サトウキビ品種・系統におけるDCMU抵抗性の差異

(3) 育成有望系統における抵抗性の差異

MOGAMI, K., S. SAKAMOTO and N. ITAKURA: Varietal Difference in DC MU Resistance in Sugarcane. 3. Difference in Resistance in Promising Lines

「本稿では九州農試で数年にわたって実用形質について選抜をくりかえし、現在、栽培品種決定試験等に供試されている育成サトウキビ系統におけるDCMU抵抗性について検討する。」

1. 育成サトウキビ系統における被害程度の分布

26育成系統にNCo310、Ni1、Ni2を加えた29品種・系統を供試した。試験は1区9.9m²、3回反復乱列法で実施した。1981年3月27日に植え付け、6月1日に、DCMU 8 g/aを17回に水に溶いて、場面に散布した。調査は6月19日、前報の基準に従い、株別に行った。結果は1表に示すとおりである。

被害株率は0〜100％まで広い範囲に分布した。被害株率の品種・系統間差異は1％限界で有意、最少有意差（5％）は31.0％であった。K F71〜130など9系統は被害株率100％、Ni1は0％、NCo310は8％であった。被害株率は0〜2.89の間に分布した。品種・系統間差異は1％限界で有意、最少有意差（5％）は0.76であった。K F71〜130など9系統の被害株率は2.09〜2.89であった。被害株率はNCo100で低かった。Ni1は0、NCo310 0.08で、被害株率は僅微であった。

被害株率と被害程度との間にはr =0.96**の有意な負の相関が認められ、両測定値間の品種・系統間の変異傾向はよく一致した。

第1表 育成サトウキビ系統のDCMUによる被害程度の分布

<table>
<thead>
<tr>
<th>品種名</th>
<th>被害株率（％）</th>
<th>品種名</th>
<th>被害株率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni1</td>
<td>0</td>
<td>NCo100</td>
<td>100</td>
</tr>
<tr>
<td>Ni2</td>
<td>8</td>
<td>Ni1</td>
<td>0</td>
</tr>
</tbody>
</table>

被害程度によって供試品種・系統の抵抗性を4ランクに区分した。すなわち、被害株率0.1未満で被害が一部少数株の葉短先端の枯死にとどまるものを低抵抗性2ランク、0.1〜0.89で被害が先端枯死にとどまるものを抵抗性3ランク、0.9〜1.99で先端枯死に一部下位葉の枯死が加わるものを感受性4ランク、2.0以上で被害株が下位葉の枯死を上まわるものを高感受性5ランクとした。

2. 育成サトウキビ系統におけるDCMU抵抗性の親子関係

育成系統のDCMU抵抗性を親品種の被害程度に整理して、第2表に示した。育成系統のDCMU抵抗性を種子親（母親）品種の被害度別にみると、被害度の大きい親品種から子孫が得られやすく、抵抗度の小さい親品種から抵抗度の子孫が得られやすい傾向が認められた。すなわち、感受性（SまたはSS）子孫の出現頻度は親品種の被害度が3以上では80%、2.9〜2.0では71%、1.0〜1.9では50%，1.0未満では33%であった。平均被害度は親品種の被害度の低下と平行して低下し、それぞれ1.80、1.69，1.21，0.60を示した。

第2表 花粉授精親品種の被害度別にみた育成系統のDCMU抵抗性の分布

<table>
<thead>
<tr>
<th>品種名</th>
<th>出現系統数</th>
<th>SS-Sの平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni1</td>
<td>2</td>
<td>5.0</td>
</tr>
<tr>
<td>Ni2</td>
<td>1</td>
<td>7.1</td>
</tr>
</tbody>
</table>

花粉授精（父親）品種の被害度別の親子関係は、全体傾向としては上記に従ったが、十分明確でなかった。このことはDCMU抵抗性の遺伝子は若干傾向傾向があることを示唆している。

引文文献
1) 坂元 茂ほか：九州農業研究，44：31，1981。