Rice breeding:

Genetic analysis of the low-amylose characteristics of rice cultivar Oborozuki and Hokkai-PL9
Ando, I. et al.

Development of introgression lines derived from Oryza rufipogon and O.glumaepamura in the genetic
background of japonica cultivated rice (O.sativa L.) and evaluation of resistance to rice blast
Hirabayashi, HI. et al.
Breeding Science, 60, 604-612 (2010).

Categorization of QTLs by their functional roles: QTL analysis for chemical concentration in seed
grains
Ishii T. et al.

QTL analysis of brown spot resistance in rice (Ortza sativa L.)
Sato, H. et al.

Major QTLs for eating quality of an elite Japanese rice cultivar, Koshihikari, on the short arm of
chromosome 3
Takeuchi, Y. et al.

A quantitative trait locus for cold tolerance at the booting stage on rice chromosome 8.
Kuroki, M. et al.

Optimization of the Marker-based Procedures for Pyramiding Genes from Multiple Donor Lines. Part
I. Schedule of Crossing between the Donors
Ishii T. et al.

Characterization of two QTLs controlling resistance to rice stripe virus detected in a Japanese upland
rice line, Kanto 72.
Hideo Maeda et al.
Development of isogenic lines of rice cultivar Koshihikari with early and late heading by marker-assisted selection
Takeuchi, Y. et al.

Rice utilization
Isolation and characterization of a rice (Oryza sativa L.) mutant deficient in seed phospholipase D, an enzyme involved in the degradation of oil body membranes.
Suzuki, Y

Effects of rice flour properties on specific loaf volume of one-loaf bread made from rice flour with wheat vital gluten.
Food Science and Technology Research, 15, 439-448 (2009).

Morphological, physical, and chemical properties of grain and flour from chalky rice mutants.
Ashida, K., S. Iida and T. Yasui
Cereal Chemistry 86, 225-231 (2009)

Identification of gene for rice (Oryza sativa L.) seed lipoxygenase-3 involved in the generation of stale flavor and development of SNP markers for the lipoxygenase-3 deficiency.
Shirasawa K., Takeuchi1 Y., Ebitani T. and Suzuki Y.

A rice mutant with enhanced amylose content in endosperm without affecting amylopectin structure.
Suzuki Y., Sano Y., Ise K., Matsukura U., Aoki N. and Sato H.