レタス種子は高湿休眠特性があり、従来から催芽は種が行われていたが、機械は種の場合問題がある。本場では、バーチャル遮土により高温期においても無菌芽で90％程度の発芽率を確保する技術を確立してきた。この成果をもとに省力的大量育苗技術を確立するため、ペーパーボット1ポット当たり1～2粒の少粒は種を運行する種機の開発を進めてきたが、一応の成果をみたので概要を報告する。

試験方法
1. 試験場所 熊本県農試実験場、同生場
2. 試験期間 昭和52年5月～12月
3. 試作機方式 ア. 吸引は種方式
イ. 超音波整粒は種方式
ウ. 湯式接着は種方式

結果および考察
吸引は種法ではガラスピペットの吸気容量の多少と吸引口径の大小によるレタス種子の吸着特性について検討した。結果は吸気容量の大きいものが吸着時間が長く、吸引口径の小さいものが吸着粒数が少なく良好であった。この結果をのちに吸引は種機を試作した。吸引口径0.5 mmのものの製作を試みたが、作業上ドリル刃の折損のため0.9mmのものを製作した。これは吸着が90％見あり、V4用ペーパーボットを2回では吸着できる。本機では吸引圧調整と吸着機の交差により吸引圧と吸着粒数との関係について検討した。吸引圧を6、11、18、81.6、277 mm水柱として吸引したが、吸着変動が最も小さかったのは18mm水柱で、1口当たりの吸着数は0～5粒の範囲で平均2粒を吸着し、変動係数50.2％であった。一方、不吸着は90口3口と極めて少なく良好であった。試作機によると種数は1冊当たり170ポットに対し314粒、1ポット当たり1.85粒であったが、そのうち269粒、1ポット当たり1.58粒発芽して、高温期にしか無催芽種子にしかなかった5.1％と高い発芽率を確保できた。

本試作機によると10a当たり（30回）全から25Fでは種が可能であり、人力は種では4時間30分要したのに比べ、不吸着種の人力追加時間の62分を加えても人力の約31％に省力化できた。

開引き、補植作業は人力は種の6時間26分に比べ試作機利用では、不吸着粒が少ないため4時間49分に省力化できた。したがって、10a当たり総育苗時間は人力は17時間20分に対し12時間31分と約71％に省力化できた。

振動板整粒は種方式では、振動板整粒は種と、吸着種の組合せによりペーパーボットと同調して吸着できるようにしたが、使用素材として塩ビパイプおよびアルミ板を使用したため、各部摩擦による静電気の発生で種とのことから吸着の落ちが困難であり、後に振動機の発生と均一性などにも問題が残った。

湿式吸着は種方式ではガラスピペットで水を利用し口径の大小による吸着特性を見たが、吸引口径の小さいものが吸着粒数は少なく、V4用ペーパーボット1冊につき約3分では吸することはできなかった。

まとめ
本年試作した吸引は種機については、15～20mm水柱の範囲であれば大量育苗においても充分実用性を認めたが、さらに精度の高い少粒は種機とするため次の点について検討を加えていきたい。

1. 試作吸引は種機の吸引口径をさらに小さくし1ポット当たりの吸着粒を1粒に近づける。

2. 人力追加時間の省力化するため、不吸着口と吸引口へのすり込みを少なくする。

3. 開引き、補植時間の省力化のため吸着変動を小さくする。

また、振動板整粒は種機については今後使用素材を検討し、実用性の高い機種としていきたい。