もみがら利用簡易育苗法の研究
横井正治・有馬重大・大場貞信
(青森県農業試験場)

1 まえがき
野菜の育苗床土は従来土と堆肥を混合して用いれてきたが、近年良質堆肥の入手難や堆肥作りの土との混合作業に多くの労力を要するので、入手の容易なイネもみがらをそのまま用いる簡易育苗床土の実用性について、44年から47年まで4か年検討した結果、慣行床土より苗の生育が早く、床土作りも省力化でき、実用化も可能と思われたので、その結果を報告する。

2 試験方法
試験Ⅰ
(1) 供試品種：キュウリ（松のみどり）、台木 黒だね かぼちゃ、呼び揚げ
(2) 供試品種：キュウリ（松のみどり）、台木 黒だね かぼちゃ、呼び揚げ
(3) 供試期間：2月20日
(4) 定植期：4月18日（44年）、4月14日（45年）
(5) 基本的床土と（1鉢当り）添加肥料量
44年：N, K2O 各 0.3 g, P2O5 0.5 g
45年：N 0.23 g, P2O5 0.56 g, K2O 0.25 g
(6) 栽培密度：11株/3.3 m²

試験Ⅱ
(1) 供試作物：トマト（強力米寿）
(2) 供試作物：トマト（強力米寿）
(3) 供試作物：トマト（強力米寿）
(4) 供試作物：トマト（強力米寿）

<table>
<thead>
<tr>
<th>項目</th>
<th>容積比</th>
<th>元 肥 (g/L)</th>
<th>全 量 (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 基本床土</td>
<td>5：5</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>2 ピー：もみ</td>
<td>7：3</td>
<td>0.1</td>
<td>1.0</td>
</tr>
<tr>
<td>3 土</td>
<td>3：7</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>4 もみ全量</td>
<td>3：7</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>5 する</td>
<td>3：7</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>6 もみ</td>
<td>3：7</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>7 する</td>
<td>3：7</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

注：1) ピーはピートモス、もみはもみがらの略。
2) 追肥は大塚ハウス肥料400倍を1回施用した。

3 試験結果
試験Ⅰ
44年度に一部で実用化している、くんたん育苗（くんたん育苗）と慣行床土を対象に、もみがらと土を容積比で7：3の割合で混合したものがら床土区の苗生育の変化をしたもの（第1表）。

<table>
<thead>
<tr>
<th>床土の組成混合割合 (容積比)</th>
<th>施肥量 (床土1ℓ当り元肥)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (土1：堆肥 1)</td>
<td>N, K2O 各 0.1 g, P2O5 1.0 g, 蒸土石灰 2 g</td>
</tr>
<tr>
<td>2 (もみがら区)土3：もみがら 7</td>
<td>N, K2O 各 0.1 g, P2O5 1.0 g, 蒸土石灰 2.6 g</td>
</tr>
<tr>
<td>3 (ピートモス区)もみがら 7</td>
<td>N, K2O 各 0.1 g, P2O5 1.0 g, 蒸土石灰 2.6 g</td>
</tr>
</tbody>
</table>

注）もみがら混合区の追肥は大塚ハウス肥料を4月5日、12日、20日の3回100倍液を床土1ℓ当り2ℓ分施。
第1表 キュウリ定植時の苗生育

<table>
<thead>
<tr>
<th>年次</th>
<th>区</th>
<th>草丈</th>
<th>葉数</th>
<th>肥径</th>
<th>地面重</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>くんたん区</td>
<td>65.0</td>
<td>8.1</td>
<td>0.65</td>
<td>36.8</td>
</tr>
<tr>
<td></td>
<td>(254)</td>
<td>(153)</td>
<td>(115)</td>
<td>(210)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>もみがら区</td>
<td>78.7</td>
<td>10.6</td>
<td>0.70</td>
<td>61.4</td>
</tr>
<tr>
<td></td>
<td>(307)</td>
<td>(200)</td>
<td>(125)</td>
<td>(351)</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>慣行床土区</td>
<td>25.6</td>
<td>5.3</td>
<td>0.56</td>
<td>17.5</td>
</tr>
<tr>
<td></td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>もみがら区</td>
<td>41.6</td>
<td>4.7</td>
<td>0.60</td>
<td>31.6</td>
</tr>
<tr>
<td></td>
<td>(121)</td>
<td>(112)</td>
<td>(115)</td>
<td>(132)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>もみがら全量区</td>
<td>24.0</td>
<td>3.2</td>
<td>0.49</td>
<td>16.2</td>
</tr>
<tr>
<td></td>
<td>(70)</td>
<td>(76)</td>
<td>(74)</td>
<td>(68)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>慣行床土区</td>
<td>34.4</td>
<td>4.2</td>
<td>0.52</td>
<td>23.9</td>
</tr>
<tr>
<td></td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
<td></td>
</tr>
</tbody>
</table>

育苗は接ぎ木直後、床土1ickey入る鉄に鉄あげして試験を行ったが、生育は初期からもみがら区が進み、慣行床土より生育の早かったくんたん区よりも旺盛な生育を示した。これは、くんたん区よりももみがら区が、土が30%混合しているため、床土の保水力が高かったためと思われた。

45年度には、くんたん区の代りにもみがら全量の培地を設けたが、もみがら全量区は乾燥しやすく、慣行床土区より苗の生育が悪かったが、もみがらと土の混合したもみがら区は、44年同様生育が進んだ。

44年の育苗試験に供した苗をビュールハウスに定植して、その後の生育を調査したが、もみがら育苗区が定植約40日間の5月下旬までの生育が慣行床土区より進み、したがって植花開花始と収穫期が慣行床土育苗区より約6日早まり、5月の早期収量も多かった（第2表）。

しかし、6、7月の中、後期の収量が慣行床土育苗区よりやや少なく全期の総収量もやや少なかった。これは、肥培管理を各区とも同一に行ったためで、早期の生育が進んだもみがら育苗区の肥培管理を適切に行うなら総収量も高まったと考えられる。

第2表 時期別収量調査

<table>
<thead>
<tr>
<th>区名</th>
<th>収穫期</th>
<th>上物</th>
<th>下物</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>本数</td>
<td>重量</td>
<td>本数</td>
<td>重量</td>
</tr>
<tr>
<td></td>
<td>上物率</td>
<td>1果当り重</td>
<td>量</td>
<td></td>
</tr>
<tr>
<td>慣行床土区</td>
<td>早期</td>
<td>38</td>
<td>2,420</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>中期</td>
<td>114</td>
<td>10,680</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>後期</td>
<td>96</td>
<td>10,700</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>全期</td>
<td>248</td>
<td>25,800</td>
<td>46</td>
</tr>
<tr>
<td>くんたん区</td>
<td>早期</td>
<td>31</td>
<td>1,894</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>中期</td>
<td>84</td>
<td>7,550</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>後期</td>
<td>78</td>
<td>8,750</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>全期</td>
<td>193</td>
<td>18,194</td>
<td>52</td>
</tr>
<tr>
<td>もみがら区</td>
<td>早期</td>
<td>42</td>
<td>2,840</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>中期</td>
<td>100</td>
<td>9,360</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>後期</td>
<td>89</td>
<td>9,650</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>全期</td>
<td>231</td>
<td>21,850</td>
<td>51</td>
</tr>
</tbody>
</table>

早期は5月、中期は6月、後期7月（収穫打切り 7月20日）

試験II

46年度にトマトを供試した結果（第3表）4月14日調査（約40日苗）では、草丈、葉数、茎数、地下部、地下部重とも慣行床土育苗に比べ、もみがら床土育苗ともみがらにヒートミスを混合した床土育苗が勝り、4月27日調査でも同じ傾向を示した。しかし27日の調査では、もみがらと土を混合した区よりももみがらにヒートミスを混合した区の生育が14日の調査より大きかったことは、土混合区の基土が肥沃土であったためと思われた。
第3表 苗の生育調査
（46年）

<table>
<thead>
<tr>
<th>調査日</th>
<th>項目</th>
<th>荷数</th>
<th>草丈</th>
<th>子葉</th>
<th>最大葉</th>
<th>茎径</th>
<th>地上部</th>
<th>地下部</th>
<th>地上部</th>
<th>地下部</th>
<th>地上部</th>
<th>地下部</th>
<th>T/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/14</td>
<td>慣行床土</td>
<td>5.7</td>
<td>19.2</td>
<td>1.1</td>
<td>6.6</td>
<td>14.0</td>
<td>17.4</td>
<td>0.54</td>
<td>11.2</td>
<td>2.1</td>
<td>0.78</td>
<td>0.16</td>
<td>5.32</td>
</tr>
<tr>
<td></td>
<td>もみがら床土</td>
<td>6.4</td>
<td>24.3</td>
<td>1.2</td>
<td>6.5</td>
<td>17.4</td>
<td>22.1</td>
<td>0.67</td>
<td>20.0</td>
<td>3.1</td>
<td>0.90</td>
<td>0.18</td>
<td>6.45</td>
</tr>
<tr>
<td></td>
<td>もみがら＋ピートモス床土</td>
<td>6.5</td>
<td>21.7</td>
<td>1.1</td>
<td>6.5</td>
<td>18.4</td>
<td>21.5</td>
<td>0.71</td>
<td>19.8</td>
<td>3.4</td>
<td>0.82</td>
<td>0.18</td>
<td>5.82</td>
</tr>
<tr>
<td>4/27</td>
<td>慣行床土</td>
<td>7.0</td>
<td>40.5</td>
<td>1.1</td>
<td>6.7</td>
<td>17.8</td>
<td>26.6</td>
<td>0.61</td>
<td>38.9</td>
<td>5.4</td>
<td>3.93</td>
<td>0.44</td>
<td>7.20</td>
</tr>
<tr>
<td></td>
<td>もみがら床土</td>
<td>8.3</td>
<td>49.7</td>
<td>1.2</td>
<td>7.0</td>
<td>28.5</td>
<td>31.8</td>
<td>0.79</td>
<td>70.0</td>
<td>8.7</td>
<td>6.56</td>
<td>0.70</td>
<td>8.05</td>
</tr>
<tr>
<td></td>
<td>もみがら＋ピートモス床土</td>
<td>7.7</td>
<td>48.3</td>
<td>1.1</td>
<td>6.8</td>
<td>21.5</td>
<td>29.3</td>
<td>0.71</td>
<td>46.2</td>
<td>6.0</td>
<td>4.56</td>
<td>0.53</td>
<td>7.70</td>
</tr>
</tbody>
</table>

試験Ⅱ
47年にピートモスともみがらの混合割合とピートモス3に対しその混合割合を7混合した床土の添加肥料量とトマトの苗生育を検討した結果、ピートモス、もみがら混合床土に移植してから約20日の苗生育は、ピートモスの混合割合が50、70%ともみがらと同量または多量に混合した区が、堆肥と土を同量混合した慣行床土より生育が進んだが、ピートモス50%混合の6区は、生育がやや劣った。

この傾向がその後約10日目には、大差として現れず、ピートモス30%混合区でも慣行床土と、土3：もみがら7混合区及びもみがら全量区より生育が進んだ。

すなわち、ピートモスの混合割合の多いもみがら床土区が慣行床土区より苗生育が旺盛となった。更に添加施肥量がNとK2O50%増肥区の苗生育が特に旺盛だった。

4 木 す び
従来果菜類の育苗床土として用いられている、堆肥と土の混合床土より、イネのもみがらを主体とした簡易床土の実用性について、キュウリとトマトを供試し検討した。

1 キュウリの育苗で、もみがら7対土3の割合で混合した床土の苗育苗が、慣行床土とくらんだ床土より生育が旺盛で、早期収量も多く実用性が高いと思われた。

2 ピートモスともみがらを混合した床土が、土と混合した区より、トマトの苗生育が旺盛で、特にピートモスの混合割合が同量及び70%が多くなると生育が早まり、ピートモス30%混合区でも、Nの添加量を床土と当り0.54kgやや増肥すると苗生育が旺盛となり、もみがらとピートモス混合床土は十分実用性があると思われた。

青森県平根部地帯の気象条件の差異と夏採りレタスの生態
工藤洋一・盛田昭治・平尾啓郎
（青森県農業試験場）

1 まえがき
夏秋レタスは、栽培上の問題もあって供給が一般に少ない。レタスは高温条件下で花芽分化や抽苔をするため、青森県での夏採りレタスは、夏季冷涼な八甲田山などの高冷地に産地が形成されているが、ヤマモ（偏東風）の影響を受けて夏季冷涼な太平洋沿岸（平根部地帯）での夏採りレタスについて、品種及び生態について検討したので、その結果を報告する。

2 試験方法
1 試験場所 三戸郡五戸町畑園園場
三戸郡階上村現地農家
2 気象条件 五戸町ヤマモの影響無～微