セル成形苗利用によるサトウキビ育種作業の効率化

第2報 セル成形苗と2節苗の比較

謝花 治・宮城克浩・伊藤 信・宮本平成
（沖縄県農業試験場）

Osamu JAHANA, Katsuhiko MIYAGI, Shin IKEI and Eiken MIYAHARA:
Efficiency of Breeding Routine on Sugar Cane Used by Seedlings in plug

2. Compare Breeding Characteristics of Seedlings in plug with two buds

サトウキビのセル成形苗の育種特性の明らかにするため、前報に引き続き、セル成形苗と2節苗との生育・収量関連形質の比較を行った。また、選抜試験におけるセル成形苗の利用について検討した。

1. 材料および方法

沖縄県農業試験場（灰色粘板岩風化土壌）において標準・比較品種のNC0310, NIF 8, N19, F177, 生産力検定試験の夏植5系統、春植7系統を供試し、1区5m²の3反復で試験を行う。栽培密度、培養管理等は栽培基準に従った。また、生育調査は夏植では2月6日、10月、翌2月に、春植では7月、8月、9月、翌2月に行った。収量関連形質の調査は、収穫期の3月に行う。

2. 結果および考察

4品種について、セル成形苗と2節苗の生育比較と収量関連形質の比較を第1図、第1表に示した。セル成形苗と2節苗の仏重苗は、夏植の6月、春植の8月以降では、セル成形苗がやや短くなる傾向を示した。仏重苗は、夏植の2月、春植の8月はセル成形苗が多い傾向であったが、収穫期にはその差は縮まった。収穫期の夏植における仏重苗および1節苗は、両植付苗とも同程度であるが、仏重苗は2節苗がやや高く、原料基重および原料基重はセル成形苗がやや高かった。春植においては、仏重苗および原料基重は2節苗がやや高く、仏重苗および原料基重はセル成形苗がやや高かった。これらセル成形苗の仏重苗および原料基重はやや多くなり、仏重苗および原料基重は2節苗よりもやや多くなる傾向が夏植より春植の方が高いためと考えられる。これら4品種についての傾向は、生産力検定試験系統を加えて両植付苗を比較した第2表の結果ともよく一致していた。いずれの比較において、作種苗で仏重苗の傾向が異なっているが、これには両植付苗の品種と作種苗の栽培環境が関係していると考えられる。すなわちセル成形苗は2節苗に比べて、浅植で仏重苗の貯蔵糖分は少ないため、根の分布や根の増加割合は少なく、その差が基重に影響を及ぼすと考えられ、作種苗の水分ストレスの違いが、さらにその生育差に影響するためであると考えられる。根の分布、根量については今後の検討すべき課題である。

選抜試験において、特性の異なる植付苗の利用を検討するため、4品種と生産力検定試験供試系統のセル成形苗と2節苗の収量関連形質の相関関係と順位相関検定結果を第3表、第4表に示した。植付苗間の各収量関連形質には有意な相関関係が認められた。また順位相関は、夏植の仏重苗を除き、有意性が認められた。これらから収量関連形質と品種・系統間の順位には一定の関係が示唆された。選抜試験において、原料基重は選抜結果を左右する重要指標である。原料基重の順位相関は5％水準の有意性であったが、収量水準が高く、かつ近似した集団では、植付苗の違いにより順位の入れ替えの危険性が示唆される。そのため、選抜試験におけるセル成形苗の利用については、供試数と選抜数が多く、変量変異の大きい集団での高収量系統の選抜に有効であると考えられる。

今後株出し栽培での調査を行い、さらに検討することが必要である。

第1表 4品種のセル成形苗と2節苗の収量関連形質の比較

<table>
<thead>
<tr>
<th>品種</th>
<th>薩重 (g)</th>
<th>基重 (g)</th>
<th>原料基重 (kg/a)</th>
<th>原料基重 (kg/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0310</td>
<td>255</td>
<td>215</td>
<td>1.21</td>
<td>106</td>
</tr>
<tr>
<td>NIF 8</td>
<td>276</td>
<td>233</td>
<td>1.22</td>
<td>138</td>
</tr>
<tr>
<td>N19</td>
<td>301</td>
<td>238</td>
<td>1.25</td>
<td>140</td>
</tr>
<tr>
<td>F177</td>
<td>258</td>
<td>230</td>
<td>1.24</td>
<td>127</td>
</tr>
</tbody>
</table>

平均値 | 268 | 229 | 1.25 | 136 |

第2表 4品種のセル成形苗と2節苗の収量形質比較

<table>
<thead>
<tr>
<th>品種</th>
<th>薩重 (g)</th>
<th>基重 (g)</th>
<th>原料基重 (kg/a)</th>
<th>原料基重 (kg/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0310</td>
<td>172</td>
<td>150</td>
<td>1.98</td>
<td>108</td>
</tr>
<tr>
<td>NIF 8</td>
<td>184</td>
<td>155</td>
<td>1.97</td>
<td>118</td>
</tr>
<tr>
<td>N19</td>
<td>185</td>
<td>156</td>
<td>1.84</td>
<td>107</td>
</tr>
<tr>
<td>F177</td>
<td>179</td>
<td>152</td>
<td>1.82</td>
<td>88</td>
</tr>
</tbody>
</table>

平均値 | 185 | 153 | 1.86 | 96 |

第3表 4品種のセル成形苗と2節苗における収量関連形質の関係

<table>
<thead>
<tr>
<th>品種</th>
<th>薩重</th>
<th>基重</th>
<th>原料基重</th>
<th>原料基重</th>
</tr>
</thead>
<tbody>
<tr>
<td>夏植</td>
<td>275</td>
<td>1374</td>
<td>850</td>
<td>1172</td>
</tr>
<tr>
<td>2節苗</td>
<td>280</td>
<td>1360</td>
<td>828</td>
<td>1115</td>
</tr>
</tbody>
</table>

春植 | 175 | 711 | 857 | 596 |

平均値 | 186 | 786 | 841 | 652 |

第4表 4品種のセル成形苗と2節苗における収量関連形質の順位相関

<table>
<thead>
<tr>
<th>品種</th>
<th>薩重</th>
<th>基重</th>
<th>原料基重</th>
<th>原料基重</th>
</tr>
</thead>
<tbody>
<tr>
<td>夏植</td>
<td>0.96**</td>
<td>0.73**</td>
<td>0.83**</td>
<td>0.82**</td>
</tr>
<tr>
<td>2節苗</td>
<td>0.86**</td>
<td>0.83**</td>
<td>0.88**</td>
<td>0.91**</td>
</tr>
</tbody>
</table>

春植 | 0.97** | 0.88** | 0.87** | 0.78** |

平均値 | 0.92** | 0.86** | 0.88** | 0.79** |

注): ** はそれぞれ5%，1%水準で有意であることを示す
n = 夏植: 9, 春植: 11

第1図 セル成形苗と2節苗の生育推移の比較

（注）4品種の平均値