大型機械による水稲栽培および営農体系の確立に関する研究

（普）病害虫防除の概要と問題点

横山佐太正・酒井久夫・井上利志栄
（福岡県農業試験場）

Yokoyama, S., Saka, H. and Inoue, T.
Research on Rice Culture and Farm Management by the Efficient Use of Large-sized Farm Machineries

（普）Control of plant diseases and injurious insects

大型機械化実験農場で昭和37〜39年に栽培した直まき水稲地の病害虫防除の概要と、この間に得られた問題点について述べる。この期間、直まき栽培は病害虫による農薬使用を前提として防除を経過した。

昭和37年度

<table>
<thead>
<tr>
<th>播種前</th>
<th>6月29日</th>
<th>7月20日</th>
<th>7月30日</th>
<th>8月17日</th>
<th>8月25日</th>
<th>9月15日</th>
</tr>
</thead>
<tbody>
<tr>
<td>防除薬剤</td>
<td>ナク酸抽出液、アルドリシン抽出液</td>
<td>NAC乳剤1,500倍</td>
<td>ディプテレキス粉剤 (BHC)</td>
<td>バイジェット粉剤</td>
<td>フロゲル粉剤</td>
<td>スミトシン粉剤</td>
</tr>
<tr>
<td>対象病害虫</td>
<td>いもち病、どんढり病</td>
<td>ヒメトピオウサングロー</td>
<td>ニカメイチョウ</td>
<td>ニカメイチョウ</td>
<td>ニカメイチョウ</td>
<td>ニカメイチョウ</td>
</tr>
<tr>
<td>使用機械</td>
<td>スプレー（共立）</td>
<td>手動式散布機</td>
<td>ペル47-01</td>
<td>ベリオフ (\text{-})</td>
<td>同左</td>
<td></td>
</tr>
</tbody>
</table>

昭和38年度

<table>
<thead>
<tr>
<th>播種前</th>
<th>6月18日</th>
<th>7月9日</th>
<th>7月16日</th>
<th>7月29日</th>
<th>8月25日</th>
<th>9月1日</th>
<th>9月7日</th>
</tr>
</thead>
<tbody>
<tr>
<td>防除薬剤</td>
<td>ドデカール</td>
<td>DDT 5%</td>
<td>マラソン</td>
<td>ホリドール粉剤</td>
<td>SB粉剤</td>
<td>SB粉剤</td>
<td>ナック水溶剤</td>
</tr>
<tr>
<td>対象病害虫</td>
<td>いもち病、どんढり病</td>
<td>ヒメトピオウサングロー</td>
<td>ニカメイチョウ</td>
<td>ニカメイチョウ</td>
<td>ニカメイチョウ</td>
<td>ニカメイチョウ</td>
<td>ウムカヨコハ類</td>
</tr>
<tr>
<td>使用機械</td>
<td>スプレー（共立）</td>
<td>水平散布機（水平散布機）</td>
<td>同左</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

昭和39年度

<table>
<thead>
<tr>
<th>播種前</th>
<th>6月4日</th>
<th>6月13日</th>
<th>7月30日</th>
<th>8月21日</th>
<th>9月6日</th>
<th>10月3日</th>
</tr>
</thead>
<tbody>
<tr>
<td>防除薬剤</td>
<td>ナク酸抽出液、アルドリシン抽出液</td>
<td>NAC乳剤</td>
<td>ディプテレキス粉剤</td>
<td>フロゲル粉剤</td>
<td>フロゲル粉剤</td>
<td>フロゲル粉剤</td>
</tr>
<tr>
<td>対象病害虫</td>
<td>いもち病、どんढり病</td>
<td>ヒメトピオウサングロー</td>
<td>ニカメイチョウ</td>
<td>ニカメイチョウ</td>
<td>ニカメイチョウ</td>
<td>ニカメイチョウ</td>
</tr>
<tr>
<td>使用機械</td>
<td>スプレー（共立）</td>
<td>手動式散布機</td>
<td>動散（共立）</td>
<td>同左</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注：上記の薬剤の使用濃度および使用回数は農薬使用の状況と病害虫の発生状況により変動するため、厳密な病害虫の防除を図ることが必要である。
み、従来よりやや能率的な防除器具を使用して作業した。これ等は必ずしも今後の適正な防除のあり方を検討した訳ではないので今後、高能率の防除機械を入手した場合、除草剤との競合問題を含めてあらためて実証したい。

病害虫の発生概要と防除上の問題点

直生き栽培の防除作業は表のとおりであるが、毎年播種期は早まっており、初期の防除回数はふえている。

ニカメイチュウ：ここ数年、発生は激減しており6月以降までは発生生芽が移植よりお向上をは第1世代幼虫の被害を大体少く、収穫期被害率も0.1％と低かなかった。

ヒメトビウンカ、ツマグラヨコバイ：いずれも直生きの方が生息数が多く、その他のウンカ類は発生が少なかった。

その他、発生の目ぼしいものは8月上旬のイネアオムシ、9月下旬のアワヨトウが直生き移植とともに目立った。

ウィルス病類：ウンカ、ヨンピパイ類の発生に比べ多くなかったが、今年から増加の傾向にあり今後の発病動向は注意を要する。特にコンパイン収穫後は場内、外のボコレモネの翌春発芽、雑草類の罹病等は調査を要する。

イモチ病：発生は少ないが、たんに直生きでは播種がおくれ、N質肥料が多いと葉虫も病が多い。

航空防除；理想的には電柱は地下埋設せねばならぬが、できるだけ同方向の道路間に移転整理する必要がある。後期散布では草高中位以下の発病虫には効果が劣る。

バイブスターによる防除；初期防除では風のある時には薬剤が飛散し易い。後期にはパイプを10mに切断使用した方が株間まで薬剤が到達する。滋水直生きではは場の短辺方向に播水路を設定するが、この間隔は管理作業面も考慮に入れて設定する必要がある。
