水田に対する各種有機物の施用効果

—— 各種有機物の特性とその肥効 ——

斎藤博之・及川光史*・村上芳子**・高橋和吉***・遠藤征彦***

岩手県立農業試験場北分場・*岩手県立農業試験場・**岩手県立農業試験場南分場・***岩手県農産普及課

Effect of Organic Materials Application to Paddy Fields

Chemical characteristics of four types of manure and their changes

Hiroyuki SAITŌ*, Kozi OIKAWA*, Yoshiko MURAKAMI**, Wakichi TAKAHASHI*** and Masahiko ENDÔ***

Kenpoku Branch, Iwate-ken Agricultural Experiment Station, *Iwate-ken Agricultural Experiment Station, **Kennan Branch, Iwate-ken Agricultural Experiment Station.

1 はじめに

冷害を恐れ土づくりの一環として有機物施用がすすめられているが、有機物といってもその種類は多く一概に論ずることはできない。本報告では有機物の質を示す分析値の合理的な評価方法と、いくつかの有機物の水田土壌中の分解について報告する。

2 試験方法

(1) 有機物分析値の評価方法

牛糞肥、豚糞肥、鶏糞堆肥、ベーク堆肥、おがくず堆肥その他の3種の合計158サンプルの分析値について基本統計量と5段階評価基準値を計算した。5段階評価基準値は百分率法を用い、累積度数の10％、30％、70％、90％にあたるサンプルの値を計算して求めた。

(2) 有機物分解に伴う各種成分の推移について

ガラス円筒濁紙にCとして約10％になるように有機物と生土（腐質質火山灰、水田表土）と混合密封し、水田土壌中に埋めこんだ。その後一定期間経過後（1か月~3年）に取り出して分析した。使用した有機物は牛糞肥、おがくず牛糞、稲さら、工場堆肥（おがくず入り発酵鶏糞堆肥・佐藤式）の4種類で有機物なしの対照区とともに試験した。

3 試験結果

(1) 有機物の評価方法

有機物分析値の代表値としては、普通は平均値を表示しばらつきを表わす尺度として標準偏差が利用されている。しかし表1の角度、す度にみられるように、分析値の分布は数値の低い方に偏り、鋭い分布となり正規分布からはずれるものが多いため、したがってメジアンと平均値には相当の差があり、絶対値を求める時にはメジアンの方が妥当と考えられる。また標準偏差よりは5段階評価の方が合理的でわかりやすいと考えられる。これは分析値を「低い（10％の存在確率）」、「やや低い（20％）」、「並（40％）」、「やや高い（20％）」、「高い（10％）」の5段階にわけることで、例えばECが2.68~6.12の間の

<table>
<thead>
<tr>
<th>水分 (%)</th>
<th>158</th>
<th>65.22</th>
<th>19.17</th>
<th>69.70</th>
<th>6.00</th>
<th>88.30</th>
<th>-1.85</th>
<th>5.81</th>
</tr>
</thead>
<tbody>
<tr>
<td>分析サンプル数</td>
<td>158</td>
<td>8.03</td>
<td>0.79</td>
<td>8.00</td>
<td>5.20</td>
<td>9.65</td>
<td>-0.43</td>
<td>2.96</td>
</tr>
<tr>
<td>pH</td>
<td>158</td>
<td>5.43</td>
<td>4.96</td>
<td>4.36</td>
<td>0.12</td>
<td>33.30</td>
<td>2.45</td>
<td>13.05</td>
</tr>
<tr>
<td>EC (ms/cm)</td>
<td>86</td>
<td>11.45</td>
<td>6.90</td>
<td>9.35</td>
<td>0.99</td>
<td>34.28</td>
<td>1.67</td>
<td>5.20</td>
</tr>
<tr>
<td>C/N</td>
<td>147</td>
<td>0.80</td>
<td>0.90</td>
<td>0.50</td>
<td>0.11</td>
<td>5.19</td>
<td>2.97</td>
<td>11.98</td>
</tr>
<tr>
<td>N/C</td>
<td>147</td>
<td>18.96</td>
<td>10.89</td>
<td>13.85</td>
<td>5.50</td>
<td>70.00</td>
<td>2.12</td>
<td>8.53</td>
</tr>
<tr>
<td>P₂O₅ (%)</td>
<td>158</td>
<td>0.90</td>
<td>1.11</td>
<td>0.48</td>
<td>0.00</td>
<td>5.09</td>
<td>2.10</td>
<td>6.81</td>
</tr>
<tr>
<td>K₂O (%)</td>
<td>158</td>
<td>0.61</td>
<td>0.66</td>
<td>0.40</td>
<td>0.02</td>
<td>3.10</td>
<td>2.03</td>
<td>6.58</td>
</tr>
<tr>
<td>SiO₂ (%)</td>
<td>105</td>
<td>7.43</td>
<td>6.64</td>
<td>6.13</td>
<td>0.28</td>
<td>44.40</td>
<td>2.28</td>
<td>11.42</td>
</tr>
<tr>
<td>CaO (%)</td>
<td>126</td>
<td>0.82</td>
<td>1.13</td>
<td>0.48</td>
<td>0.04</td>
<td>7.53</td>
<td>3.75</td>
<td>19.76</td>
</tr>
<tr>
<td>MgO (%)</td>
<td>126</td>
<td>0.27</td>
<td>0.25</td>
<td>0.19</td>
<td>0.02</td>
<td>1.70</td>
<td>2.67</td>
<td>12.56</td>
</tr>
<tr>
<td>平均値</td>
<td>158</td>
<td>65.22</td>
<td>19.17</td>
<td>69.70</td>
<td>6.00</td>
<td>88.30</td>
<td>-1.85</td>
<td>5.81</td>
</tr>
</tbody>
</table>
有機物は「並」と判断され，10個に4個がこの間にはいることを示している。分布の歪を含めてばらつきを表現できるところにこの評価方法の利点がある。この基準値を用いれば新種の有機物を分析した時に判定の目安になると思われる（表2）。

表1は種々多様な有機物分析値をとりまとめて計算したので分布にかたよりがみられても当然であるが、牛屎肥のものの55サンプルについて同様に計算してもやはり分布にかたよりが認められ、この方法が平均値や標準偏差より有効であると思われた。

表2 有機物分析値の評価基準値（現物当たり）

<table>
<thead>
<tr>
<th>項目</th>
<th>確率</th>
<th>表現</th>
<th>10%</th>
<th>20%</th>
<th>40%</th>
<th>20%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>低</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC（ms/cm）</td>
<td>低</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-C (%)</td>
<td>低</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-N (%)</td>
<td>低</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/N</td>
<td>低</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2O5 (%)</td>
<td>低</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K2O (%)</td>
<td>低</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO2 (%)</td>
<td>低</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO (%)</td>
<td>低</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO (%)</td>
<td>低</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>水分（％）</td>
<td>低</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) 有機物分解に伴う各種成分の推移について

表3のガラス円筒試験中の有機物残存量をみると、工場堆肥は稲わらに同様に分解が早いことがわかる。観察値によると低温では試験の初期に水稲が増えることが観察されているが、56年の亜熟型作物でも投入量の半分が分解している。しかも埋設後からも6月から8月にかけての炭素含有率の低下が大きく、分解が急速に進んだと思われる（数値略）。低温での障害はこのような分解性に一因があると思われる。C/Nは稲わらやおがくす牛糞のようにC/N比の高いものの低下が大きい。工場堆肥は埋設初年度目の塩分低下が大きくC/N比に変化がなく、炭素と窒素の放出が同時進行している。CECは時間経過による低下が小さい。塩基の流渇は加里が最も速く、1か月で10分の1、2～3か月ではほとんど流渇する。次に牡蠣、石灰の順に流渇が多い。

4 まとめ

有機物分析値の代表値としては平均値や標準偏差より百分位法による5段階評価の方が合理的かつ利用しやすい。また有機物の分解は稲わらと工場堆肥で初期から大きさ

とがわかった。塩基の流渇もその種類や有機物により特徴のあることがわかった。