ニカメイチウの発生予察に関する研究
（第7報）マコモに寄生しているニカメイチウの体眠について

宮原和夫・古賀初子
（佐賀県農業試験場）

MIYAHARA, K. and KOGA, H.
7. Diapause of overwintering larvae infesting water-oats

筆者らはマコモに寄生するニカメイチウについて1967年より調査を行なってきたが、現在までにつきのよう
なことが明らかとなった。

マコモに寄生するニカメイチウは、第1世代の密度
度は低いか、第2世代目の密度は高く、これが翌春への
重要な越冬源となっていること。マコモに寄生したニカメイチウはイネに寄生しているニカメイチウに比較
して、体眠が短く、産卵数も多くかつ越冬後の蛹化が早
いことなどが知られたので、本研究（1973年）において
はマコモに寄生したニカメイチウがイネのそれより越
冬後の蛹化が早い原因と考えられている体眠について検
討した。

1. 実験方法

(1) 供試虫の採集 イネに寄生しているニカメイチウ
についての野戦の観察から、またマコモのそれについ
ては水辺の被害虫から加温開始5～10日前に採集して供
試した。

(2) 加温飼育法 加温開始2日前に各個体の体重をト
ーションバランスで測定したのち、幼虫をセロハンチュ
ウブとともにガラス管に入れて飼育をした。このガラ
ス管を関係温度95%に調節したデシケータ内で収め25℃
の採光安定器で加温飼育した。

(3) 加温開始時期 マコモとイネから採集したニカメ
イチウは12月1日、2月1日、3月26日の3期から
加温を開始し、また別のマコモから採集したニカメイチ
ウについてはこの3期以外の11月10日、12月15日、1
月6日、3月1日の4期からも加温を開始した。

(4) 調査 加温開始日数後から蛹化、死亡個体
数を調査した。

2. 実験結果および考察

実験結果は第1表のとおりである。

(1) マコモに寄生したニカメイチウの蛹化状況 マ
コモから採集したニカメイチウの加温開始時期の異なる
個体群別の累積蛹化率は第1図のようになる。

マコモに寄生しているニカメイチウを11月10日、12

第1表 ニカメイチウ越冬幼虫加温蛹化成績

<table>
<thead>
<tr>
<th>採集植物</th>
<th>加温開始</th>
<th>供試蛹化蛹化死山数山数50%数平均蛹化日蛹化前期</th>
</tr>
</thead>
<tbody>
<tr>
<td>稲</td>
<td>12月1日</td>
<td>157 57.36% 100 66.7 94 86.5</td>
</tr>
<tr>
<td>稲</td>
<td>2月1日</td>
<td>113 83.73% 50 26.5 67 61.5</td>
</tr>
<tr>
<td>稲</td>
<td>3月26日</td>
<td>179 127.73% 47 26.3 58 56.3</td>
</tr>
</tbody>
</table>

11月10日 179 53.29% 126 70.4 115 85.1

12月1日 116 36.32% 78 67.2 109 80.6

12月15日 230 93.40% 137 59.6 136 81.1

1月6日 139 62.44% 77 55.4 73 56.9

2月1日 265 97.47% 108 52.7 65 51.1

3月1日 137 53.88% 84 61.3 57 32.0

3月26日 141 81.57% 60 42.6 44 29.1

第1図 マコモから採集したニカメイチウの加温開始時期別の累積蛹化状況

月1日、12月15日、1月6日、2月1日、3月1日と3
月26日の7時期から加温を開始すると、加温を始める時
期がないほど累積蛹化率曲線は傾斜が緩やかで加温後の
蛹化がおくれた。このなかで11月10日、12月1日と12月
15日区は累積蛹化率曲線が急激に逆転をしたりして
差が少なかった。しかし年があるたまた1月6日頃の
加温区から蛹化の進むかが早くなっているが、この傾
向は3月に入ると一層顕著になって、3月26日区では野
外ですでに11%も蛹化していた。

(2) イネとマコモに寄生したニカメイチウの累積蛹
化状況 マコモとイネから採集したニカメイチウについ
て、同一条件で12月1日、2月1日、3月26日の3時
第2図 マゴモとイネから採集したニカメイチュウの加温開始時期別累積孵化状況比較

12月1日から加温を開始した区の累積孵化状況を比較したのが第2図である。

12月1日と2月1日の加温開始区の累積孵化率曲線からマゴモに寄生したニカメイチュウの孵化はイネのそれより早く始まるが、途中でイネに寄生したニカメイチュウの累積孵化率曲線が先になっている。このことからマゴモに寄生しているニカメイチュウは、イネに寄生しているニカメイチュウよりも孵化の浅いものから深いものまで分布していることが明らかである。しかし3月26日区の累積孵化状況ではマゴモから採集されたものがイネからのそれに比較し、野外ですでに11%も孵化し、その後の孵化も急速であった。

（3）マゴモとイネに寄生したニカメイチュウの休眠
マゴモとイネのマイチュウについて加温開始時期別の休眠の状況を平均孵化期間でみたが第3図である。第3図には宮原らが1962年に行なった佐賀県イネのニカメイチュウについての加温開始時期別の平均孵化期間を加えた。

イネに寄生しているニカメイチュウの平均孵化期間について、1962年と1973年を比較すると両年間に差が少ないことから1973年のイネのニカメイチュウの休眠は大小等年であったといえよう。これをマゴモに寄生したものと比較すると、マゴモに寄生したニカメイチュウはイネに寄生したものですより孵化し平均孵化期間があらかに短かい。

この平均孵化期間から休眠の程度を比較するとイネに寄生したニカメイチュウの3月26日区で平均孵化期間が56.3日であったが、マゴモのそれがこの程度の平均孵化期間になるのは1月上旬であった。このことからマゴモに寄生したニカメイチュウの休眠は、イネのそれより約2ヶ月も早く閉めることが知られる。

このようにマゴモに寄生したニカメイチュウの休眠が、イネに寄生しているニカメイチュウより浅いことが越冬後の孵化が早くなる原因の一つと考えられる。

マゴモに寄生したニカメイチュウの休眠が浅い原因について、今後検討したい。

参考文献
2) 宮原和夫・福武秀次 (1969)(1972): 九病虫研究会報告。
3) 宮原和夫・高賀明子: 九州農業研究34号。