有明海における海中浮泥の運動に関する研究（第三報）
藤川 武信・水谷 邦彦・中村 舞一・溝田 雅男
九州農業試験場
Fujikawa, T., Mizutani, K., Nakamura, S., & Mitsuda, M. Research for the Motion of Silt in Ariake Bay. (III).

1. はしがき
昭和26年9月12日～22日，前回と同じく大塩田
地先における2100m冲，標高1.00m（地理局標高）
の地点で，7回の採水を行った。水深，流速，流速，
風向，風速等の測定および観察作業は前回と同様であ
る。第2報は標高0.50mの地点における潮汐の移
動およびそれに伴う浮泥の増減について述べたが，
今回はさらに深い位置におけるこれらの問題を解析す
るのが目的である。しかしながら得られた結果は第2
報のそれを概ね拡張した範囲であつて，今後は浮泥の
移動の範囲を確かなことと運動理論を適用する上に
必要な実験を行わねばならない。以下得られた結果を
簡潔に記述する。

2. Mareogram
採水を行った7回の潮のMareogramは図一に示す。すなわちこれらの潮は小潮より大潮に至り再び小潮になるまでの2潮間の潮を代表している。7回
の潮について，潮際の時刻を0として横軸に時間，測
定地点高さを0として縦軸に水深をそれぞれとり Mareogram を
いたのが図二である。この Mareogram の曲線より測定
地点における潮汐の流速を計算する。

3. Velocity
上述の Mareogram より計算
した V に比し実測値は如何なる変
化をなしているかを示すのが図一に
3 である。この中で No.3の潮と
その計算値を比較したもののが図
4 である。

Fig. 1 Mareogram

Fig. 2 Mareogram

4. Floating-silt content
浮泥量とTidal range の関係
は表一に示す。Tidal range の
Table 1.

<table>
<thead>
<tr>
<th>Point</th>
<th>Interval</th>
<th>Level</th>
<th>Height</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 0</td>
<td>0 0</td>
<td>116.4</td>
<td>52.0</td>
<td>1/961.5</td>
</tr>
<tr>
<td>No. 10</td>
<td>500</td>
<td>64.4</td>
<td>52.0</td>
<td>1/961.5</td>
</tr>
<tr>
<td>No. 18</td>
<td>1000</td>
<td>4.9</td>
<td>59.5</td>
<td>1/840.3</td>
</tr>
<tr>
<td>No. 23</td>
<td>1500</td>
<td>-47.1</td>
<td>52.0</td>
<td>1/961.5</td>
</tr>
<tr>
<td>No. 29</td>
<td>2100</td>
<td>-100.1</td>
<td>53.0</td>
<td>1/132.0</td>
</tr>
<tr>
<td>Mean</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1/973.8</td>
</tr>
</tbody>
</table>

Fig. 3

Fig. 4

Fig. 5

Table 2.

<table>
<thead>
<tr>
<th>Tide</th>
<th>Flood</th>
<th>Ebb Tide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean of F.S.C.</td>
<td>Tidal Range</td>
</tr>
<tr>
<td>No. 1</td>
<td>0.007</td>
<td>160</td>
</tr>
<tr>
<td>No. 2</td>
<td>0.022</td>
<td>450</td>
</tr>
<tr>
<td>No. 3</td>
<td>0.031</td>
<td>560</td>
</tr>
<tr>
<td>No. 4</td>
<td>0.023</td>
<td>540</td>
</tr>
<tr>
<td>No. 5</td>
<td>0.023</td>
<td>480</td>
</tr>
<tr>
<td>No. 6</td>
<td>0.019</td>
<td>440</td>
</tr>
<tr>
<td>No. 7</td>
<td>0.008</td>
<td>280</td>
</tr>
</tbody>
</table>

5. むすび

Ebb & Floodの沈泥量の差を用いて沈泥量を考え方で、干渕堆積高を計算していたのであるが、実際の干渕地は、一般に、地表に高さしているのではなく、干渕の地殻標高その他の理由により様々差異があることが考えられる。

今回の調査の結果、1,000 mの地点を通過する沈泥量の差から沈泥量を計算すると平均一回の潮について、0.34 m³である。面して干渕堆積面の低水部よりも高水部に多く沈泥する場合には第2報における地殻学的考察より考えられるが、その様的な吟味については今後さらに明らかならない。