松（3）は、このような公害を多くの事例から次のように大別している。
1) 廃（排）水によるもの
2) 臭気によるもの
3) 騒音によるもの
4) 警戒によるもの
5) その他の

これらの中で、以下のような現象は工場の立地条件により、公害として顕著化するのにかなりのちがいがあるが、1)の廃水による水質の汚濁はすべての工場に共通してみられ、製糸および関連工場の公害問題の中心課題となっている。したがって、以下、これから工場の排水の量と質、それが河川や湖沼に排出された場合の影響、排水の処理法などについて具体的に考察する。

1．製糸工場排水によるBOD負荷量

製糸工場の用水の調査例を表1に示す。製糸工場における用水量に対する排水係数は0.8～

<table>
<thead>
<tr>
<th>表1 生糸1トン当りの用水量</th>
<th>山田(2)による</th>
</tr>
</thead>
<tbody>
<tr>
<td>用水工程</td>
<td>煮繭</td>
</tr>
<tr>
<td>生糸1あたりの水量(m³)</td>
<td>58</td>
</tr>
<tr>
<td>%</td>
<td>6.8</td>
</tr>
</tbody>
</table>

0.85といわれているが、筆者が排水量を測定した1例は表4の中に記されている。このような製糸業は多量の水を使う用水型工業であり、生糸1トン生産するに要する水量は、およそ800～1,000 m³とみることができる。このうち約50～70％が煮繭および繊経に、約20％が副業処理に使われている。製糸工場排水中に含まれる汚濁質は、原料である蚕糸の繭層、蛹、脱皮殻などから浸出した有機物およびそれらの細片である浮遊物であり、重金属その他の毒物は原則として含まれていない。大野(3)、宮内(4)、および筆者(5)による製糸工場排水の水質の測定結果を表2～4に示す。表4の数値は筆者が1970年5月に天竜社製糸工場で2日間連続測定した結果をまとめた
表2 製糸工場排水の水質—1 大野(3)による

<table>
<thead>
<tr>
<th>総 合 排 水</th>
<th>製 糸 工 場 排 水</th>
<th>造 工 程 別</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 社 B 社 C 社</td>
<td>焼 画 繭 系 副 蛋</td>
<td>ビ キ ス</td>
</tr>
<tr>
<td>P H</td>
<td>6.7 6.8 6.3</td>
<td>6.6 6.7 6.5</td>
</tr>
<tr>
<td>純 溶 透 度</td>
<td>5.0 6.4 2.5</td>
<td>3.6 9.8 2.0</td>
</tr>
<tr>
<td>C O D ppm</td>
<td>26 12 87</td>
<td>269 16 93</td>
</tr>
<tr>
<td>B O D ppm</td>
<td>158 69 76</td>
<td>752 - 702</td>
</tr>
<tr>
<td>蒸 発 残 留 物 ppm</td>
<td>536 300 728</td>
<td>1344 37.0 720</td>
</tr>
<tr>
<td>強 熱 残 留 物 ppm</td>
<td>164 186 152</td>
<td>340 126 132</td>
</tr>
<tr>
<td>強 熱 減 量 ppm</td>
<td>172 115 576</td>
<td>1004 242 588</td>
</tr>
<tr>
<td>アンモニア性窒素 ppm</td>
<td>1 11 25</td>
<td>36 35 25</td>
</tr>
<tr>
<td>アルカリ性窒素 ppm</td>
<td>5 4 13</td>
<td>34 10 15</td>
</tr>
<tr>
<td>塩 素 イ オ ン ppm</td>
<td>21 21 25</td>
<td>55 21 20</td>
</tr>
<tr>
<td>浮 邁 物 質 ppm</td>
<td>114 62 400</td>
<td>166 76 330</td>
</tr>
</tbody>
</table>

* 副酸処理専業

表3 製糸工場排水の水質—2

<table>
<thead>
<tr>
<th>蒸 画 繭 水</th>
<th>純 維 水</th>
<th>副 蛋 水 *</th>
<th>総 合 排 水</th>
</tr>
</thead>
<tbody>
<tr>
<td>P H</td>
<td>7.0</td>
<td>7.3</td>
<td>6.0 ~ 6.3</td>
</tr>
<tr>
<td>純 溶 透 度</td>
<td>3.5</td>
<td>5.5</td>
<td>1.5</td>
</tr>
<tr>
<td>B O D (濃度範囲)</td>
<td>700</td>
<td>60</td>
<td>600</td>
</tr>
<tr>
<td>全 蒸 発 残 留 物</td>
<td>1284</td>
<td>-</td>
<td>1170</td>
</tr>
<tr>
<td>全 強 熱 残 留</td>
<td>308</td>
<td>-</td>
<td>230</td>
</tr>
<tr>
<td>全 室</td>
<td>105</td>
<td>13.4</td>
<td>91.3</td>
</tr>
<tr>
<td>アンモニア性窒素</td>
<td>-</td>
<td>4.2</td>
<td>13.9</td>
</tr>
<tr>
<td>アルカリ性窒素</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>シ ン 酸</td>
<td>15</td>
<td>2.2</td>
<td>26.3</td>
</tr>
<tr>
<td>浮 邁 物 質</td>
<td>150</td>
<td>50 ~ 80</td>
<td>952</td>
</tr>
</tbody>
</table>

備考 pH以外は単位 ppm

* 副酸処理：ビス整瓶機排水、サナギ脱水分離液、および第1水洗水の混合液

表4 製糸工場排水の水質、水量および生産1 t当りの汚濁負荷量 桜井(5)による

選 画	水温 透視度 魚 準度 pH S S COD BOD 排水量 BOD 負荷量 の人口** (℃) (cm) (30℃, µg/cm) (ppm) (ppm) (ppm) (m³) (kg/日) (人日)				
焼 画	40~50 16~30 121~166 6.5~6.9 0~11 24~70 17~32	42*	6	54	27
繭 系	30~32 10~15 152~172 7.1~7.5 12~21 17~25 16~51	31 13	18	21	32
焼 画	22~23 8~15 144~172 7.1~7.7 8~60 10~42 11~32	23 11	27	27	21
繭 系	22~33 0.7~2.6 164~522 6.4~7.4 180~1590 70~496 190~1600	29 1.6	520	232	670

合 計 | 949 | 144140 | 3850

注：*太字は平均値を示す。** 1人1日のBOD負荷量を40 g(人)として計算した。
ものので、排水量およびＢＯＤの負荷量は生糸1トン当りに換算してある。このような総合排水のＢＯＤは、計算値153 ppm、実測値62～175（平均109） ppmであった。

これらを通観すると、繊維排水のＢＯＤはいずれも低いが、副収処理排水のそれは共通して非常に高く、煮詰排水は工場によってかなりちがいがある。しかし総合排水の水質はかなり共通していて、150～160 ppmである。現行の一般的な製造方式による製糸工場の総合排水の水質は、副収処理工程の分離や、排水の著しい希釈放流がない限り、ほぼこの程度とみて差支えないであろう。ＢＯＤの総負荷量は、表4によれば生糸1トン当り144 Kg（O2）となり、その人口当量は3,660人・日である。宮内(4)も生糸1トン当り総負荷量115 Kg、人口当量3,200人・日という近似の値を報告している。

製糸工場排水のＢＯＤ負荷の内訳をみると、副収処理工程の排水がかなり大きい比重を占めている。表4によればそれは全体の86%に達している。表5はこの排水をさらに工程別に細分化して分析した結果である。これらとみると、副収工程の中でも、蛹脱水機やビス機の排水が全排水による有機汚濁負荷の大部分を占めることがわかる。分析値はがないが、蛹脱水排水中には蛹体から出たかなりの油分が含まれており、悪臭の発生や排水の処理と著しい障害を与える原因になっている。したがって副収工程の排水の処理は、製糸工場排水による公害防止の第1の目標となる。

<table>
<thead>
<tr>
<th>水温℃</th>
<th>透視度(cm)</th>
<th>電導度（μSy/cm）</th>
<th>pH</th>
<th>SS(ppm)</th>
<th>COD(ppm)</th>
<th>BOD(ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ビス腺排水</td>
<td>31</td>
<td>0.8</td>
<td>297</td>
<td>7.0</td>
<td>495</td>
<td>399</td>
</tr>
<tr>
<td>水洗機排水</td>
<td>30</td>
<td>6.8</td>
<td>131</td>
<td>7.1</td>
<td>36</td>
<td>12</td>
</tr>
<tr>
<td>ビス脱水機排水</td>
<td>18</td>
<td>4.4</td>
<td>190</td>
<td>6.9</td>
<td>67</td>
<td>114</td>
</tr>
<tr>
<td>蛹脱水機排水</td>
<td>30</td>
<td>0</td>
<td>8900</td>
<td>6.2</td>
<td>35800</td>
<td>1820</td>
</tr>
</tbody>
</table>

2. ペニー工場排水によるＢＯＤ負荷量

ペニー工場排水の水量・水質の測定例はあまりないが、筆者が上田市の工場で測定した例を表6に示す。排水量およびＢＯＤ負荷量は製品ペニー1トン当りに換算してある。ペニー製造業も製品1トン当り2,700 mの水を使う用水型工業であり、総排のＢＯＤは上記の測定例で、200～436，平均284 ppmであり、その人口当量は製品1トン当り約27,200人・日を達する。工程別にみると、原料の腐化処理と仕上機の排水が全体の負荷量の約80%を占めている。原料である蛹体を含んだ生糸くずを腐敗させるため、排水には著しい悪臭があり、工場周辺にかなり迷惑を及ぼすが、排水中には特殊な毒物はない。
表6 ベニー工場の工程別排水の水質・水量およびBOD負荷量（製品1トン当り）

<table>
<thead>
<tr>
<th></th>
<th>水温</th>
<th>透視度</th>
<th>電導度 (20℃, μΩ/cm)</th>
<th>pH</th>
<th>SS</th>
<th>COD</th>
<th>BOD (ppm)</th>
<th>排水量 (m³/日)</th>
<th>BOD (kg/日)</th>
<th>BOD (mg/人・日)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1962</td>
<td></td>
</tr>
<tr>
<td>精練排水</td>
<td></td>
<td><1.0</td>
<td>7.0 〜 9.0</td>
<td>500 〜 1250</td>
<td>200 〜 500</td>
<td>1500 〜 3500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>洗浄排水</td>
<td></td>
<td>2.5 〜 4.5</td>
<td>7.0 〜 9.0</td>
<td>80 〜 200</td>
<td>30 〜 50</td>
<td>100 〜 300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td></td>
</tr>
<tr>
<td>精練排水</td>
<td>20 〜 52</td>
<td>0.6 〜 3.3</td>
<td>33 〜 40</td>
<td>7.4 〜 9.2</td>
<td>125 〜 1260</td>
<td>74 〜 2650</td>
<td>600 〜 8150</td>
<td>270</td>
<td>855600</td>
<td>22140</td>
</tr>
<tr>
<td>洗浄排水</td>
<td>19 〜 21</td>
<td>3 〜 6</td>
<td>160 〜 332</td>
<td>7.1 〜 8.1</td>
<td>112 〜 182</td>
<td>31 〜 58</td>
<td>70 〜 150</td>
<td>1900</td>
<td>201400</td>
<td>5035</td>
</tr>
<tr>
<td>湿調排水</td>
<td>15 〜 16</td>
<td>16 〜 17</td>
<td>270 〜 307</td>
<td>7.6</td>
<td>47 〜 75</td>
<td>2 〜 3</td>
<td>3 〜 4</td>
<td>530</td>
<td>1800</td>
<td>45</td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2700</td>
<td>1098000</td>
<td>27220</td>
</tr>
</tbody>
</table>

図1 ベニーの製造工程

3. NおよびPの負荷量

これまで、下水、食品工場排水、製茶工場排水などのように、生物原料に由来する汚染水について、BOD（またはCOD）によって表わされる脱酸素負荷量のみが主として問題にされてきた。しかし、あとで述べるように、水界の栄栄化を防ぐためには、これらの排水中に存在するNやPに対しても脱酸素負荷と同等の注意を向ける必要がある。

製茶工場排水中のN、Pの濃度は表2、3に、ベニー工場排水については表7に示されている。

表7 ベニー工場排水のN H₄－N、
P O₄－P含量

<table>
<thead>
<tr>
<th></th>
<th>N H₄－N (ppm)</th>
<th>P O₄－P (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>精練排水</td>
<td>34 〜 115</td>
<td>1.2 〜 6.1</td>
</tr>
<tr>
<td>洗浄排水</td>
<td>3 〜 12</td>
<td>0.08 〜 0.37</td>
</tr>
<tr>
<td>総合排水</td>
<td>12 〜 45</td>
<td>1.1 〜 6.8</td>
</tr>
</tbody>
</table>

8,800人・日，P負荷量は生産で4,700人・日，ベニーで2,100〜13,000人・日と試算される。
4. 製糞排水による水質汚濁の様相

製糞排水などに含まれる有機物は、水界に拡散されると、水中に十分酸素が存在する限り、あらかじめ図2のように分解されるが、この過程で水界にさまざまな影響を及ぼし、いわゆる公害をひき起こす。その影響は大体以下のような3つに分けて考えることができる。

図2 有機物の好気的分解

その1つは水中の好気的微生物が有機物を分解することによって起こる脱酸素作用である。脱酸素量は計算上、重量比で、炭水化物の場合1.1倍、蛋白質では2.2倍になる。負荷量が著しく多く、脱酸素速度が空気中的酸素の供給速度を上回る場合には、水中の溶存酸素は減少し、やがて嫌気的無酸素状態に達する。その程度は両者のバランスによって様々であるが、魚類や底水性の昆虫などは次第に生息不能となり、汚水生物が大量に繁殖し、水底には黒色腐泥が沈黴して、嫌気的分解のためメタンガスのほか硫化水素、アンモニア、メルカプタン、その他の悪臭、有害物質が発生する。このような水域は用水源としてはもちろん、水産の面でも生活環境としても有害・無価値なものとなる。

第2は微生物によるスライム（みずわた）の大発生である。水流れがあり、空気中の酸素の供給が遅延的に十分にあれば、汚濁有機物の分解は速かに進むが、その反面微生物が著しく繁殖する。そのため河床にはSphaerotilus、Beggioiaなどの鰐き細菌、またはSaprolegniaの鰐きかびによるみずわたが大量に発生する。これらは水界の美観を損なうことはもちろん、魚の生活環境としての価値をほとんどゼロにし、またそれが流下すれば、下流の水利用に著しい障害を与える。水田栽培に流入した悪ぬれ種毛と発芽障害、枯死をおこすこともある。

第3は分解の結果生成するN・Pなどを含む塩類その他のいわゆる栄養塩類の増加による二次的障害である。これらが水田に流下すればイネの青立ちをひき起こし、また河川、湖沼、内湾海域
などの富栄養化の原因となる。水系の富栄養化とは、農業湖におけるアオコの大発生、藻類湖の南部における水道関水の異臭味着生、廃水内海その他の内湾・沿岸海域の赤潮の発生などに見られる現象である。富栄養化は、水系の生態学的生産力が高まる現象であり、コイ・ツナの如き耐汚食性の大きい魚類にとってはむしろ好ましいことであるが、清水性魚類にとっては致命的である。水そのものの利用にとっては著しくその価値を低下させる。富栄養湖に発生するプランクトンや富栄養化した河川に発生する着生藻類は水に異臭味を与えやすくでなく、浄水作業にも障害となり浄水費を増加させる。プランクトンや着生藻類が死滅すれば再び有機汚泥が起こることになる。

富栄養化の第一の原因となるNおよびPの塩類は、ふつう一般におこなわれる有機廃水の生物処理法ではB0Dもがって除去率がきわめて低い。このような成分の排出基準、または環境基準は、わが国では法的にはまだ全く規制されていない。しかし公共水域保全の上から、今後B0DやS8などと同等、または放流先が湖沼の場合にはそれ以上に留意するべき問題である。

5. 排 水 の 処 理

製糸工場排水の処理を考える場合、まず第一に問題にすべきことは、前に述べたように、副染処理の必要性、特に脱水処理の必要性である。現在これらの工程は混式でおこなわれているがその一部または全部を、水を使わない乾燥方式にすることは不可能であるろう。天竜社製糸工場ではこの工程のうち繊体の還元脱水をやめて乾燥方式に切り替えただけで、総合排水の水質を削減し、前に平均200ppmから、90ppmに低下させることに成功している。

その他の排水については、下水なども同様、好気的生物処理法によるのが妥当であろう。化学的な凝聚沈澱処理も考えられるが、これは発生する量のスラッジの処分が問題になる。好気的生物処理法には活性污泥法、散水種槽法、接触酸化法、酸化池法などがあるが、わが国の製糸工場の一般的な規模、立地条件、処理装置の建設・維持管理に要する経費・技術などから考えて、活性污泥法、散水種槽法、酸化池法などはあまり適しているとはいえない。その理由の詳細は紙面の都合で省略する。現在のところ最も維持管理が楽で普通性があると思われるのは、ヘニコムなどを基とする接触酸化法あるいは散水種槽の改良法である。これらの実用化について、関係研究機関あるいは業界などで、早急に実際的な検討をする必要がある。

参 考 文 献

(1) 富田 昇・石松正矩：製糸工場の公害事例、製糸協研究発表集録40；142，1970
(2) 山田 篤：製糸工業用水、製糸技術経営指導協会
(3) 大野 昭：製糸廃水の実態とその処理、製糸協研究発表集録40；143，1970
(4) 宮内 潔：製糸業と公害問題について，第24回製糸夏季大学教科；60，1971
(5) 森井善雄：製糸業と公害問題について，第24回製糸夏季大学教科；46，1971
(6) 浮田正夫ほか：富栄養化の原因と対策，公害と対策8(5)；477，1972
特集

カドミウム公害における諸問題

東京農工大学農学部 本間 慎

1. はじめに

昭和47年8月9日、「い病、原告完全勝訴」のニュースを聞いて、数年前から重金属の土壌汚染問題にとりこめた筆者には、全国各地で重金属汚染が懸念される中でカドミウム汚染の原因の研究の進展が著しく、筆者も同様の機会を得た。その席上、公害防止協定と2つの協定書、土壌汚染問題処理に関する協定書が成立したことは画期的なことである。

重金属汚染問題を取り上げて、原則的な内容が含まれているので別項に記しておいた。

解説川流域における汚染面積は2,000〜4,000ヘクタールあるといわれており、全国では3万7千ヘクタールに及ぶといわれている。汚染が表面化していない所もあるので、実際の汚染面積はもっと多いものと思われる。

公害に対して無防備な「日本列島改造」が具体的に進行するならば、かえがえれない大地の汚染は拡がり、将来の農業に重大な問題を生ずることだろう。農学者として黙っておれぬ問題である。

2. カドミウムは土壌に吸着されやすい

汚染されていない自然土壌中にはカドミウムが含まれている。ソ連のWinogradov氏らの分析結果を第1表に示した。岩石の種類によって重金属含量は異なっており、概して塩基性岩は酸性岩石より高い傾向にあっている。したがって土壌中の重金属含量は、その母材の鉱物組成や風化度、堆積様式などによって決ってくるわけであるが、土壌中の平均元素組成は、カドミウム0.5、Zn 50、Cu 20、Pb 10、Cr 200、Hg 0.01 ppmと考えてよいだろう。

土壌が汚染されているかどうかは、陸地・水体同タイプの非汚染土壌中の重金属含量と対比すればよい。先日地方の調査では、日本における非汚染地域（未耕地域）中の平均カドミウム含量は、上層0.57、中層0.18、下層0.15 ppmであった。全国15ケ所において、1 ppm以上の値が得られたのは秋田県大館の上層土1.58 ppm、熊本県黒足原の上層土1.30 ppmの2ケ所であった。このことから考えて、汚染源が考えられる地域にお
いて、土壌中から1 ppm以上のカドミウムが検出されたならばさらにその周辺を精密に調査する必要がある。

しかし、たれ流されるカドミウム等の重金属は一般に土壌に吸着されやすく、堆積が大気である。河川であると、作土に大部分が集中している。しかも土壌粒子の細な部分に多く吸着されている。特に川底質の粒度分布と重金属濃度をみると、第2表に示したように、70μm以下の粒子にその底質中カドミウム全量の78.5%が存在している。

第2表 吉野川底質の粒度分布とCd, Zn, Pbの濃度（山県登）

<table>
<thead>
<tr>
<th>粒度 (μm)</th>
<th>乾重量 (g)</th>
<th>粒度分布率</th>
<th>Cd 濃度 (ppm)</th>
<th>存在量 (%)</th>
<th>Zn 濃度 (ppm)</th>
<th>Pb 濃度 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>550-1500</td>
<td>104.78</td>
<td>16.45</td>
<td>5.6</td>
<td>5.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>220-550</td>
<td>264.72</td>
<td>41.55</td>
<td>5.3</td>
<td>13.0</td>
<td>500</td>
<td>70</td>
</tr>
<tr>
<td>70-220</td>
<td>40.83</td>
<td>6.41</td>
<td>8.3</td>
<td>3.1</td>
<td>770</td>
<td>90</td>
</tr>
<tr>
<td>5-70</td>
<td>187.16</td>
<td>29.38</td>
<td>35.0</td>
<td>57.3</td>
<td>22000</td>
<td>400</td>
</tr>
<tr>
<td>1-5</td>
<td>33.76</td>
<td>5.80</td>
<td>44.0</td>
<td>14.0</td>
<td>8200</td>
<td>190</td>
</tr>
<tr>
<td><1</td>
<td>5.80</td>
<td>0.91</td>
<td>135.9</td>
<td>7.2</td>
<td>2700</td>
<td>160</td>
</tr>
<tr>
<td><70</td>
<td>226.72</td>
<td>35.59</td>
<td>37.3</td>
<td>78.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>637.05</td>
<td>100</td>
<td>16.9</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

3. 汚染物質の媒体による汚染のパターン

重金属汚染源には、鉱山、製錬所のいわゆる重金属生産工場とメキシ工場、化学工場、機械工場等の重金属使用工場、または自動車等の製品からの汚染がある。媒体別には、大気、水質、海洋がある。しかし特異的な汚染パターンは媒体が何であるかによってきまる。

水質型汚染としては、鉱山、重金属使用工場等があげられ、大気型汚染としては、製錬所、自動車等があげられるが、製錬所は同時に排水による水質型汚染を伴うことが多い。

1) 水質型汚染

代表的なものとしては、メキシ工場等の重金属使用工場付近、富山県神通川流域等である。この種の汚染は、水を利用する水田等は汚染されるが、土壌、水林汚染等は汚染されない。水田についてみると、水田のカドミウム濃度が高く、水田から離れるにしたがって低くなる傾向がある。第1図は筆者が東京、昭島市の汚染を測定したものである。

2) 大気型汚染

代表的なものとしては、東邦亜鉛・安中製錬所、日本鉱業・三日市製錬所、同和鉱業・小坂製錬所等、製錬所周辺にみられる。この汚染のパターンは製錬所を中心に等濃度線を画くと、製錬所周辺が高く、離れる
にしたがって低くなるが、その波形はその地域の地形、風向とよく一致する。勿論、水田のみならず、畑土壌、山林土壌等も汚染される。

4. 土壌は汚染を記録する

東京・三多摩の水田がカドミウムで汚染していることを筆者らは最初に指摘したわけであるが、その後、この地域の主な汚染源は戦前、戦中の軍需工場だという説が流された。果してそうであろうか？筆者らは汚染源追究にのりだした。

既述したように、カドミウム等は土壌に吸着されやすく、またこの地域は水質型汚染であるので、水田と水田から畑に転換した所を対比させながら調査をすれば、いつ頃から汚染が拡大したのかが判明するはずである。そのような地点として汚染の重い東京・昭和市を選んだ。その1例を第2図にしめそう。水田A、Bは昭和45年まで稲作が続けられてきたところであり、クリ畑は昭和42年に水田から転換したものである。ナシ畑は昭和59年に水田から転作したものである。
つまり、ナシ畑は昭和58年までクリ畑は昭和41年まで水田であり、その年まで用水を水田に灌漑していたわけであるが、その後は用水を利用していないのである。
したがってナシ畑は昭和58年までの汚染の状態、クリ畑は昭和41年までの汚染状態をしめていることになるわけである。
そこで、クリ畑は用水路との関係において水田Bと対比でき、ナシ畑は水田Aと対比できるといえよう。

用水路（耕地図）の底質中のカドミウムは173ppmであり、水田Bの水口では90.0 ppm、クリ畑の水口では15.8 ppmであった。またナシ畑の水口では、5.4 ppm、水田Aの水口では26.9 ppmであった。平均カドミウム含有率では、水田Bで49.8 ppm、クリ畑では12.4 ppmで、水田Bのカドミウム含有率はクリ畑のそれぞれの4倍であった。水田Aでは12.7 ppmであるのに対し、ナシ畑では2.6 ppmで、水田Aはナシ畑に対し、約5倍の濃度をしめしている。

以上の結果から昭和38年の時点においてもカドミウムの汚染は進行していたのであるが、昭和38年から45年までの7年間に約5倍、昭和41年から45年までの4年間に4倍の値をしめ

<table>
<thead>
<tr>
<th>水田A</th>
<th>ナシ畑</th>
<th>用水路</th>
</tr>
</thead>
<tbody>
<tr>
<td>×6.3</td>
<td>×1.8</td>
<td>×1.5</td>
</tr>
<tr>
<td>×4.8</td>
<td>×1.6</td>
<td>×2.2</td>
</tr>
<tr>
<td>×26.9</td>
<td>×10.5</td>
<td></td>
</tr>
<tr>
<td>×49.1</td>
<td>×3.6</td>
<td></td>
</tr>
<tr>
<td>×63.7</td>
<td>×5.1</td>
<td></td>
</tr>
<tr>
<td>×90.0</td>
<td>×13.2</td>
<td>×15.8</td>
</tr>
</tbody>
</table>

第2図 昭和市の水田および水田転作地のCd含有率（ppm／乾土）（木間）
していることから、汚染が激化したのは41年以降の数年間であると推定される。

ちなみに、この用水に重金属がたられ流してきた西川化学は昭和34年から、日本航空電子は昭和36年10月からカドミウムを使用し、昭和39年以降用水に排水を放流している。

いま、カドミウム調査地点面積7,500 m²の作土中に含まれているカドミウム含量から自然状態の値を差引くと12.83 Kg Cdの値が得られた。これが他から流入してきた量である。ところでは、この用水の流量は約2,000 m³/hrであり、水田用水使用量を1,500 m³/1,000 m²yearとし、たれ流されたカドミウムを工場のカドミウム年次使用量および水質分析結果から算出すると、上の調査地（7,500 m²）に蓄積するカドミウムは14.63 Kg Cdとなった。土壤調査結果とよく一致した。

5. 土壤中でのカドミウムの形態

作物であるトウモロコシでは土壤中のカドミウム含量とトウモロコシの直前との間に高い相関関係がみられる。このことから土壤中のカドミウム含量からトウモロコシのカドミウム含量のおよびその見当をつけることができる。しかし、イネの場合には、水田土壌と玄米とのカドミウム含量との間に高い相関がみられない。したがって、自分の水田から高濃度の汚染米が得たのに、隣の水田は低濃度の汚染米という場合もある。その理由は水田土壤中の酸素の含有量や微生物の働きによると考えられている。第3図からわかるように、土壤の酸化、還元状態でカドミウムの形態が変化する。

第3図 土壌中での酸化・還元反応とカドミウムの形態

実験的な実験ではあるが、潜水状態にし、酸化還元電位が-150～-200 mV位になると可溶性のカドミウム量は顕著に低下する。また土壤pHも関係し、土壤がアルカリ側になると可溶性カドミウム量は著しく低下する。したがって、イネの栽培管理、とくに水管理の仕立てで、玄米のカドミウム汚染度は変化する。

このことは、鉱害地での農家の経験とも一致している。高濃度に汚染された水田では、田の水を落すことか厳然だとされている。水を抜くとカドミウムや亜鉛がどっと溶けて出していてイネは重金属過剰のため黄化、枯死してしまう。田に水を張っておくことによって土壤を還元化し、重金属

--- 38 ---
を水浸しとして沈殿させておくことでイネを守ることができる。逆に低汚染地区でも、水はけの良い傾斜地、畑苗代跡、野菜畑、節水栽培の水田では局地的に高濃度の汚染水ができる。また客土や天塚道が土壌中のカドミウム濃度を下げたはずなのに、かえって汚染を強める結果をまねく場合もある。

東京都農業試験場の汚染田からとれた玄米中のカドミウム濃度と乾田日数との関係を第4図に示した。年によって玄米中のカドミウム濃度に大きな差があることがわかるが、同時に乾田日数との間に高い相関（r = 0.75）が認められている。

6. 汚染浄化の方法はあるか

汚染田にクワを植えたらという声をよく聞く。しかし、そのためにはカドミウム等の重金属汚染をさげなければおおよそ続く発目だろう。

現実性のあるもっとも有力な方法としては、カドミウムを土壌に吸着されやすいので、大部分が作土に吸着されている。だから作土をはぎとって（このためには実際に、深さ 30 cm 以上はとる必要がある）、汚染されていない土壌と入れかえる、つまり排土、客土の方法である。そのためには、汚染土壌の処理問題、非汚染土壌をどこからもってくるか、具体的に検討しなければならない。神通川流域の被害者団体はこのことを三井に要請している。

他 の 方法 は、炭カル、珪カル、重炭酸等を施用して、カドミウムを水にとけにくい形にしたらどうか、つまり抑制剤の使用である。この方法はあくまで、カドミウムの活性をおさえするということであって、その場の効果であり、本来の除染とは意味を異にする。全国の汚染地域で、農林省や県では積極的にこのような技術指導をしている。この方法は、より低濃度で汚染米にするという点では意味はもっているかもしれませんが、所経、非汚染米の値まで下げることができない。1 ppm 以上の玄米をつくらないという点で、もし意味があるとするならば問題である。なぜならば、それによって企業責任がほかされたり、土壇汚染防止法にもとづく対策地区から除外される可能性があるからである。

もう一つの方法は、植生物を使って除染することができないかということである。カドミウムを
多く吸収する植物がみつかられば、その植物を汚染地に植えて毎年刈取り、安全に焼却しようとす
る方法である。

植物による汚染を試みるために、まず土壌中のカドミウム存在量を試算してみよう。いま、土
壌が 10 ppm 程度のカドミウムで汚染されていたとすると、1 ha あたりの作土の重量は 100 万
kg であるから、その中のカドミウム含量は 10 kg となる。この汚染で玄米 5 トンがとれ、その
玄米に 1 ppm のカドミウムが含まれていたとすれば、5 トン中にカドミウムは 5 g 含まれている
ことになる。さらにワラも 5 トンとれ、その中にカドミウムが 10 ppm 含まれていたとすれば全
量は 50 g となる。合計 55 g が一年間にイネの地上部が吸収する量である。そこでカドミウム
存在量は 10 ㎏ であるから 10 ㎏ = 55 ㎏ = 180 年である。つまり、イネがカドミウムを吸収しつ
くはずは単純計算で問題はあるが 200 年弱かかることがある。逆にいえば、イネを栽培しづけ
るとこの期間汚染米がとれる可能性があるわけである。しかも新たな汚染が加わらない場合であ
る。植物で除染するためには、少なくともイネよりカドミウムを大量に吸収するものでなければ
ならない。そのような植物があるだろうか？

つぎに雑草に目を転じてみよう。汚染田で生育している雑草中のカドミウムを分析してみると
ところ一例をあげればつきのようである（単位は ppm／乾量）。

ウシノコペ 3.7，アレチギシギシ 4.0，スカシタガボウ 13.5，ヒメムカジヨモギ 20.0，
ヤマガボウ 4.2，シジュウダマ 12.0，ヘビノネゴザ 1050，シケジダ 100，スギソ 2.4，
ズスメノテシボウ 6.2，トウモロコシ 8.4，トコヒバ 8.7，ヨシ 0.9

一般に単子葉植物より双子葉植物の方が高い傾向にあった。つぎに高いのがシダ植物でヘビノ
ネゴザでは 1000 ppm と他の植物よりはやや新くて高い。比較的多く吸収していたヒメムカジヨモ
ギについてみると、年間の乾量成長が 10 t／ha とすれば、その中のカドミウム量は 200 g, し
たがって、10 ㎏ = 200 ㎏ = 50 年である。ヒメムカジヨモギの東京三多摩の汚染田での最高値は
40 ppm であった。平均それだけ吸収したとしても 25 年かかってしまう。

植物で除染する場合、少なくとも数百 ppm レベルでなければ実用の可能性はないだろう。植物体
中のカドミウム濃度が 1000 ppm で、その植物の乾量成長が 10 t／ha のもののがみつかれば、除
染に要する期間は 1 年間である。1000 ppm という点ではヘビノネゴザは有力であるが、乾量成
長量が高くないこと、シダ植物であるため繁殖が難点がある。

現在のところ植物によって実用的に除染できるものは発見されていない。

7. カドミウムの排出基準、水質基準は安全でない

国の基準は、工場からの排出基準が 0.1 ppm、水質基準が 0.01 ppm となっている。まずこ
で問題になるのは、基準が ppm の単位をとっていることにある。だから相当高濃度なカドミウ
ムも、カドミウムを含まない水でうすめて流せば、いくらでも基準以下にすることができ
る。例えば、東京、三多摩の例をしめすと、通産省公害保安局が昭和 45 年 9 月に行なった調査
結果では、日本航空電子の排水口中のカドミウム濃度は 8.4 ppm、住友電化のそれは 92.0 ppm
であった。住友電化の濃度は日本航空電子の約 11 倍であった。ところが排水量は日本航空電子
が1,500 m²/日、住友電化が30 m²/日であった。この数値から排出されたカドミウム量を求めてみると、日本航空電化は12.6 ppb、住友電化は2.8 ppbとなり、日本航空電化は住友電化より総量として5倍弱多い。大企業ほど一般的に水の使用量も多いので、水でうめられる可能性がある。したがって、ppm規制ばかりでなく、総量規制もふくめてきびしいものにする必要がある。

水質基準は0.01 ppmとなっているが、これも安全というわけではない。なぜなら、水田10アールの年間、水使用量はおよそ1500トンであるとされている。この水を水田に入れるとき150 cmの高さになる。この水の中に0.01 ppmのカドミウムがふくまれていたとすると、作土層（10〜15 cm）に90%以上は吸着されているので、毎年およそ0.1 ppmずつ増加する。10年たてば作土層中のカドミウム濃度は1 ppm、30年たてば3 ppmとなる。土壌中のカドミウム濃度が1 ppm程度になると玄米中のカドミウム濃度が0.4 ppm以上1 ppm程度のものが生産される可能性がある。

8．汚染米基準1 ppmは安全か
非汚染米にもカドミウムは含まれている。しかしその含量はわずかで0.05〜0.08 ppm位である。ところが国の準汚染米は0.4 ppmである。それ以下ならば保有米の交換もしなければ、販売ルートにもすことになる。現在筆者の家から持ってきた配給米（白米）を分析したところ、0.2 ppmで、ひっくりした経験をもっている。汚染尺度として0.4 ppmの問題については若干ふれておく必要がある。岡山大、小林純教授は全国の県立農業試験場で調査した結果、34年度産米のカドミウムを分析したところ、東京都農業試験場（立川市）でとれた白米中に0.472 ppm、0.421 ppmのものがあった。全国平均では0.06ppmであるから非常に高値といわれねばならない。

小林教授は、亜鉛製錬所のない、つまり重金属汚染のない非汚染地域でとれた玄米にこの程度のカドミウムは含まれていると判断され、汚染の尺度として0.4 ppmの基準をしぼめたのである。厚生省のカドミウム汚染の尺度は数値をとりわけ定めてくれた。ところが、あとになって都農業試験場の圃場はカドミウムによって汚染されていたことが明らかにされたことから、上記見解は訂正する必要がある。

富山県神通川流域でイタイイタイ病軽度発生地域の住民が0.3 ppm程度の汚染米を食べていたという報告もあるわけだから、0.4 ppmを尺度とするのは危険であるといわれねばならない。ましてや、汚染米の基準を1.0 ppmにした根拠はいたって薄弱である。この点については厳格の関係で論破できないので、興味ある方は浅見渓文（日本の科学者、6巻、9号 55〜59）を読まれたい。

9．おわりに
カドミウムというとすぐあの非遺伝的イタイイタイ病を考えさせるわけであるが、しかしここまでにたえたのはいくつかの段階がある。まず体内にとりこまれたカドミウムは尿細管の再吸収機能を低下させる。そのために、尿中に低分子のタンパク、アミノ酸や糖が排出されるフォンコーニー症候群が見られる。筆者が調査に入っている秋田県小坂町細越部にも中通病院の中谷敏太郎氏らによって5名発見されている。国のイ病認定基準は骨軟化症の所見が認められなければ
認定できないことになっている。この点については、カドミウムによる腎器障害（近位尿細管障害からはじまる）障害を起点とするファンコニー症状候群を有する患者は、カドミウムを中心とする重金属による慢性中毒症としてイ病認定し、早期治療を図として積極的に行なうべきであると考える。

また、三井金属が主張しているカドミウムの自然流出説（神通川流域の主なカドミウム汚染は4万年前から鉱床露出の侵食によってもたらされたものであるとする説、新田富也（1972） 鉱山地質 22，191 ～204 ）なるもので、イ病判決ではとるに及ばないとされているながらも最近、鉱山企業ならびに自治体がこの説を流布しているむきがある。この点の反論をきちんとやっておく必要があるが、紙数の関係で割愛し、別の機会にゆずりたい。

イ病の賠償に関する誓約書

1. 当社はイタイイタイ病の原因が当社の排出にかかわるカドミウム等の重金属によるものであることを認め、今後裁判上、裁判外を問わずこのことを貧者一切の助をしないことを誓約する。
2. ① 当社はイタイイタイ病訴訟第2次乃至第7次の各原告に対し、昭和47年8月8日付請求の趣旨拡張申立書記載の請求額およびの金額を本月末日限り支払う。
 ② 右各事件の訴訟費用は全部当社の負担とする。
3. 当社は、イタイイタイ病訴訟第1次乃至第7次の各原告が前項①の賠償金の支払を受けた後死亡した場合には、その遺族に対し、すでに支払った賠償額とイタイイタイ病による死者に対する賠償額との差額金を支払う。
4. 当社はイタイイタイ病訴訟以外のイタイイタイ病患者及び要観察者に対し、イタイイタイ病対策協議会から提出される富山県知事の証明書にもとづき誠意をもって賠償する。
5. 当社は今後新たにイタイイタイ病患者及び要観察者に認定された者に対しても前項と同様に賠償する。ただし既に要観察者として賠償金の支払を受けた同患者についてはその受領額を控除する。
6. 当社は、イタイイタイ病患者及び要観察者の今後のイタイイタイ病にかかわる治療費、入院費、温風療養費、その他の療養関係費の全額を請求に応じて支払う。
7. 第3乃至6項の支払方法については別途協議する。

上記誓約する。
昭和47年8月10日

東京都中央区日本橋室町2丁目1番地1
三井金属鉱業株式会社
代表取締役社長 尾 山 本 信 平

イタイイタイ病対策協議会
会長 小 松 義 久 殿

イタイイタイ病訴訟原告弁護団
団長弁護士 正 木 宴 之 助 殿

— 42 —
土壌汚染問題に関する誓約書

1. 当社は、当社神岡鉱業所排出にかかるカドミウム等の重金属による神通川流域のイタイイタイ病発生地域における過去および将来の農業被害ならびに土壌汚染の責任を負担する。

2. 上記第1項を前提として、当社は
 ① 右被害地域の汚染米とその対策にかかわる損害を賠償する。
 ② 右被害地域の作付制限にともなう農民の損害を賠償する。
 ③ 「農地用の土壌の汚染防止等に関する法律」のもとづいて、右被害地域において農用地復元対策事業が行なわれる場合、
 A 原因者として事業費用総額を負担する。
 B 右事業にともなう区画整理など被害農民の損害となる部分についてその費用を負担する。
 C 右事業にともなう減収などの損害を負担する。

上記誓約する。
昭和47年8月10日

東京都中央区日本橋室町2丁目1番地1
三井金属鉱業株式会社
代表取締役 尾 本 信 平

イタイイタイ病対策協議会
会長 小 松 義 久 殿

熊野地区鉱毒対策協議会
会長 上 田 敏 朗 殿

鶴岡公害対策協議会
会長 島 田 伊 作 殿

速星地区公害対策協議会
会長 増 田 喜 久 雄 殿

イタイイタイ病訴訟原告弁護団
団長弁護士 正 力 喜 之 助 殿

— 45 —
公害防止協定

（甲）イタイイタイ病対策協議会
会長 小松義久

（甲）熊野地区鉛毒対策協議会
会長 上田敏朗

（甲）鵜坂公害対策協議会
会長 島田伊作

（甲）速星地区公害対策協議会
会長 増田喜久雄

（乙）三井金属鉛業株式会社
代表取締役 尾本信平

乙は、神岡鉛業所の操業に関し、今後再び公害を発生させないことを約束し、当面つぎのこと
を甲らと協定する。

1. 甲らのいずれかが必要と認めたときは、乙は、甲及び甲が指定する専門家が、いつでも、
乙の廃水調を含む最終廃水処理設備および廃棄物堆積場など関係施設に立入及び調査し、自主的に
各種の資料などを収集することを認める。

2. 乙は、甲に対し、前項の規定する諸施設の拡張・変更に関する諸資料、並に甲が求める
公害に関する諸資料を、提供する。

3. 前2項のほか神岡鉛業所の操業に係る公害防止に関する調査費用は、すべて乙の負担とする。

4. 乙は、公害の防止等に関し今後さらに誠意をもって、甲らと交渉し協定を締結する。

昭和47年8月10日

甲 イタイイタイ病対策協議会
会長 小松義久

熊野地区鉛毒対策協議会
会長 上田敏朗

鵜坂公害対策協議会
会長 島田伊作

速星地区公害対策協議会
会長 増田喜久雄

乙 三井金属鉛業株式会社
代表取締役 尾本信平

立会人 イタイイタイ病訴訟原告弁護団
団長 正方喜之助
特集
繊維加工と繊維製品の安全性
農林水産業試験場・繊維部 山口雪雄

はじめに

ワガ国で“公害と自然破壊”が大きな社会問題となったのは、60年代後半からであり、人間を中心にした問題から、反対の数多く加えられ、科学者を含めた住民のたたかいで生じたのもそう遠い話ではない。しかし繊維製品の安全性については、残念ながら学界においても多数年、ようやく調査がはじめられた段階であり、一般には、衣料の安全性問題はマスコミがセンセーショナルにとりあげた科学的根拠のないマスコミ公害であると極端にいる位の認識であった。

繊維製品の安全性がマスコミでもとりあげられ、大きく社会の注目をあびたのは、1970年5月公表された科学技術庁資源調査所の「衣料試験に関する基礎調査資料」(11) 報の、いわゆる青山報告といわれる「衣料による被害調査」からであり、公害問題の波にのって「繊維よお前も多く!」ということで、「衣料公害」の新造語が生まれたのである。それ以後、通産省「繊維品安全対策会議」が設置され、日本化繊協会にも「衣料衛生研究会」なる研究グループができられて、ようやく調査研究がはじまった。実態調査としてはこれより先1965年に、主婦連が「食中毒の中の危険と不衛生」というテーマで行なった苦情調査があり、衣料障害の問題を提起したが当時は社会的にとりあげられるにいたらなかった。

日本学術会議は今年の第61回総会において、その目的・姿勢・任務について、「科学のための科学」から「人間のための科学」への転換を大きく出し、「科学を…産業・国民生活に反映させる」という任務を重視したことにもみられるように、これからの問題に対する科学者・技術者の社会的責任も大きいといわばならない。

学界関係でも以上のような経過から、おそらくながら私の所属する繊維学会や日本繊維製品消費科学会では、環境公害対策局やシンポジウムを通じて衣料の安全性についてとりあげるようになった。空気・廃水・騒音・衣料処理剤・廃棄衣料の処理・火災に対する安全性など問題は山積している。以下本論では、これらすべてについて論ずることは不可能なので、とくに筆者が関係している繊維の化学加工と消費科学の立場から繊維製品の安全性について考えてみたい。

ともあれ、これらの問題はまだ調査・研究の渋についてはばかりであり、とくに人間の生活環境におよぼう影響については、学際的視野が必要であり、とくに医学関係学界との有機的なつながりが必要であるが、今だに大きな空白分野である。

1. 繊維製品による皮膚障害の実態

私たちは日常生活のなかで、食生活をめぐる諸問題については、直面生命の危険にかかわることもあって早から大きな社会問題として研究もすすめられてきたが、衣生活については、その性質上あまり安全性は問題とならず、1967年当社では名古屋大学医学部の青山光子氏の「衣料に
よる被害調査」が唯一の科学的調査であった。

第1表「衣料による被害の実態調査」はその一部であるが、調査対象の女子学生500名中、実に半数をしめる251人（50.2％）が、過去3年間のなかで、何らかの衣料障害をうけたと答えており、繊維別では化学繊維が49.3％と半数をしめし、羊毛がこれについて21.1％と多く、絹はわずかに1例を示すのみである。もちろん、この結果は、各繊維素材の性質上、人体のどの部分に着用されるか、化学加工がなされているかどうか、などさまざまな要素がからみ、簡単に比較して云々することはできないが、興味ある結果である。

また症状としては、かゆみ、発赤が大部分をしめており、そこから皮膚障害とするかで、その被害数も大きく変動するが、現在その基準を検討中とのことであり、皮膚が赤くなった、ブツブツができた、水泡ができたとする症状あたりに線がひかれるようである。

その後、安全対策会議等でも調査がさらには大規模な形ですすめられ、東邦大の石原教授による大病院の皮膚科外来患者の衣類による接触皮膚炎の原因別頻度調査（第2表）も報告されているが、全体的には青山報告と同じ傾向を示し、衣料による障害とアレルギーとの関係でも、アレルギーを起こしやすい人がそうでない人よりも衣料障害をうけやすい結果がみとめられる。

第1図はかぶれにくい体質の人ほど皮膚障害をうけにくい結果を示しており、原因究明の手がかりを与えるものである。

また第2図は皮膚炎の具体的症状については男女別、年令別にその顕度をあらわした。

<table>
<thead>
<tr>
<th>第1表 衣料による被害の実態調査</th>
</tr>
</thead>
<tbody>
<tr>
<td>項目</td>
</tr>
<tr>
<td>被害</td>
</tr>
<tr>
<td>有無</td>
</tr>
<tr>
<td>衣料</td>
</tr>
<tr>
<td>種類</td>
</tr>
<tr>
<td>スーツ又はワンピース</td>
</tr>
<tr>
<td>セーター ニットガーメント</td>
</tr>
<tr>
<td>プラス ブラス スカート</td>
</tr>
<tr>
<td>下着</td>
</tr>
<tr>
<td>靴</td>
</tr>
<tr>
<td>その他の</td>
</tr>
<tr>
<td>材質</td>
</tr>
<tr>
<td>紐</td>
</tr>
<tr>
<td>化学繊維</td>
</tr>
<tr>
<td>その他不明</td>
</tr>
<tr>
<td>症状</td>
</tr>
<tr>
<td>咳・頭痛</td>
</tr>
<tr>
<td>かゆみ</td>
</tr>
<tr>
<td>チクチクした痛み</td>
</tr>
<tr>
<td>離れた痛み</td>
</tr>
<tr>
<td>乾燥</td>
</tr>
<tr>
<td>水泡ができる</td>
</tr>
<tr>
<td>その他</td>
</tr>
<tr>
<td>皮膚症状の部位</td>
</tr>
<tr>
<td>頭部・顔面</td>
</tr>
<tr>
<td>頭</td>
</tr>
<tr>
<td>胸部</td>
</tr>
<tr>
<td>腹部</td>
</tr>
<tr>
<td>腰部</td>
</tr>
<tr>
<td>四肢部</td>
</tr>
<tr>
<td>上肢</td>
</tr>
<tr>
<td>下肢</td>
</tr>
<tr>
<td>その他</td>
</tr>
<tr>
<td>処置</td>
</tr>
<tr>
<td>置</td>
</tr>
<tr>
<td>和</td>
</tr>
<tr>
<td>不明</td>
</tr>
<tr>
<td>治療までの日数</td>
</tr>
<tr>
<td>5日以内</td>
</tr>
<tr>
<td>6日以上</td>
</tr>
<tr>
<td>不明</td>
</tr>
<tr>
<td>その衣料の処理</td>
</tr>
<tr>
<td>着るのをやめた</td>
</tr>
<tr>
<td>工夫して着ている</td>
</tr>
<tr>
<td>そのまま着ている</td>
</tr>
<tr>
<td>不明</td>
</tr>
</tbody>
</table>

（注）1965年11月から12月にかけて19才〜22才女子大生500名について、過去3年間の衣料による被害の有無を調査した。
（名古屋市立大学 青山光子氏の調査による）
第2表 接触皮膚炎の原因別頻度調査（昭和45年）

<table>
<thead>
<tr>
<th>施設</th>
<th>東邦大</th>
<th>徳島大</th>
<th>日本医大第2病院</th>
<th>中央労働病院</th>
<th>東京花信病院</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>外来患者数</td>
<td>3,744</td>
<td>3,466</td>
<td>3,701</td>
<td>7,950</td>
<td>5,705</td>
<td>24,564</td>
</tr>
<tr>
<td>患者数</td>
<td>197</td>
<td>114</td>
<td>366</td>
<td>404</td>
<td>380</td>
<td>1,471</td>
</tr>
<tr>
<td>外用薬</td>
<td>44</td>
<td>26</td>
<td>120</td>
<td>110</td>
<td>62</td>
<td>362 (1)</td>
</tr>
<tr>
<td>消毒・殺菌剤</td>
<td>3</td>
<td>5</td>
<td>11</td>
<td>13</td>
<td>16</td>
<td>49 (6)</td>
</tr>
<tr>
<td>塩化・パラジン剤</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>結合剤・硬剤</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>25 (11)</td>
</tr>
<tr>
<td>薬浴</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>化粧品類</td>
<td>45</td>
<td>10</td>
<td>46</td>
<td>36</td>
<td>25</td>
<td>160 (2)</td>
</tr>
<tr>
<td>頭髪用品</td>
<td>8</td>
<td>7</td>
<td>14</td>
<td>11</td>
<td>8</td>
<td>48 (7)</td>
</tr>
<tr>
<td>洗浄剤</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>11</td>
<td>36 (9)</td>
</tr>
<tr>
<td>衣類</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>17</td>
<td>11</td>
<td>53 (3)</td>
</tr>
<tr>
<td>靴類</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>24</td>
<td>17</td>
<td>54 (4)</td>
</tr>
<tr>
<td>時計バンド</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>手袋</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>眼鏡</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>おむつ</td>
<td>8</td>
<td>2</td>
<td>21</td>
<td>12</td>
<td>7</td>
<td>50 (5)</td>
</tr>
<tr>
<td>植物</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>33</td>
<td>9</td>
<td>57 (3)</td>
</tr>
<tr>
<td>香油</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>化学薬品</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>杀虫剤・農薬</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>塗料</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>女子顔面黒皮症</td>
<td>10</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>37</td>
</tr>
<tr>
<td>接触性日光皮膚炎</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>手の湿疹様変化</td>
<td>131</td>
<td>125</td>
<td>153</td>
<td>312</td>
<td>890</td>
<td>1,111</td>
</tr>
</tbody>
</table>

(注) 〇数字は順位をあらわす。
※ 繊維品安全対策会議
医学関係調査部会 石原委員（東邦大学教授）の調査結果による。

ものである。性別では女性が多く、またその大部分は10～20代、30～50代女性であり、障害
の92％が直接肌にふれる部分にあらわれ、その処置は放置か、家庭療による治療が大部分で
医者にかかった人は5％位しかいないが、かなり大きな数字というべきだろう。

繊維自体による皮膚障害の発生については、青山報告（第1表）にみられるように、化学繊維
によるものが半数をしめているが、さらに各繊維別にみると第3表のようになる。第3表と第1
表は調査の方法も、対象も異なるので同一に比較はできないが、この表からもわかるように天然
繊維は比較的少なく、羊毛がアトピー性皮膚炎その他にたいする物理的刺激が問題となる位で、紡
綿、麻は殆ど障害がみられない。合成繊維ではナイロンの感作性（著・否両説あり）のほか、
吸湿性の悪さからくる汗疹や加工処理剤、染料などの汁による溶出が問題しているとも考えられ
るが、まだ研究に入った段階であり、不明な点が多い。

—47—
第1図 体質と障害との関連（経験と非経験）

第2図 皮膚障害の症状（実数473 割合36%の内訳）

状態別頻度

1. いやな臭いがした
2. 眼が痛かった
3. 皮膚がチクチクした
4. かゆみを感じた
5. 皮膚が赤くなった
6. ぶつぶつができた
7. はられ
8. 水泡ができ
9. その他の

繊維品安全対策会議による調査結果、252名の一部

- 48 -
<table>
<thead>
<tr>
<th>繊 維</th>
<th>Fisher 1967</th>
<th>佐野氏ら 1966</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>繊 維</td>
<td>加 工 剤</td>
</tr>
<tr>
<td>毛</td>
<td>生 理 的 剤 截 (とくにアトピー)</td>
<td>重クロム酸塩</td>
</tr>
<tr>
<td>糧</td>
<td>稀 (膨脹型)</td>
<td>稀</td>
</tr>
<tr>
<td>木 綿</td>
<td>稀 (のり・樹脂)</td>
<td>1 例</td>
</tr>
<tr>
<td>麻</td>
<td>ほとんどなし</td>
<td>稀</td>
</tr>
<tr>
<td>ポリアミド (ナイロン)</td>
<td>稀 (ケルシ)</td>
<td>7 例</td>
</tr>
<tr>
<td>ポリアクリル (カーティロン)</td>
<td>4 例</td>
<td>5 例</td>
</tr>
<tr>
<td>ポリエテル (テトロン)</td>
<td>6 例</td>
<td>5 例</td>
</tr>
<tr>
<td>ポリビニール・アルコール (ビジロン)</td>
<td>7 例</td>
<td></td>
</tr>
<tr>
<td>ポリ塩化ビニール (チビロン)</td>
<td>1 例</td>
<td>6 例</td>
</tr>
<tr>
<td>ポリプロピレン (ポリプロ)</td>
<td>1 例</td>
<td>-</td>
</tr>
<tr>
<td>アセテート (セルローズ、アセチル)</td>
<td>3 例</td>
<td>4 例</td>
</tr>
<tr>
<td>ビスコース・レーヨン (スパルコット)</td>
<td>2 例</td>
<td>4 例</td>
</tr>
</tbody>
</table>

2. 火災に対する安全性

燃えやすい繊維製品の安全性については、軍事上の問題もあって、戦時中から今日まで、とくに欧米できっており、大きな問題としてとりあげられ、研究がすすめられてきた。わが国ではとくに政治的な問題もあやかっており、アメリカの「燃えやすい繊物法」が1953年に制定されてから、とくに著目よりをを中心に繊維物においても防燃加工が問題となって、一部研究がすすめられた。

最近では新機材の使用増加にともない、火災による被害、とくに焼死者が激増している。1969
年にはこれらの実情から消防法と建築基準法が大改正され、可燃性建材の安全性とインテリア用繊維の防火基準も設定される方向にきているが、衣料用絹繊についてはほとんど問題になっていた。しかし昨年の大阪における高層ビル火災による大量の犠牲者の出したものと、1つには火災による焼死よりも、新建材とともに合成繊維の不完全燃焼による有害ガスの窒息死にあると断定され、あらためて繊維の不完全燃焼による分解生成物にスポットがあらわれることになった。

第4表は各種繊維の熱分解生成ガスの分析値であるが、不完全燃焼によって大量の一酸化炭素を生成し、ポリアクリル酸トリル系繊維（カシミロン、エクスラン、ピューロンなど）は大量のシアン化水素（猛毒）を発生するので大変危険であることがわかった。意外なことに天然繊維である棉、羊毛にも少量のシアン化水素の生成が検出されており、シアン基を含まないこれらの繊維にもどうしてその存在が認められるのか今のところ不明である。

また各種繊維の熱特性は第5表に示すように、天然繊維は木綿以外は比較的燃えるが、とくに棉は引火温度も高く難燃性にランクできるほどで、L、0、I（酸素指数）も羊毛に匹敵する。

第4表 800℃における各種繊維の熱分解生成ガス

<table>
<thead>
<tr>
<th>組成</th>
<th>羊毛</th>
<th>棉</th>
<th>木綿</th>
<th>セルローズ</th>
<th>ポリアクリル酸トリル系繊維</th>
<th>ポリアミド系繊維</th>
<th>ポリビニルアルコール系繊維</th>
<th>ポリビニリデンフロン系繊維</th>
</tr>
</thead>
<tbody>
<tr>
<td>一酸化炭素</td>
<td>30.2</td>
<td>32.3</td>
<td>33.0</td>
<td>33.1</td>
<td>10.8</td>
<td>22.8</td>
<td>35.4</td>
<td>25.3</td>
</tr>
<tr>
<td>炭酸ガス</td>
<td>20.0</td>
<td>22.0</td>
<td>24.0</td>
<td>22.2</td>
<td>1.2</td>
<td>22.0</td>
<td>12.3</td>
<td>0.5</td>
</tr>
<tr>
<td>シアン化水素</td>
<td>3.2</td>
<td>3.4</td>
<td>ー</td>
<td>ー</td>
<td>ー</td>
<td>ー</td>
<td>ー</td>
<td>ー</td>
</tr>
<tr>
<td>アンモニア</td>
<td>微量</td>
<td>0.1</td>
<td>微量</td>
<td>ー</td>
<td>0.1</td>
<td>0.1</td>
<td>ー</td>
<td>ー</td>
</tr>
<tr>
<td>塩化水素</td>
<td>ー</td>
<td>ー</td>
<td>ー</td>
<td>ー</td>
<td>ー</td>
<td>ー</td>
<td>ー</td>
<td>64.3</td>
</tr>
<tr>
<td>アクリロニトリル</td>
<td>ー</td>
<td>ー</td>
<td>ー</td>
<td>ー</td>
<td>4.0</td>
<td>ー</td>
<td>ー</td>
<td>ー</td>
</tr>
<tr>
<td>アセトニトリル</td>
<td>ー</td>
<td>ー</td>
<td>ー</td>
<td>ー</td>
<td>14.5</td>
<td>ー</td>
<td>ー</td>
<td>ー</td>
</tr>
<tr>
<td>メタン</td>
<td>16.2</td>
<td>14.3</td>
<td>14.3</td>
<td>16.2</td>
<td>6.9</td>
<td>7.3</td>
<td>6.3</td>
<td>微量</td>
</tr>
<tr>
<td>エタン</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>1.4</td>
<td>2.2</td>
<td>微量</td>
</tr>
<tr>
<td>アセチレン</td>
<td>0.6</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>1.2</td>
<td>0.3</td>
<td>微量</td>
</tr>
<tr>
<td>水素</td>
<td>10.6</td>
<td>10.0</td>
<td>10.2</td>
<td>9.3</td>
<td>15.4</td>
<td>16.2</td>
<td>8.0</td>
<td>微量</td>
</tr>
<tr>
<td>酸素</td>
<td>2.5</td>
<td>2.3</td>
<td>5.0</td>
<td>5.0</td>
<td>3.8</td>
<td>3.8</td>
<td>3.0</td>
<td>3.5</td>
</tr>
</tbody>
</table>
第5表 各種繊維の熱特性及び燃焼性

<table>
<thead>
<tr>
<th>繊維</th>
<th>乾熱収縮 額定となる温度</th>
<th>溶融温度</th>
<th>熱分解開始温度</th>
<th>600℃加熱残渣</th>
<th>分解ガス引火温度</th>
<th>L.O.I (燃焼指数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>木綿</td>
<td>-</td>
<td>-</td>
<td>341℃</td>
<td>2.0%</td>
<td>361℃</td>
<td>18.5%</td>
</tr>
<tr>
<td>レーヨン</td>
<td>-</td>
<td>-</td>
<td>313℃</td>
<td>0.4</td>
<td>327℃</td>
<td>20.0</td>
</tr>
<tr>
<td>アセテート</td>
<td>約 255℃</td>
<td>-</td>
<td>336℃</td>
<td>3.0</td>
<td>363℃</td>
<td>19.0</td>
</tr>
<tr>
<td>アクリルトリル</td>
<td>約 80℃</td>
<td>不明瞭</td>
<td>312℃</td>
<td>58.5</td>
<td>331℃</td>
<td>18.5</td>
</tr>
<tr>
<td>ポリエステル</td>
<td>約 190℃</td>
<td>255℃（融点）</td>
<td>410℃</td>
<td>3.8</td>
<td>448℃</td>
<td>23.5</td>
</tr>
<tr>
<td>ナイロン6</td>
<td>約 160℃</td>
<td>215℃（融点）</td>
<td>416℃</td>
<td>1.5</td>
<td>459℃</td>
<td>22.0</td>
</tr>
<tr>
<td>綿</td>
<td>-</td>
<td>-</td>
<td>287℃</td>
<td>9.0</td>
<td>622℃</td>
<td>25.5</td>
</tr>
<tr>
<td>羊毛</td>
<td>-</td>
<td>-</td>
<td>243℃</td>
<td>12.8</td>
<td>>650℃</td>
<td>25.5</td>
</tr>
<tr>
<td>塩ビ共重合アクリル</td>
<td>約80℃</td>
<td>不明瞭</td>
<td>265℃</td>
<td>34.5</td>
<td>>650℃</td>
<td>27〜29</td>
</tr>
<tr>
<td>ポリクラール</td>
<td>約 90℃</td>
<td>同上</td>
<td>234℃</td>
<td>0.3</td>
<td>>650℃</td>
<td>28〜33</td>
</tr>
<tr>
<td>塩化ビニル</td>
<td>約 90℃</td>
<td>約 180〜200℃</td>
<td>287℃</td>
<td>6.0</td>
<td>>650℃</td>
<td>37〜40</td>
</tr>
<tr>
<td>塩化ビニリデン</td>
<td>約90℃</td>
<td>約200〜210℃</td>
<td>244℃</td>
<td>4.5</td>
<td>>650℃</td>
<td>42〜50</td>
</tr>
<tr>
<td>耐久性耐炎加工木綿</td>
<td>-</td>
<td>-</td>
<td>310℃</td>
<td>11.0</td>
<td>>650℃</td>
<td>27〜30</td>
</tr>
<tr>
<td>ガラス</td>
<td>>800℃</td>
<td>850〜1,150℃</td>
<td>-</td>
<td>92.0</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>材料</td>
<td>質</td>
<td>名称</td>
<td>取付保持方法による酸素指数 (1)</td>
<td>棒状に巻く方法による酸素指数 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>------</td>
<td>----------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>綿</td>
<td>100 %</td>
<td>金箔 ３号</td>
<td>18.5</td>
<td>21.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>麻</td>
<td>100 %</td>
<td>平織 50 S</td>
<td>19.5</td>
<td>20.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>羊毛</td>
<td>100 %</td>
<td>ムスリン 1/32 1/66</td>
<td>23.0</td>
<td>28.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ポリプロピレン 100 %</td>
<td>平織 36 S</td>
<td>21.0</td>
<td>20.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ナイロン 6 100 %</td>
<td>タフタ 30 D</td>
<td>27.0</td>
<td>28.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アクリル樹脂PVC-A N</td>
<td>タフタ 50 D</td>
<td>27.0</td>
<td>21.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ポリエステル 100 %</td>
<td>ブロード 60 S</td>
<td>25.0</td>
<td>26.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ポリエステル／綿＝65／35</td>
<td>ブロード 60 S</td>
<td>19.0</td>
<td>21.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>レーヨン 100 %</td>
<td>平織 120 D</td>
<td>20.0</td>
<td>22.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>レーヨン A種防炎加工</td>
<td>平織 60 D×100 D</td>
<td>19.5</td>
<td>21.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B種防炎加工</td>
<td>デニム さらし</td>
<td>18.5</td>
<td>21.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C種防炎加工</td>
<td>金箔 40 S</td>
<td>19.0</td>
<td>21.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>キュプラ 100 %</td>
<td>デニム 26.2 S</td>
<td>37.0</td>
<td>40.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アセテート 100 %</td>
<td>暗幕</td>
<td>19.5</td>
<td>55.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ビニロン 100 %</td>
<td>暗幕，防炎加工</td>
<td>25.0</td>
<td>48.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVC 100 %</td>
<td>フラノ</td>
<td>26.0</td>
<td>55.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVC－PVA</td>
<td>フラノ，防炎加工</td>
<td>39.1</td>
<td>49.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>平織</td>
<td>22.0</td>
<td>27.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>平織，防炎加工</td>
<td>33.0</td>
<td>45.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ナイロン</td>
<td>シートベルト</td>
<td>27.0</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ナイロン／レーヨン</td>
<td>自動車シート</td>
<td>20.0</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（注）1）幅 60 mm，長さ約 120 mm の布をコツ形枠に取付け，布地のままで中央上部より点火。3－2節の(5)法。
2）幅 50 mm，長さ 150 mm の布を巻いて 150 mm の棒状として直立できるようにした。
3－2 節の(4)法。
※ 酸素指数＝燃焼を継続するために必要な限界酸素濃度 (O2 / N2 + O2)

以上は大別して繊維素材上からみた問題点であるが，さらにこれらの繊維素材を加工して，繊維製品という一つの商品にする場合，その性能を改善し，風合，光沢，防シワ性などさまざまな実用性能を高めるために，物理的，あるいは化学的加工を行なうのが普通である。

製繊のあと，幅出しや巻出しのように布形や布面を整えるような物理的加工はほとんど安全性の上では問題とならないと思われるので，以下ここでは繊維処理剤の化学加工を中心に考えてみたい。
3. 繊維処理剤の問題点
繊維加工を大まかに分類してみると第7表のようになるが、そのうち問題となって調査研究が
すすめられているものに次のようなものがある。
(1) 樹脂加工剤
(2) 防虫加工剤
(3) 防燃加工剤
(4) 界面活性剤
(5) 蒔光増白剤
(6) 殺菌、防カビ剤

<table>
<thead>
<tr>
<th>機能</th>
<th>繊維改質</th>
<th>物理加工</th>
<th>化学加工</th>
</tr>
</thead>
<tbody>
<tr>
<td>風合</td>
<td>異形断面条</td>
<td>起毛、剪毛、毛焼</td>
<td>硬仕上または柔軟仕上</td>
</tr>
<tr>
<td></td>
<td>加工条</td>
<td>ブロック加工各種カレンダー仕上</td>
<td>増量処理</td>
</tr>
<tr>
<td></td>
<td>複合条</td>
<td></td>
<td>高温加工</td>
</tr>
<tr>
<td>光学特性</td>
<td>異形断面条</td>
<td>ジュライナ加工</td>
<td>ツヤ消加工</td>
</tr>
<tr>
<td></td>
<td>酸化チタン添加</td>
<td>ケイ光原着</td>
<td>漂白、ケイ光増白</td>
</tr>
<tr>
<td>形態安定性</td>
<td>合成繊維の一般</td>
<td>プリーツ加工</td>
<td>W & W加工</td>
</tr>
<tr>
<td></td>
<td></td>
<td>エンボス加工</td>
<td>PP加工</td>
</tr>
<tr>
<td>尺寸安定性</td>
<td>合成繊維の一般</td>
<td>ヒートセット</td>
<td>防縮加工</td>
</tr>
<tr>
<td></td>
<td></td>
<td>サンフラッシュ加工</td>
<td></td>
</tr>
<tr>
<td>帯電防止性</td>
<td>メタリックヤーン</td>
<td>帯電防止成分</td>
<td>帯電防止加工</td>
</tr>
<tr>
<td></td>
<td>混合紡糸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>汚れ防止性</td>
<td>汚れのおちやすさ</td>
<td></td>
<td>S R加工</td>
</tr>
<tr>
<td></td>
<td>防汚加工</td>
<td></td>
<td>ハッ水、ハッ油加工</td>
</tr>
<tr>
<td>防水性</td>
<td>耐水性</td>
<td></td>
<td>防汚加工</td>
</tr>
<tr>
<td></td>
<td>ハッ水分</td>
<td></td>
<td>ハッ水加工</td>
</tr>
<tr>
<td>防炎・難燃性</td>
<td>ガラス繊維</td>
<td></td>
<td>防炎・難燃加工</td>
</tr>
<tr>
<td></td>
<td>"ゴーメラン"</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>改質アクリル繊維</td>
<td></td>
<td></td>
</tr>
<tr>
<td>吸水・吸湿性</td>
<td>ナイロン4</td>
<td></td>
<td>親水加工</td>
</tr>
<tr>
<td>衛生性</td>
<td>殺虫、防カビ</td>
<td></td>
<td>衛生加工</td>
</tr>
<tr>
<td></td>
<td>ケーボホール</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ピーリング防止法</td>
<td>"コーポリゾン"</td>
<td>毛焼・剪毛</td>
<td>抗ピーリング加工</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ヒートセット</td>
<td>割脂加工</td>
</tr>
<tr>
<td>耐光性</td>
<td>耐光性向上剤</td>
<td></td>
<td>耐光剤処理</td>
</tr>
<tr>
<td>耐熱性</td>
<td>耐熱性向上剤</td>
<td></td>
<td>耐熱剤処理</td>
</tr>
</tbody>
</table>

-53-
現在までのところ、繊維製品の樹脂加工その他の処理剤のうち、とくに問題なのは、使用中に接触皮膚炎を誘発するおそれのあるもの、体内に蓄積されて慢性毒性をあらわすもの、加工工程の廃棄物や、衣料品の廃棄物の中の薬品等、環境を汚染するおそれのあるものなどです。ここにあげた6つの処理剤のほかにも、今後調査・研究がすすむにつれて、新たな問題となるものも少ないうちに考えられます。

(1) 樹脂加工剤とホルムアルデヒド

セルロース系繊維製品の品質改善を目的に発展してきたこの加工剤は、下記のような尿素ホルマリン系樹脂やメラミンホルマリン系樹脂など広く合成纖維にも用いられるようになり、ここに製品中の遊離のホルムアルデヒドによる人体への影響が問題となってきた。

第8表に示すようにホルマリン樹脂（防縮、防シワ、型仕上、硬仕上などに用いられる）と、ついてトリアジン系、ウロン型樹脂（防シワ、防縮、Wash & Wear仕上）が多く、一般に多いとされている尿素樹脂に少ないのは、ここでは低ホルムアルデヒドモル比の改良型尿素樹脂であるためであろう。

いずれにしてもソーピング処理または塩めりによって遊離ホルムアルデヒドは1/10以下となり、またホルムアルデヒドの接觸剤処理もソーピングと同じ程度の効果をあげることが示されている。

ホルムアルデヒドの人体への影響については、一般に眼や気道粘膜を刺激し、皮膚に障害を与えるだけでなく、動物実験からも、血液系や肝臓にも有害であることが報告されている。

それ故今日、労働環境におけるホルムアルデヒドの許容量は、各国とも5 ppm値前後となっており、一般的な生活環境基準としてはさらに低く1/100と定めることが必要といわれ、眼に痛みを覚える程度としては、婦人衣服市場のホルムアルデヒド濃度の測定結果から0.23 ppmが報告されている。

肌着中のホルムアルデヒドは検出されなかったが、第2表に示すように、おむつカバー中の羊毛をのぞいた合成繊維に大量のホルムアルデヒドが検出され、カーテン地がこれにつくことで、ワイヤーシャツは一部をのぞきかなり低い値を示した。

以上のことが繊維品安全対策会議では1971年度の目標をこの樹脂加工とデイドリンを含む防虫加工におき、調査・研究の結論として次のように発表している。

「ホルマリン樹脂加工による接触皮膚炎その他の人体への影響は、医学的見地からすると、製品中の遊離ホルムアルデヒドによる刺激、繊維素材等による物理的刺激、使用者の体質、使用状況、ならびに環境等が複合しておきていることが認められ、ホルムアルデヒドのみが人体に影響を与える原因のすべてとは言えないが、要因の一つを構成していることはたしかである。繊維製品中の遊離ホルムアルデヒドの許容量については、次のように廃棄等の外衣類では0.1％、ワイヤーシャツ、ブラス等の中衣類にあっては0.05％を越えないように、下着類では遊離ホルムアルデヒドが残らないようにすること……」

何よりもあいまいな結論であるが、遊離のホルムアルデヒドが皮膚障害の主因をなしていることは間違いない。
第8表 各樹脂加工布の遊離ホルムアルデヒド

<table>
<thead>
<tr>
<th>後処理条件</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>メラミン</td>
</tr>
<tr>
<td>ノービング</td>
<td>1.270</td>
</tr>
<tr>
<td>ノービング</td>
<td>(2.6)</td>
</tr>
<tr>
<td>ソービング</td>
<td>487</td>
</tr>
<tr>
<td>ソービング</td>
<td>(1)</td>
</tr>
<tr>
<td>湯洗い</td>
<td>660</td>
</tr>
<tr>
<td>湯洗い</td>
<td>(1.4)</td>
</tr>
<tr>
<td>ホルマリン銅液処理</td>
<td>74</td>
</tr>
<tr>
<td>(3％)処理</td>
<td>(0.2)</td>
</tr>
</tbody>
</table>

単位：ppm（ ）内は各樹脂についてソービングを1としたときの比
抽出法：気相液相法 (40℃, 5hr)

第9表 おむつカバー中のホルムアルデヒド

<table>
<thead>
<tr>
<th>番号</th>
<th>材質</th>
<th>布地 (%)</th>
<th>ポリ袋内 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ポリプロピレン 40％、レーヨン 60％</td>
<td>0.19</td>
<td>1.20</td>
</tr>
<tr>
<td>2</td>
<td>アクリル 70％、レーヨン 30％</td>
<td>0.15</td>
<td>0.60</td>
</tr>
<tr>
<td>5</td>
<td>不明（化学繊維）</td>
<td>0.31</td>
<td>1.16</td>
</tr>
<tr>
<td>5</td>
<td>毛 100％</td>
<td>0.25</td>
<td>0.61</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>0.0</td>
</tr>
</tbody>
</table>

第10表 市販カーテン地中のホルムアルデヒド

<table>
<thead>
<tr>
<th>番号</th>
<th>布地 (%) (フレオグラフィン法)</th>
<th>ポリ袋内 (ppm) (アセテアルセトン法)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.17</td>
<td>0.80</td>
</tr>
<tr>
<td>2</td>
<td>0.18</td>
<td>0.85</td>
</tr>
<tr>
<td>3</td>
<td>0.20</td>
<td>1.22</td>
</tr>
<tr>
<td>4</td>
<td>0.35</td>
<td>0.74</td>
</tr>
<tr>
<td>5</td>
<td>0.01</td>
<td>0.11</td>
</tr>
<tr>
<td>6</td>
<td>0.44</td>
<td>0.43</td>
</tr>
<tr>
<td>7</td>
<td>0.28</td>
<td>0.84</td>
</tr>
<tr>
<td>8</td>
<td>0.09</td>
<td>2.14</td>
</tr>
<tr>
<td>9</td>
<td>0.25</td>
<td>0.71</td>
</tr>
<tr>
<td>10</td>
<td>0.06</td>
<td>0.88</td>
</tr>
<tr>
<td>11</td>
<td>0.23</td>
<td>0.52</td>
</tr>
<tr>
<td>12</td>
<td>0.24</td>
<td>0.56</td>
</tr>
</tbody>
</table>

第11表 衣料の遊離ホルムアルデヒド含有量

<table>
<thead>
<tr>
<th>衣料の種類</th>
<th>含有量 (%)</th>
<th>件数</th>
</tr>
</thead>
<tbody>
<tr>
<td>ワイシャツ生地</td>
<td>0.004～0.016</td>
<td>15</td>
</tr>
<tr>
<td>婦人用夏服地</td>
<td>0.005以下</td>
<td>13</td>
</tr>
<tr>
<td>婦人用夏服地</td>
<td>0.006～0.01</td>
<td>11</td>
</tr>
<tr>
<td>婦人用夏服地</td>
<td>0.011～0.05</td>
<td>59</td>
</tr>
<tr>
<td>婦人用夏服地</td>
<td>0.051～0.1</td>
<td>15</td>
</tr>
<tr>
<td>婦人用夏服地</td>
<td>0.1以上</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>計</td>
<td>101</td>
</tr>
<tr>
<td>ストッキング</td>
<td>0.001～0.006</td>
<td>6</td>
</tr>
</tbody>
</table>

— 55 —
（2）防虫加工剤

これまで羊毛の防虫加工に用いられていたディルドリン（Dieldrin）はきわめて残効性の強い有機塩素系防虫剤で毒性が強く神経毒である。人体への蓄積も考えられるが、防虫加工製品の試験結果では繊維の重量にたいして、ディルドリンの付着量が0.004～0.006%以上であれば防虫効果は十分であるという結果が得られ、H30Dの量で繊維重量に対して0.05%以下なら人体に対しての直接的な危険はなくまず安全であるとされるにいたった。しかしこれら是使用の頻度、部位、個人差などの問題もあり、できるだけ使用しないことが望ましいが、問題は消費者に注意を喚起するよりもむしろディルドリンにかわる防虫剤を開発することの方が先決であろう。すでに米国では使用が禁止され、日本でも71年6月に禁止されたときいている。

（3）防燃加工剤

ビル火災による大量焼死が大きな社会問題となっている現在、繊維製品のこの加工への要求は高まりつつある。さきに各種繊維の燃焼性についてのべたが、各種混用繊維の製品は広く市販されているいま、繊維単独の燃焼性では予想もしなかった結果を示すものもあり、これらの混用製品の燃焼性評価には慎重を要する。

天然繊維のうち、最も燃え易い繊維は木綿であり、すでに300年以上から制限加工が行なわれていた。しかしこの大半は無機塩類による処理であり、耐水性がなく、風合を害すること大である。その後スケールアンモニアなどから塩砂、塩酸の混合溶液を用いる方法にすぎず、塩酸ソーダと硫黄アンモニアを使用する二浴法で第二スケール化を繊維に着せるパーキン法などが研究された。

今日、カーテンなど洗濯をあまり行わないものには水溶性防炎剤の硫黄アンモニアや塩酸、塩砂などの無機塩類が使用されている。また耐久性を要する野外テントやその他のシートなど工業用には酸化アンチモン、塩化パラフィン、尿素ホルマリン樹脂などを用い、一般衣料用には、T・H・P・C主剤の方法や酸化エステルノーマルアミドなどが使われている。

その他細織物関係では古く当時の尾藤のスミルによる防水防火加工法の特許（セリシム膨潤、塩砂、塩酸ソーダ、クロム明パンなどを作る）があり、1950年以降には塩酸混油加工を応用したものや、6ナイロン、6-6ナイロンの共重合による方法などが研究されてきた。合成繊維についてはポリマー構成によって耐熱性も異なるが、アクリル繊維は難燃性をもつが、ポリエステルの共重合改質法や、ナイロンのチオ尿素～ホルマリン絡合樹脂が有効とされるなどいろいろな方法があるが、その後加工よりも原糸製造による難燃化がすすめられている。

いずれにしても衣料品の一部をのぞき、カーテンやカーペットなど耐水性がなく、しかも多量に付着させないと効果の薄い加工剤の毒性は今後に残された大きな問題であり、調査研究を早急にすすめる必要のある問題の一つであろう。

（4）界面活性剤

これは繊維加工上、欠かすことのできないもので、精練、染色、仕上げまで含めて、おびただ
しい種類の界面活性剤が使われている。一部洗剤用洗剤をのぞいて、その実態と人体への影響については全く未解の分野で、バッチテストによる皮膚障害のテスト例がみられる位で、今後の研究においても学問的な研究が要求されるものである。現在検討されている安全性についての試験研究としては、急性および慢性毒性試験、催奇形性・繁殖性試験、体内代謝試験、発癌試験、皮膚刺激試験などがあり、水質汚濁、環境保全上の問題とともに、安全基準の確立が早急に必要である。この場の研究には、かなり長期にわたる莫大な試験と費用がかかりるため、公的機関による研究体制作りが必要である。

(5) 酸化増白剤
いま白生地と染色布にこの酸化増白剤を使わないものが少ない位、広く衣料品からフキンなどの食生活まで関係した加工剤である。問題は、この酸化増白剤（酸化染料ともいう）には大別するとセルロース繊維用の直接染料型、繊、羊毛、ナイロン用の酸性あるいは塩基性染料型、さらに合成繊維用の分散染料型があり、一部直接染料型のものが原料中に発生物質アミノスチルベン類似のものがあるとされる点である。また、急性毒性試験、皮膚障害試験など若干の研究結果では異常を認めなかったと報告しているが、さらに系統的、専門的な研究が必要であろう。

(6) 殺菌、防カビ剤
水虫の防除とか汗臭さの解消とかCMを優先させて茶の間にまで侵入してくるのがこの種の加工製品で、肌着とか靴下など直接皮膚にふれる製品が多いためにかなり厳密な安全基準と規制が必要である。とくにTris(I-aziridinyl) phosphine oxide (APO)というエチレニミン系有機フマル化合物や、Bis-tributyltin oxide (BTB)という有機錳化合物などの強い防カビ性を有するため広くつかわれているが、急性毒性で骨髄の機能低下や胃、腸、における細胞の壊死、出血、浮腫などがみられると報告されている。

(7) その他の
ドライクリーニングをすれば誰でも汚れが落とされ、クリーニングされた衣類は汚れた細菌汚れたない清浄な状態になっていると見えるのが常識である。しかし最近、ドライクリーニングによる衣類洗浄を細菌学的視点から検討したところ、洗浄後の衣類からも非常に多くの細菌が検出され、Staphylococcus epidermidisなど15種の細菌が分離されたという報告が出されている。とくに木綿、羊毛、絹についての検査では木綿に比して羊毛、絹布に多く細菌が検出されたとされるものである。またドライクリーニングは大半がクリーニング用ソルベント（工業用揮発油第5号）と合成有機溶剤として毒性の少ないパーコールエチレンが用いられるが、それでも石油より揮発しやすく、皮膚の粘膜を侵し、神経系統に麻痺作用をするので、工場では蒸気密度を100 ppm以下と規制している。仕上げた衣類にかなりの量の溶剤が残存していてあの鼻をつよく臭いには閉口するが、検討を要する問題の一つではないだろうか。
あ と が き

「はじめに」でのべたように、この纖維製品の安全性についてはまだ調査がはじまったばかりで、これといった体系化した研究は殆どない。本稿では若干の実態と問題点を列記するにとどまった。

この問題について日本と外国を比較すると、欧米の特徴は可燃性の問題が古くから関心を集め、その研究ともにかなり行政的も指摘がゆきわたり、消費者保護の立場からかなりはっきりした安全基準と規制が行なわれていることである。日本では衣料の安全性といえば纖維加工剤による皮膚障害に重点がおかれ、世論におされてやっと公的機関で調査検討がはじめられたのが実情である。しかも行政機関内、官僚の繰張り争いも加わってか、衣料の場合は通産省繊維審査局が指導し、洗剤やジューター、毛布などの家庭用品の衛生上の安全対策は、厚生省薬物局薬事課が責任をもつつという状況で、その行政的役割もスムーズにいかないのが現状である。

いまあらゆるところに危険がいつでも、どうやって自分の身の安全を守るかというのが今日の状況である。衣料にまでこのような問題が起こっているとすれば、こうしてそれが発生したか、それを守るためにはどうするか、科学の悪用から非科学的利用も含めて、もっと科学技術を発展させる方向で問題を深める必要がある。

化学的な纖維改質は化学纖維にのみ適用できる手段で、綿・羊毛にはあまり関係がないとする(東多・伊藤氏)考えに立ったなら、綿は最も安全性の高い纖維で需要拡大につながる問題であるといえるかもしれないが、綿の塩化第2錠を用いる錠増量から合成樹脂加工、グラフト重合にいたるまで、全く化学的な加工操作を加えないものはありえない。いまの計画ですすめられている繊維品安全対策会議での科学的で厳密な調査結果を広く世間に公表してほしいものであるが、実際は下記にあげた調査報告書は一般はもちろん、関係の私たちすら中々入手困難なものである。

参 考 文 献
(1) 科学技術庁資源調査所；衣料処理剤に関する基礎調査資料 資料誌 11 (1970.5)
(2) 繊維製品消費科学；一特集一衣料処理剤の人体におよぼす諸影響 Va l.11, №10 (1970)
(3) 繊維と工業；環境公害特集 Val.5, №3 (1972)
(4) 繊維製品消費科学会；繊維製品の安全性に関する講演会テキスト (1971.12)
(5) 繊維製品消費科学；衣類上の細菌とその洗浄に関する研究 (第1報) Val.13, №3 (1972)
(6) 繊維製品消費科学；一特集一衣生活の安全性 Val.13, №6 (1972)
(7) 繊維学会；繊維加工シンポジウム講演要旨 (1972.6)
(8) 産業省；繊維品の安全対策に関する調査報告書 (1972)
(9) 武谷三男編；安全性の考え方 岩波新書 (1967)
私の履歴書

猪又正雄

私の送別会に行く途中、編集委員の方から標題について投稿するようにもかかれられた。常日頃親しくお世話になっているのでお断りするのも失礼であり、また退任した翌日から急に仕事から収を切ったのはあまりにも急激な変化で体調を狂わせてもまずいと思い、お受けした次第である。

いざ書いてみようと鉛筆をなたためはじめたが、何人かの役にも立ちそうにもない事ばかりで段々ファイトがうずってきた。そうなると勤務時間に拘束されない自由のご身分だから、お茶を飲んだり、背伸びをしたりでなかなか筆が進まない。こんな時に、ふとこのことに思い当たった。世の中は有難、無難、善良、不良が雑居している、あたりまえの行為に善行賞を授与されたりするが、これは無難な行為とよからぬ行為が引立て役を演ずるからであろう。こう見るとこの拙文も引立て役として役立つかも知れないと気を取り直し、お受けしたことは書き上げることにした。

私は昭和5年4月長野県工業試験場、つまり現在の長野県繊維工業試験場勤務を振り出しに今日まで42年間歩いて来た履歴を振り返って見るとあの激しい戦場にも立たず、また内地での空襲で見逃されたこともないので、若者頃からの採用辞令や選抜番号の殆ど保存してあるので履歴書はかなり正確に書ける。しかし役所に出される式の履歴書では第3者が見て何の意味もない。やはり私の歩いて来たこの時々の事情を徹底的に思うと、肝心のところがうろう覚えでありしたりして一生手間取る仕事になった。

昭和5年4月9日、汽車が松本駅に近づかれて腹さわぎがして落ちない。田舎育ちの初旅であるから無理もない。車窓に映える雄大な日本アルプスの雄姿の印象が想出せないのは心に余裕がなかったからであろう。

初勤務の直接の上役は私より4年先輩の同窓生で、同じ新潟県人であったから共通の話題が多く、心の通うよい上司であったことが、さい先のよい出発であった。初出勤の目にちりめんの生機を見せられ、これは何かと問われ、手に取って見ると漉紙の様にごわごわしており、白さも光沢もまるでよくない、これがちりめんの前身とは知るよしもない。“わかりません”と答え、まずは第一印象は落第であった。ところが先輩の上役は笑みをうかべてこれちりめんである、精練すると美しいしばしが現われて来る、君のこれからの仕事は精練であると申し渡された。この日から每日毎日精練について指導を受けながら研究を進め、私が着任試験場の精練研究室長を拝命するに至った下地がこの時から始まったのである。

当時、長野県は信州ちりめんが生産されていた。他方では絹付染色、縫染、手描友禅等の染色技術は京都に負けない優れた産地であった。しかし、精練を専業とする工場はなく、染色工場が行なっていた。このような事情から試験場において依託精練を実施していた。私がこの精練加工の一員に加えてもらった訳である。

— 59 —
依託品の取扱いは数に丁寧であった。練り過ぎると漂白の失敗等が許されなかった。つまり依託品の加工は、やり直しがきかないである。

5年〜9年頃の研究課題のうち、記憶に残っているのは著者学地に関する研究であり、お彼方が背広服の着用試験をされてきたが、洗浄服を“著る服地”と誰かがひ AppComponentをしたと、著者の学地は昔からの研究課題として残されている。また繊維から直接燃焼する研究がなされた。これは繊維機とイタリ放異繊機を組合せた結果のように記憶している。精練の研究では加圧精練に関する研究である。信州ちりめんの精練には普通4〜5時間が必要としていた。これを1気圧18℃の下で45分間で精練が出来る能率のよい方法である。これを試験場に設置して依託精練を行なった。

その頃は物価が安定しており、10年1日の如くであったように思う。価値は現在とは桁が違うており、お立派にはピンとこないと思うが、一例を示すと、試験場の職員の月給は最低20円、最高250円程度、職人の賃金は1日70銭〜1円程度、酒は1升20銭、お酒は1升1円程度、ゆかた地1銭、セルやモスリン（毛織物）3銭〜5銭程度といった相場であった。また5年の年は特に不況で繊1貫（4Kg）が120銭〜150銭と言う安値であった。これらの賃金や物価を現在のそれに換算して比較するのも興味がある。

人間は直立不動の姿勢基盤では相手が持たない。勤めははじめて数ヶ月過ぎると仕事の内容も人間関係も変わってくる。或る日先輩の後についてカッフェーと言うところへ案内された。先輩は面白おかしく高くかたがて享受しているが、こちらは仕事より疲れた。カッフェーはミニバーという所へ向かった。カカオをかたがて散財をねらうのは今も40年前も変わりはない。当時といえども、赤い灯、青い灯のネオンが輝いていた。

昭和8年の秋、ちりめんの製品を燥り約8ヶ月間養した後、再び試験場に勤めた。当時は公務員に健康保険の制度がなかったので、病気をすると苦労した。ちなみに民間企業ではこの時期すでに制度化されていた。

昭和10年8月、長野県染織講習所に転勤した。これは同所に加圧精練機を設置して依託精練を実施することになり、私がその実務を担当することになったためである。同所は染色科と織機科があり、どちらも1ヶ年間で修了することになっていた。

当時、上田地方には上田糸が織られていて仕上試験を行なった。また織物の原料が盛んであり、これを原料としてホームスパンの研究を行なった。この羊毛の新しい精練剤としてドイツからイグボンが登場した。これは中性で脂肪の乳化作用に卓越した効果を発揮した。これが現在多数ある中性洗剤の最初であったと思う。また紡物の染う地が織られていた。生糸のセリシオン染着の実用化研究が盛んになりかけたのもこれだろう。その当時のセリシオン染着した洋服を大切に保存している。染織講習所に2年6ヶ月勤職して退職した。

昭和13年2月、新潟県樹脂製品同業組合技術検査員として京都検査所勤務となる。そして公務員とはお別れとなった。

樹脂製品は東雲ちりめん（かべちりめんの一種）をして生産していた。このちりめんの糸立ちは、柔らかい毛をくしゃくしゃに丸めて、これを展開したときのカビに似た糸立ちである。
纖維検査の目的は検査を通じて品質の向上を計ることは勿論であるが、主目的是繊維間屋から繊維への返品防止対策であると言ってよい。つまり間屋は市況が不況になると、さきに繊維を難読をつくって織元に返品していた。これでは生産地を困る訳であり、そこで繊維組合と間屋側で協議をして、繊物の検査を施行し、これに合格した繊物は一切返品しないこと、との合意が成立した。

検査の仕組は、繊物組合は京都にある杉本精繊工場と他1工場を指定精繊工場として契約を結び、この工場内に検査所を設置した。繊屋は繊物組合に精繊代金を納金する。繊物問屋は精繊代金を含めて取引するから指定工場で精繊する、精繊された繊物は検査を受けて間屋に納品される。当地代表的精繊工場といえば、杉本精繊、福井精繊は両横綱格であった。

繊物検査は品位検査であり、検査項目は：たて難、よこ難、虎難（虎模様の段々欠点）、竹難（くだ違いで同方向の縦糸を織込んだ片ジボン欠点）、甘端（よく恐れの端が黒い束いが束いになった端糸を織込んだ白い縦線に見える欠点）、ガリ（よく方の打込みが強くガリガリの欠点）等である。

繊物検査に1ケ年従事して感じたことは、業界は景気の変動に非常に敏感である、景気が上向きと精繊が大量に出回り検査も多忙となる。一旦下向くとさっぱり精繊に出まわらなくなり、検査もひまになるから時間をもてあます。そんな時は所長以下若輩を持ち出し大忙しに楽しむ次第である。この辺は公務員とは違うところである。私はこんな気楽なお勤務は初めての体験であった。お勤めは楽だし月給は5割アップで転向したから申し分ないはずであるが、段々と物足らなくなってきた。検査所の仕事そのものは大切であることは理解できても、繊物欠点を指摘していても自分の血となり肉となるものが乏しく感じた。これも若者のわがままか、向こう見ずであったのだろうか。

たまたま母校の恩師から新潟県染機講習所に勤務するように推薦された。私は公務員と繊の深い関係をした。昭和14年2月28日に、新潟県商工技手、新潟県染機講習所勤務で報命した。生徒の指導が大変で、試験研究をも義務づけられていた。研究には時間があるのに生徒の居なくなる春休みとか期末休みの時期をかき入れ時とばかりに研究に励んだ。戦争まできちんとした昭和18年頃、繊物が底をつき、窮しの一策として海草であるスガモから繊維を採集することに県の方針が打ち出された。新潟県には立派な繊維試験場が見附市にあるのもかかわらず、私がこのスガモの精繊に関する研究の担当になった。誠に精繊には繊の深い若者の下に生れつきたるものである。スガモは幅0.5〜1.0cm×長2〜10mにも達する海草である。スガモ繊維を採取するには、スガモの肉質を炭酸ソーダまたは苛性ソーダ溶液中で加圧精繊を行なうと肉質が可溶性とな

— 61 —
練設備が思うにみかせず手間取つ。ようやく精練が開始され、作業が軌道に乗りかけた頃に終戦となり、この事業は中途半端で閉鎖することになった。結果から見れば無駄骨に終わったが私自身はスガ病繊維の知識が得られた。すべてが戦争政策の一環であったのだからやむをえない。

終戦後生徒達は教科書が入手出来ず、先輩諸兄から借用して、1冊の本を2人で仲よく当座を凌いだのも食事時の想出である。

昭和22年の秋頃に私が10年も前で勤務した長野県染織講習所の大先輩（飯田織物指導所長）から岡谷市に農林省の試験所が設立され、所長は岡村さんだ。どうするか行かはいかが、とすすめられた。大先輩とお別れしてすぐにひと昔だ。私ごときをお忘れなく、このような御厚情に深く感謝の念で一杯である。私は講習所の仕事は好きであった。第一に教育は尊い仕事であること、第二は10年間も勤務していると師弟関係の方々が年々大勢になり、友情をふくめ住みよい社会を形成してくれるのである。しかし十日町は豪雪地帯であり、12月から翌年4月まで雪中生活である。現在は真冬でも自動車が通るが、私の居た頃は不便であった。あれこれと思案しあげず転出を決意し、上司を通じて転任の手続きを進めてもらった。それから半年以上も経た昭和25年6月15日付で、新潟県を退職し、同日付で農林技官に任命され、岡谷織糸試験所在勤を拝命した。ときに56才、2人の父親となっていた。

岡谷での研究は主に繊維物に現われたラウジネスに関する研究である。その項目は繊および生糸のラウジネス素因とラウジネスとの関係並びに繊糸から繊物に至るまでの種々ものろの加工条件とラウジネスとの関係についての研究、他方精練加工の面からラウジネス発現防止精練の研究を行ない、これを蚕試報告第71号に発表した。これに供試した生糸は実に220種類に及んでおり、ご協力とご援助を賜った養蚕関係の方々、繊糸して下さった原料繊研究室の皆様方には今日でも身にしみて感謝しております。

昭和31年4月30日、ラウジネス発現防止精煉法の研究がはずせずも昭和皇后記念技術賞を賜り、身にあまる栄光に浴し拝謝している。これには当時の場長横山忠雄博士の御推薦によるものと従来いたし深く感謝申し上げます。

このようにして足かげ10年お世話になった頃、本場に繊維部が設立され、岡谷の染織の部門がこれに吸収されることになり、昭和32年8月1日に本場に配置換となった。赴任の車中は非常に暑い日であった。世のお金持ちには涼しい信州に避暑に行くと云いうのに、自分はむし暑い東京に向かうとは何ともあや、一寸むなのさが頭をかすめた。

仕事はじめは岡谷から引き続いて前の繊練、幅出機、絞出機それに本場にある器械類を一括して接付け位置をあれこれ検討した。私は今回で5回目の転勤となったが、そのうち3回は新設のところであり、それなりに苦労した。

繊織物の初研究は「輸出生糸の改良に関する研究」である。繊織物産地の繊維工業試験場の御協力を顧った大掛りの研究であった。個別研究を羅列しても面白くない、岡谷と本場とで24年間従事した間に発表した論文を1冊にまとめて報告した。うち1冊は新しい精練研究室長に贈っている。これらの研究のなかに、繊糸の連続精練に関する研究がある（繊糸研究第55号）。この研究に於いて繊糸の強度を低下させずに45秒以下の短時間で精練が可能であることを確
認した。これは私にとって大きな収穫であった。その他酵素精錬に熱をあげた。現在一部の紙繊物産地においてババイン酵素精錬が実施されているはずである。また十日町、米沢、石下等の紙物産地において精錬講習会での講演など楽しい想出となった。

最後に 2 〜 3 の感想をお願いを述べたい。

谷以来の親友で優秀な有賀校長と決まり、すがすがしい気持ちで退任できた。

また、勤めよう退職者の退職手当は法第 5 条によって支給され、有難く頂戴した。ところが税金が 334,940 円天引されていた。これから先、ささやかな年金をたよりに細々と暮さればならな

い弱き者に対してあまりにも苛酷である。言葉が悪くて恐縮だが、これではまるで合法的な暴力行為みたいである。また住民税についても前年度の収入額を基準にして課税するからたまらない。

どうか、税金の支払能力を失った退職者に対して減税の法改正を切望する。

さらに大切なことは年金の物価とのスライド制の実施である。私は勤めよう退職制度には必ずしも反対ではない。要は退職後の生活に不安のないように善処されるように切望する。これらは公務員全員の待遇改善につながる問題でもある。

私は 17 才の時に父が他界した。それ以来、自分のことは自分ですること、他人には迷惑をか

けないことを信条として心掛けてきた。誠に平凡な心がけだが、1 億国民全員が実行できたらお

巡りさんがいらなくなる。こうしてみるとまんざらでもない心掛けであったが、若い頃は時折飲

みすぎて親友さんに迷惑をおかけして恥入の次第である。

以上、私の歩いて来た道のあらましをたどり、その時々の出来ごとや印象を記した。

長年間にわたり多くの方々から暖かいご指導とご支障を戴き、心から御礼を申し上げます。皆々様の御発展をお祈りして筆をおきます。
本場班研究会報告

蚕試本場班幹事会

6月14日，本場班では「国立試験研究機関の問題点 — 研究者の問題意識を中心に — 」というテーマで討論会を行なった。まず、話題提供者の大山勝夫氏から蚕試の研究者の研究体制に対する問題について、現在と10数年前との状況が話され、さらにフランスにおける国立試験研究機関における研究体制、研究者の意識などが紹介された。大山氏はわが国の研究機関の部、研究室制度にみられる研究体制の固定化とセクトの傾向を指摘し、研究者の自立的動きの中で、これら固いカベを破り、流動的な研究体制をつくる必要がある旨問題提起した。この問題提起を受けて、出席者からさまざまな意見が寄せられたが、主なものを以下に要約した。

1）研究体制を考える場合、日本農業の構造、ひいては日本社会の伝統といった問題を無視することはできない。わが国では、行政優先の試験研究体制であって、上から与える行政がその根幹にあり、研究者あるいは研究成果を使用する者の要求がほとんど反映されていない。

2）研究機関は小まわりがきかぬから、行政の意向でその都度機構をいじられるということはきわめて問題である。行政出身者が中枢部に坐っている技術会議に対し、研究者サイドからのコントロールが必要である。

3）フランスにおけるような流動的研究所体制を今すぐわが国の研究機関に導入することには問題がある。例えば、筑波研究学園都市構想の中では、一応、大学のタテ系列の指導体制がとりのぞかれているようにみられるが、これは行政ベースによる研究体制の流動化が企画されているのであって、このようなやり方に数々しく乗ることは危険である。誰の力でタテ系列のカベを破り、研究体制の流動化をすすめるかということがポイントである。

4）試験研究機関に現在かけられている「合理化」に対しては、基本的には現状維持の線を守って上からの圧力に対処すべきであるが、研究者が自主的に研究機関のあり方や配置を考える場合、対象作目別専門分野、例えば蚕糸業という分野にのみこだわって専門場所を配置するのでなく、広く科学技術全般を考え、技術のあり方を科学的に分類するという面から検討する必要がある。蚕試の場合「昆虫の物質生産 — 人間生活」という点からみれば、研究機関としての独自性は一層明確になり、しかも今よりもさらに広い視点から研究のあり方を検討できるように思う。

5）現在の研究体制を考えると、なんとかせねば行きずまとってしまうと感じている。また、研究機関にかけられている「合理化」に対し、基本的にはどう対処していくかという方針も理解できるが、自分自身の研究をどうすすめていくのか、自分の研究室のかかっている問題をどう解決していくかという点になると具体的な方針が明らかにならないというのが悩みである。

以上、多種多様な意見が出し討論されましたが、次回からはさらに問題点を深めて行きたい。
幹事会報告

シンポジウム「蚕糸技術研究の現状と問題点」のとりくみについて

幹事会では、本年度の活動方針（本誌 83 号 53 頁）にもとづいて、シンポジウム「蚕糸技術研究の現状と問題点」にとりくんできたが、これまでの経過と、これからのおすすめ方についての概要を報告し、全員各位の御協力をいただきたいと考えている。

本年 7 月 3 日に、会員の中から次の方々にシンポジウム委員をお引受けいただくようお願いし、快諾を得、はげましのお言葉なども寄せられた。

（農林蚕試本場班） 佐々木万・大山勝夫・中島健次・村上毅・重松孟・横塚幸吉
杉山浩・桜本末男・石川秀夫・橋本昭・山口国会・横沢三夫・山下忠明
（農林蚕試日野班） 小野喜治・山川一弘・浜川明郎・青木秀夫
（農林蚕試養蚕部班） 石川誠男・唐沢哲二
（農林蚕試東北支場班） 東城功
（農林蚕試中部支場班） 北浦澄・松島幹夫・栗林茂治
（農林蚕試関西支場班） 沢田紀一
（農林蚕試九州支場班） 大井孝夫・早坂猛・山本賢
（埼玉県蚕試班） 原久寿雄・高野幹
（山梨県蚕試班） 名取五郎
（宮城県蚕試班） 宇崎泰平
（熊本県蚕試班） 秋山文司

以上の方々と幹事全員から成る 45 名のシンポジウム委員会が発足した。なお、地理的・経済的制約から、本場班・日野班の委員 18 名と幹事 12 名で原案を作成し、全委員の意見を求めるという形をとった。

第 1 回（8 月 5 日）、第 2 回（10 月 7 日）の委員会で検討がすすめられ、次のような原案が決定した。

「シンポジウム・蚕糸技術研究の現状と問題点」

とき……1973 年 4 月 5 日（木）10 時～17 時
ところ……農林省蚕糸試験場東側会議室
目的……蚕糸技術研究をとりくま、情勢の重大さを鑑み、研究者が今後の確信をもって研究をすすめられる状況を作り出すため、蚕糸技術研究分野全般の現状と問題点を把握し、今後の活動の出発点を明確にする。
方法……職場の現状を正しく把握するため、各班で調査し報告を出していただく。
シンポジウム委員、その他の協力をいただける方々の個人的な意見・解釈を提出していただく。
これらを委員会でまとめて、シンポジウムで議論を行う。
なお、シンポジウム委員会運営委員会をおき、以後の運営全般に責任をもっていただくことになった。

運営委員長：小野松治（日野）、副委員長：大山勝夫（大場）、委員：佐々木万（大場）
委員：重松孟（大場）、委員：渡川明郎（日野）、委員（事務局）：荒井成彦（幹事）
委員（事務局）：返田助光（幹事）

第1回運営委員会（10月14日）では、各柵・シンポジウム委員から提出していただく調査項目と報告の案が決められた。

蚕糸技術研究の現状と問題点　　研究者および研究体制をめぐって　

1. 研究体制について（約10年間の推移）　　この項は班で調査するもの
　　(1) 機構について（どのような組織体制か、上部の管理機構？）
　　(2) 給与制度について（賞給体系、昇給、昇格、昇任などの運用状況など）
　　(3) 人間構成について（男女別、年令別、学歴別、組織構成別、職務学級別など…）
　　(4) 研究経費、その種類と金額（総合助成、個単、特別、経常、受托など…）
　　(5) 研究経費別の主要な研究課題
　　(6) 研究テーマはどのようにして決められるか。
　　(7) 研究の評価・研究者の教育研修などの制度は？
　　(8) 人事異動の度や、その決定方法は？
　　(9) その他職場に特徴的なこと。

2. 研究者の意識について　　この項は、シンポジウム委員や協力していただける個人が自由に見解をのべるもの。例えば、次のような点について。
　　○ 農業・蚕糸業の現状や将来をどう見るものか。
　　○ 研究や職場の将来に展望をもつものか。
　　○ “現場”と研究の関係について、どのように考えているか。
　　○ 研究経費・研究テーマとその決め方・研究のすすめ方・結果の処理・研究の評価などについてどのように考えるか。
　　○ 研究機関と上部機関（たとえば農林省、農林蚕試、県当局など）との関係についてどのように考えるか。
　　○ 職場の問題点は何か。
　　○ 研究者の不安や悩みは何か。

この報告は、本年12月20日までにシンポジウム委員会事務局（東京都杉並区和田3-55-30 農林省蚕糸試験場、荒井成彦または返田助光）に提出していただく。

【2. 研究者の意識について】はとても大切なことで、できるだけ多くの御意見を期待している。くわしくは、シンポジウム委員会事務局に問い合わせていただければ、くわしくお知らせする。
編集後記

秋もふかまり、地方によってはもう冬の気配も訪れるでしょう。第84号をおとどけします。
田中内閣の登場を機に日中国交回復が実現しましたが、当民科蠶糸技術研究会ではすでに1965年、中国蠶糸技術代表団との交流を行ない、いろいろな困難のなかで一貫して科学技術の国際交流を主張してきたところです。そこで本号では、この面で見識の豊富な菊池邦作先生から日中生糸貿易のこれまでの経過と今後の展望について論説をいただきました。また、田中内閣の「日本列島改造論」が「農民切捨てと公害パラマキ論」になりかねないと、多くの読者の指摘するところでもあります。たくしたもとしても、学識者として、市民として、関心を寄せないわけにはいきません。そこで、蠶糸研究のそれぞれのご専門のかたがたから、公害についての論文をお寄せいただいて特集をくみました。

ご感想、ご意見をいただければ幸いです。

(編集者)