スージングラスおよびスージングソルガムをトウモコシと混播栽培し、1番草を普通サイレージとして収穫・飼製した後、再生草をラップサイレージとして利用することによって、夏期の作業の省略とロールペーパーを用いた省力的な収穫作業をあわせて実現しようとした。

1. 材料および方法

供試品種は、トウモコシがP35252、スージングラスがHSK1（品種名：ヘイスージング）、スージングソルガムがSS901（ルトモソルガム）である。

播種は、1995年4月12日（4月播）と5月18日（5月播）の2回行った。草種の組み合わせは次の通りである。①トウモコシ単播区（C区）、②スージングラス単播区（SS区）、③スージングソルガム単播区（SS区）、④トウモコシ+スージングラス混播区（C+SS区）、⑤トウモコシ+スージングソルガム混播区（C+SG区）、⑥トウモコシ+スージングソルガム混播区（C+SG区）。以上、2播種毎×5組み合わせ=10処理区とした。1区2.25m²で反復して試験を行った。

トウモコシの密度は6670本/10a、スージングラスとスージングソルガムは播種量4kg/10aとした。単播、混播に関わらず同じ密度、播種量とした。

収穫期は表に示した。収穫調査の項目は、草丈、茎数、茎径、乾物率、乾物収量、収量の草種別構成割合等である。高消化性化分の分析は澱粉分析法によって。

2. 結果および考察

1) 生育ステージ：各処理の出穂期、収穫期は表に示した。スージングソルガムはいずれの区でも出穂しなかった。

2) スージングラスは4、5月播ともトウモコシとはほぼ同時期に出穂が見られた。このため、両播種とも収穫時点では、混播されたスージングラスはスージングソルガムよりも相対的に成長していた。

3) トウモコシ収量：混播区の1番草収量にしめるトウモコシの収量割合は、播種区ともC+SS区で67～70%，C+SS区で45% 前後であった。また、混播区のトウモコシ収量を各播種期のC区に対する割合でみると、4月播>5月播，C+SS区>C+SS区の関係であった。混播栽培では、5月播種や長さのスージングソルガムとの組み合わせは、トウモコシの生育に対する影響に作用することが示された。

4) 高消化性化分（OCC+Oa）の収量は、4月播では混播区、特にC+SS区が多収であった。それぞれに対して5月播では、C区、SS区で高収量を示した。

5) 乾物収量および単位面積当たり高消化性化分の収量からは、これらの混播栽培法は特に4月播で実用性が高いと考えられた。また、5月播の混播についても、8月中旬以降のスージングソルガムの新穂は低収となることから、新穂型の開発やその有用性の観点からもさらに検討する価値があると考えられる。

6) トウモコシ（P35252）の混播相手は、ステージ、収量の面からはスージングソルガム（SS901）の方が適していた。しかし、競合によるトウモコシの収量低下を防ぐため、播種量の調節等による競合緩和について今後検討する必要がある。

| 第1表 生育ステージ、乾物収量および高消化性化分の収量 |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 播種期 | 区名 | 出穂時 | 収穫時 | 乾物収量（kg/ha） | 高消化性化分（kg/ha） |
| 4月播 | C区 | 7/11 7/13 | 8/3 | 1114（100） | 336 258 | 594 |
| | SS区 | 7/12 7/13 | 8/3 | 1143 | 364 250 | 594 |
| | SS区 | 7/12 7/13 | 8/3 | 1143 | 364 250 | 594 |
| | C+SS区 | 7/11 7/13 | 8/3 | 1114 | 336 258 | 594 |
| | C+SS区 | 7/11 7/13 | 8/3 | 1114 | 336 258 | 594 |
| | SS区 | 7/12 7/13 | 8/3 | 1143 | 364 250 | 594 |
| | SS区 | 7/12 7/13 | 8/3 | 1143 | 364 250 | 594 |
| | C+SS区 | 7/11 7/13 | 8/3 | 1114 | 336 258 | 594 |
| | C+SS区 | 7/11 7/13 | 8/3 | 1114 | 336 258 | 594 |