セミナールの生理障害について

第2報 実態調査及び2・3の知見

佐藤 隆・佐藤 瑞穂・甲斐 一平・白石 利雄

峯 浩昭・小田 真男・*高田 勝重・*沢本 敬男

(大分県柑橘試験場・*大分県農業技術センター)

SATO, T., M. SATO, I. KAI, T. SHIRAIISHI, H. MINE, S. KODA, K. TAKADA, and T.
SAWAMOTO: Physiological Disorder of Seminole Tangelo Fruit
2. Some Observations on the Lesion

大分県の県南産地では1974年よりセミナールの産地化に取り組み、1980年には200ha、1,500 tの生産が見込まれている。しかし本格的結果をはじめて1977年から、

立木及び貯蔵中に発症が多発したので、その発生要因をはっきり、防止対策を設けるため、園別の実態調査と

2・3項目について調査を行ったのでその概要を報告する。

1. 調査方法

津久見市内の結版砦、または砂砦を母材とする土壌に

植栽された温室柑台高接木4年目の16園について調査し、

果実は1園より5樹を選定し、1樹から赤筋部を中心に

4果計200果を4月上旬に採取、15℃の湿温管理庫で6

月上旬まで貯蔵して発症の発生を調査した。土壌調査

は調査園間で2個の穴を掘り、断面、物理、化学を

検査分析を5樹を1点として常法でそれぞれ調査分析を行

った。

ピッティング調査は1樹より5本、1園で25本の2年

生活について行った。そのほか園別の環境、樹の状態、

栽培管理について調査を行い、これらの調査項目と貯蔵

中の発生度について調査を行った。なお照り園、平範園

等を除いた10園についてとりまとめた。

発病度、結果表の調査は各4樹ずつを供試し、8月に樹

の選定と園別の比較を、4月上旬に採択して8%の低湿

貯蔵庫で貯蔵した。採択時期の試験は4年生高接木を7

樹供試、12月から4月まで各月の下旬に8果ずつを採択

し、1周間予報後コーティングして8%の低湿貯蔵庫で

貯蔵した。発症性的発生度は次式で求めた。

発生度 = (発生本数 × 多数本数 + 少数本数 + 中本数) × 100

× 10

第1表 土壌の物理性

<table>
<thead>
<tr>
<th>区</th>
<th>発生度</th>
<th>一層</th>
<th>二層</th>
</tr>
</thead>
<tbody>
<tr>
<td>少発園</td>
<td>2.9</td>
<td>40.6</td>
<td>32.3</td>
</tr>
<tr>
<td>4.7</td>
<td>43.1</td>
<td>31.7</td>
<td>25.3</td>
</tr>
<tr>
<td>5.8</td>
<td>43.7</td>
<td>24.1</td>
<td>32.7</td>
</tr>
<tr>
<td>8.7</td>
<td>46.1</td>
<td>28.2</td>
<td>25.8</td>
</tr>
<tr>
<td>9.1</td>
<td>42.4</td>
<td>27.9</td>
<td>29.8</td>
</tr>
<tr>
<td>平均</td>
<td>6.3</td>
<td>42.9</td>
<td>28.9</td>
</tr>
</tbody>
</table>

中～多発園	14.7	44.5	24.1	31.5	30.9	10.8
14.9	44.5	24.1	31.5	30.9	10.8	
34.2	57.0	29.6	14.0	11.1	10.1	
66.6	34.4	20.7	45.0	42.2	6.8	
平均	31.7	43.4	24.6	32.0	29.8	10.2

第2表 囲地、園及び果実の状態

<table>
<thead>
<tr>
<th>区</th>
<th>発生度</th>
<th>方位</th>
<th>日照時間</th>
<th>防風性</th>
<th>傾斜</th>
<th>樹勢</th>
<th>花着量</th>
<th>種子量</th>
<th>夏秋期</th>
<th>後期落果</th>
<th>類型</th>
<th>ピッティング</th>
</tr>
</thead>
<tbody>
<tr>
<td>少発園</td>
<td>2.9</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>4.7</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>5.8</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>8.7</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>9.1</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>中～多発園</td>
<td>14.7</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>14.9</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>28.2</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>34.2</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>66.6</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>
2. 調査結果

貯蔵中の虎斑症の発生には園地差が大きく、発生率15%以上の園を中～多発園として少発園と比較した。
1）土壌調査では中～多発園は1層で液相率が低く、粗孔率が低い傾向にあり、有効水が少なかった。2層では平均値でみると1層と逆の関係がみられたが、中～多発園はバラツキが特に大きく、土壌タイプとしては、通じ密な土壌と硬質土壌の両極端が存在しており、いずれのタイプの土壌も有効水は少なかった。根屑分布域内の有効水分量をみても、少発園に比べ平均値で約35%少なかった。化学性でも中～多発園のpH、T-C、CEC、CaO、NO₃-N が少ない傾向にみられた。
2）葉中成分ではほとんど差がみられなかった。
3）園地の環境では比較的日照時間が長いところに発生が多く、これを方位について基準調査園以外の園を含む25園についてみると、北向斜面が極く少なく、南向斜面に多発園が多かった。
4）樹勢は弱勢樹に、結果量では結果過多または過少樹に多発し、樹勢良好で結果量の適正な樹では少発の傾向が、また後期老成の多い園に多発の傾向がみられた。
5）今年はユズ果実の発生が比較的少なかったが、クルス果実の発生の多い園に虎斑症も多発の傾向がみられた。しかしユズ果実との関連は判然としなかった。
6）ピッティングとの関係は、全体的にピッティングの発生度が高かったので明らかでない。
7）採収時期では12月採収と4月採収区が少なく、1月～3月採収区に多発した。
以上の結果から虎斑症の発生には土壌の有効水分量（土壌乾燥）、園の方位（日照の強度、気温の急変）、樹勢、結果量（栄養状態）、採収時期（冬期の低温、採収時の気温）等の各項目（要因）が関連しているものと考えられるので、これらについて更に調査を進める。

第1図 园地の方位と発生分布
第2図 樹勢・結果量と虎斑症の発生
第3図 採収時期と虎斑症の発生