暖地水田における水面遮光遮温法について

佐藤正一・船橋野成
九州農業試験場

SATO, S. and FUNAHASHI, Y. Methods of Lowering the High Temperatures in Paddy Fields by Shutting Off the Solar Radiation Penetrating into Surface-Water in the Warm Region of Japan.

1. 緒 言

九州の平地で通常の梅雨明け後 1 箇月間、盛夏炎暑の候には播種直後の早期栽培葉及び葉が限界に達せぬ普通栽培の水田では水温遮温の上昇が著しく、これを適当な遮温操作を施すことにより桝栽培に有益な場合が多い。

遮温策で挙げ、種の灌漑法によるものな著者の 1 人、佐藤が 1947 年より研究してきたが、挙げは用水豊富地以外では実施し難い、故に 1953 年から別法として水田水面に着物を撤去して日射の水中透入・田面到達を遮断または制限して明るい遮温現象を認め、しかも使用した菰、草、赤浮草などには遮温以外の面で短所もある。

1955 年の晩期栽培において炭素粉黒 Carbon Black（以下 CB と略記）を水面撤去したところ良好な成績を示したので、次年度は普通栽培にもこの施用を試み、これに遮温遮温法の機能を、1956 年結果の概要を述べる。

2. 水面遮光による水温遮温法の機関

（1）水田における遮光効果

いわ条件を単純にするため、日射の全量が水面に当たり、また潰水は蒸発のみによる状態。すなわち無栽培

面無防の浅い水田（4 〜 5 cm）の水田を取り扱う。

この水田が漂の前、日射 Σ の一部は水面反射 Rw し、他は水面に入り一部が吸収 Aw されることがなにかなり多量が水面に達し、ここで微量の土面反射 Rs を除く大部分は水面に吸収 Ae される。Ae 中の一部は地中に入り地中温昇 S に費され、他の部は長波放射 Lr となって上方に去、前者 Aw や Rs の一部ともに水温上昇 W と蒸発熱 E に費され、さらに気候への熱伝達（拡散と伝導）及び水面から空間への放射となる。これら熱伝達と放射を含めて TR とする。すなわち昼間の水田については次の式が成立する。

$$\Sigma I = \Sigma (R_w + A_w + R_s + A_e)$$

$$= \Sigma (R_w + R_s) + \Sigma A_w + \Sigma (L_r + S)$$

$$= \Sigma R_{w,s} + \Sigma E + \Sigma W + \Sigma S + \Sigma TR$$ ①

夜間は I、従って Rws も零となり、水田層の放熱が

E 及び TR の熱源であって、

$$\Sigma E (W - S + E + TR) = 0$$ …………………… ②

次に水面が黒色炭素で完全に覆われた場合は、日射の全量が一たん CB 被膜に吸収され、この中から流れる

が TR となり、残りが水中に入り Cw でこれが W, S, 及び E の熱源となるとみられるので昼間には次式が成立する。

$$\Sigma I = \Sigma TR + \Sigma C_w = \Sigma TR + \Sigma (E + W + S)$$ ③

CB 被膜区も夜間は③と同様である。
第1表　澄清水区及びCB揚粉区における熱收支計算の例

（1955年8月8日～9日）

<table>
<thead>
<tr>
<th>時間</th>
<th>I</th>
<th>澄　明　水　区</th>
<th>CB　揚　粉　区</th>
</tr>
</thead>
<tbody>
<tr>
<td>7～9</td>
<td>66.1</td>
<td>5.4</td>
<td>19.8</td>
</tr>
<tr>
<td>9～11</td>
<td>115.0</td>
<td>3.9</td>
<td>47.9</td>
</tr>
<tr>
<td>11～13</td>
<td>163.0</td>
<td>5.0</td>
<td>82.6</td>
</tr>
<tr>
<td>13～15</td>
<td>153.3</td>
<td>4.7</td>
<td>83.5</td>
</tr>
<tr>
<td>15～17</td>
<td>99.9</td>
<td>4.9</td>
<td>79.2</td>
</tr>
<tr>
<td>17～19</td>
<td>27.7</td>
<td>4.8</td>
<td>39.8</td>
</tr>
<tr>
<td>19～21</td>
<td>—</td>
<td>—</td>
<td>13.4</td>
</tr>
<tr>
<td>21～23</td>
<td>—</td>
<td>—</td>
<td>9.3</td>
</tr>
<tr>
<td>23～1</td>
<td>—</td>
<td>—</td>
<td>7.0</td>
</tr>
<tr>
<td>1～3</td>
<td>—</td>
<td>—</td>
<td>4.7</td>
</tr>
<tr>
<td>3～5</td>
<td>—</td>
<td>—</td>
<td>4.1</td>
</tr>
<tr>
<td>5～7</td>
<td>9.6</td>
<td>2.6</td>
<td>8.2</td>
</tr>
<tr>
<td>合計</td>
<td>634.6</td>
<td>31.3</td>
<td>401.3</td>
</tr>
</tbody>
</table>

（単位）：Cal/cm²・2hr
I：日射量，Rws：水面・地表反射，E：蒸発熱，W：水面蒸発損失，S：地表熱損失，TR：熱収支・放射合計。

以上の基本的過程につき，1955年8月8日～9日間に九州農試の水田で測定計上した結果の要約の第1表である。

この澄清水区とCB揚粉区の温度は文献1）に、また上記3式の各熱収支計算法は文献2）に詳説したので略する。

第1表によれば、澄清水区において水面反射量は常に小さく、熱収支の主要面は水面でなく土面であり、水温や土温の上昇に実際に供される熱量は著しく少なくて、蒸発熱消費の著しく大きくなるのがわかる（これは観測地環境でも同様な傾向がある）。

それと比較してCB揚粉区をみると、水温上昇によっても小さいが特に土温上昇に供される熱量は著しく少ないである。他方、CB揚粉区は水透過および熱放射・熱消費は澄清水区よりもほとんど常に多である。特に日出後から11時頃までのCB揚粉区の蒸発促進が著しい。

CB揚粉区水田内の水温は澄清水区と大差なく、その地表蒸発熱収支は澄清水区の蒸発熱収支を大きく上回る。

以上を総括すれば、CB揚粉区は水面反射の所で日射エネルギーの大部分を蒸発熱・熱放射・熱放射として空間に戻し、水田中の熱流を制限し、水田面の放射を制限せぬため、この方法は明らかに降露吸収に変化する。

（2）水温の垂直分布

前記の熱収支計測と同じ場において、各区5cm

水深の水温を1cm毎に熱電対で計測した結果の代表的な例を第1図に示す。

第1図　水温の垂直分布

（1956年9月3日，4日）

i）澄清水区の水温は常に水面から水底まで大差なく鉛直状分布であるが、CB揚粉区は水面と水底との温度差が極めて大きい。日出時より11時頃までの収穫時水温は水面付近は澄清水区よりも高温を示し、2～1cm以上の水温は澄清水区より著しく低温である。

ii）午後から夜間の放熱時水温には、CB揚粉区は水田全体が澄清水区よりも低温で、CB揚粉区の深さごとの水

温差は時間とともに減る。

iii）第1図でCB揚粉区の水面と水底の温度差の最大
は9月4日11時に9.2℃で、水温差1 cmづつ3〜1℃（平均1.8℃）である。同区9日3日に温度傾度が4日よりも小さいのは、播種2日9時頃の上層水温の劣悪である。水温傾度より、4日7時にはCB粉区が澄明水区より1℃弱低温に劣るが、同日13時には8.7℃低い（両区水温差の差の最大）。

iv）水温から地面までの水温平均温度を算出すると、CB粉区も多くの場合にそれは水温中央の温度にほぼ一致する。この水温平均温度に関してCB粉区は澄明水区よりも日最高温出現時には4〜5℃低い。
なお水温差異でなく水温全体をCBの影響の有無とすれば、水温に若干の光が入る水温下1〜2 cm厚位に水温差異分布の管理が退く。以下は最大とでも低温となり、水温差異は澄明水区より低溫である（図省略）。

3. 普通栽培における水面発光の実施経過と結果

1956年7月2日に田植した標準栽培において、梅雨明け後の7月17日にCB播種、CB鰹魚の2種処理区を標準澄明水区と比較した。処理は出初戦までを目標としたが8月後半より遠慮出戦まで処理中止とした。2区制、1区20 cm、コンクリートブロック試験区、各区は鉄板で仕切る。稲は和良18号、坪56株標、基肥推進300、塩分6、過石灰石4、副加4割（150）。追肥稀釀2、鰹魚稀釀1割。施肥用CBは東京電機製電気工場製で稀釀の液温3.9℃。鰹魚は10cm/3kg/m2、及び鰹魚は5cm/3kg/m2を標準使用とした。

この試験区の栽培時水面下地温を全期間測定した中から、第2図に水底の日最高・最低温の日平均を掲げる。
処理開始以来7月末まで各区の日最高・最低温の差は著しく、特にCB粉区に低温が著しく、日最低温は各区とも大差ない。
8月は稲の葉茂と大層度低下のために休業からの日
水稲新種品「アサカゼ」について

岡田正寛・藤井啓史・本村弘美・西山寿
九州農業試験場
OKADA, M., FUJI, K., MOTOMURA, H., and NISHIYAMA, H.
A New Variety of Paddy Rice Plant, "Asakaze".

昭和31年本品種の育成を終り、昭和32年佐賀、香川両県において実験品種に採用、普及されるに至つたので、育成の経過及び特性の概要を述べて参考に供する。なお本品種の育成に直接従事し、試験に参加した者等は石川寛、松永浩治、野矢啓及弁者等である。

来歴並びに育成経過

アサカゼは昭和21年農林省農事試験場九州分場において、佐賀県とし西海28号を母として人工交配を行、昭和22年F₁より農林省佐賀農事業研究室において育成しつつあったが、昭和26年4月農林省九州農業試験場に試験が移管され、F₃以後は同場において系統育種法により選抜固定をはかり、昭和29年F₃より西海52号の系統名で関係県に配分して地方の選抜を図った結果、その成熟良好で昭和32年度に永福農林104号に登録されアサカゼと命名された。

特性概要

熟期は農林18号と本の中间型の早生稈種である。早熟は長年にわたる中間型、利長は農林18号より短く、結実期と同様、蓄長を両親の何れよりも長く又収穫数は両品種と大差がない。穀数は易であって、少し短芒に有し、雑種は白色を呈する。

第1表 一般特性

<table>
<thead>
<tr>
<th>品種名</th>
<th>出穂期</th>
<th>成熟期</th>
<th>実穂数</th>
<th>穀長</th>
<th>穀重</th>
</tr>
</thead>
<tbody>
<tr>
<td>アサカゼ</td>
<td>9.12</td>
<td>11.5</td>
<td>54</td>
<td>87</td>
<td>22.1</td>
</tr>
<tr>
<td>(比較)</td>
<td>9.11</td>
<td>11.4</td>
<td>54</td>
<td>88</td>
<td>21.1</td>
</tr>
<tr>
<td>(♀)農林27号</td>
<td>9.11</td>
<td>11.3</td>
<td>53</td>
<td>91</td>
<td>21.9</td>
</tr>
<tr>
<td>(♂) 神山</td>
<td>9.11</td>
<td>11.5</td>
<td>54</td>
<td>91</td>
<td>20.8</td>
</tr>
<tr>
<td>(参考)農林18号</td>
<td>9.13</td>
<td>11.6</td>
<td>55</td>
<td>92</td>
<td>21.6</td>
</tr>
</tbody>
</table>

第2表 耐病性

<table>
<thead>
<tr>
<th>品種名</th>
<th>昭27</th>
<th>昭29</th>
<th>昭31</th>
<th>昭27</th>
<th>昭29</th>
<th>昭31</th>
<th>昭27</th>
<th>昭29</th>
<th>昭31</th>
</tr>
</thead>
<tbody>
<tr>
<td>アサカゼ</td>
<td>多</td>
<td>中</td>
<td>多</td>
<td>中</td>
<td>多</td>
<td>中</td>
<td>多</td>
<td>中</td>
<td>多</td>
</tr>
<tr>
<td>(比較)</td>
<td>定</td>
<td>中</td>
<td>多</td>
<td>中</td>
<td>多</td>
<td>中</td>
<td>多</td>
<td>中</td>
<td>多</td>
</tr>
<tr>
<td>(♀)農林27号</td>
<td>多</td>
<td>中</td>
<td>多</td>
<td>中</td>
<td>多</td>
<td>中</td>
<td>多</td>
<td>中</td>
<td>多</td>
</tr>
<tr>
<td>(♂) 神山</td>
<td>多</td>
<td>中</td>
<td>多</td>
<td>中</td>
<td>多</td>
<td>中</td>
<td>多</td>
<td>中</td>
<td>多</td>
</tr>
<tr>
<td>(参考)農林18号</td>
<td>多</td>
<td>中</td>
<td>多</td>
<td>中</td>
<td>多</td>
<td>中</td>
<td>多</td>
<td>中</td>
<td>多</td>
</tr>
</tbody>
</table>

備考 白葉枯病の数字は病害指数を示す。