セミノールの生理性障害について
佐藤隆・佐藤瑞穂・秋田忠夫

セミノールを、採取直後に20℃で2〜4日間加温処理することにより貯蔵中の虎斑症の発生を著しく遅延、抑制することができるが、更に処理方法として採取直後の処理とT.B.Zの併用が貯蔵中の虎斑症の発生、品質、貯蔵性に及ぼす影響について貯蔵温度別に検討したので報告するのである。

1. 試験方法
【試験Ⅰ】1981年3月16日(寒波)後に温州クムツ6年生セミノール樹より周囲果を採取し、①20℃で4日間加温処理区、②20℃で4日間加温処理+5日間20℃に2日間、③ビザル500ppm+ワックス区、④ワックス単用区、⑤裸区の5区を設けて処理後8℃で貯蔵した。加温処理区及びエチレングリコース処理区はネオケープ(岩谷産業KK)にて処理した。腐敗防止剤はチオファネートメチル3,000倍を裸区は単用で、その他の区はワックスに混用して処理した。供試果は試験Ⅰ〜Ⅲまで肉眼的に健全と判断されたものだけを用い、1区30果として実験の大きさを基準に各区に均等分配した。

【試験Ⅱ】1982年2月27日に温州クムツ競合セミノール樹から採取した果実を供試し、試験Ⅰの装置及び処理を行った。各試験区に5果を用いて処理を行った。評価項目は各処理区及び無処理区に比べてより良好で、無処理区は腐敗し易い傾向がみられた。特に毎日1回加温処理を繰り返すことにより発生が著しく抑制され、エチレングリコース加温処理区では20℃で4日間と同等か、後半にやや多くなる傾向がみられた。ワックス単用処理区は裸区より発生が多くなかった。果皮色はエチレン500ppm区及び加温処理区でよく、裸区では劣った。

【試験Ⅲ】虎斑症の発生は基本的には8℃、12℃貯蔵の加温処理区で少なく、8℃貯蔵の無処理区で多発した。16℃貯蔵は両区とも10週間では発生が少なく、放置後急増した。ハウス果の保存果及ご発生が早くも多かったが、8℃、16℃区の加温処理区は他区に比べて6週間まで発生が抑制された。処理直後の貯蔵区は無処理区の1.1倍以下に対し、処理とは1.9〜2.7倍であった。貯蔵処理することにより腐敗、ヘタ落果が生じることが、可溶性固形物や澱粉に保持された。貯蔵温度では12℃及び16℃区に比べて8℃果皮色が良かったが、貯蔵処理、ヘタ落果が少なく、可溶性固形物の保持も良好であった。

以上の結果から採取直後又は貯蔵中に加温処理して厳密に制御果皮水分を下げることにより虎斑症の発生を遅延、抑制することが出来る。又加温処理後にT.B.Zをワックスに混用して処理することにより抑制効果を高めることができるものと思われる。貯蔵温度については加温処理した場合は逆に12℃、16℃貯蔵より8℃貯蔵の方が少なくなる傾向がみられた。品質・貯蔵性についても加温処理することにより向上効果が認められたので20℃近辺の温度で強制加温する方法は貯蔵中に発生する虎斑症防止並びに品質・貯蔵性の向上の点からみて実用性が高いものと思われる。しかしその場合の貯蔵温度条件についてなお検討する必要がある。