スターチスの養分吸収について

山口 金栄・須藤 佐蔵
（山形県立樹芸試験場）

Nutrient-uptake of Statice (Limonium sinuatum Mill.)

Kin-ei YAMAGUCHI and Sazo SUTÔ
（Yamagata Prefectural Horticultural Experiment Station）

1 はじめに

スターチスの施薬反応、養分吸収特性について検討した結果について報告する。

2 試験方法

(1) 試験場所 山形県寒河江市、園試場内ビニールハウス
(2) 施薬品種 スターチス、シナアーテー、アリーブルー
(3) 施薬土壤 細粒褐色低地土 (4) 区の構成 1区 5 ㎡ (5) 装置概況 栽植本数 5 株/㎡ 定植3月20日（1月6日播種）
(6) 調査項目及び方法 切花は市場として販売可能なものをについて調査した。また、切花長80cm以上のものをL・L, 70から79cmのものをLとし、L・L+L級を上品種とした。
作物分析は常法によったが、重金素は発光分光法で測定した。

表1 区の構成

<table>
<thead>
<tr>
<th>区名</th>
<th>使用肥料N</th>
<th>施肥量(kg/㎡)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N-0区</td>
<td>-</td>
<td>0 1.0 1.0</td>
<td>N...重金素でラベルされた硝酸ナトリウムを使用</td>
</tr>
</tbody>
</table>
| 2N-5区 | NaNO3 3.08 atom% | 0.5 1.0 1.0 | P2O5...過石, K2O...増加を用いて施肥した。
| 3N-10区 | " | 1.0 1.0 1.0 |
| 4N-20区 | " | 2.0 1.0 1.0 |

3 試験結果

(1) 生育

株張り、葉数は、生育初期からN-5区 (2区) が勝り、次いでN-10区、N-20区、N-0区の順であった。茎数、茎長は、N-5区で多く、N-0区は劣っていった。開花率は少肥の区で高い傾向であった。

表2 生育

<table>
<thead>
<tr>
<th>区名</th>
<th>3月20日(定植)</th>
<th>4月5日</th>
<th>4月22日</th>
<th>5月14日</th>
<th>5月27日</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>最大張長(cm)</td>
<td>張数(L)</td>
<td>株張り(cm)</td>
<td>葉数(L)</td>
<td>茎数(本)</td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>4.9</td>
<td>12.7</td>
<td>6.9</td>
<td>15.5</td>
<td>31.3</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注. * 株張り＝タテヨコ/2
** 開花率＝(白花の咲いているもの/茎数)×100

表3 切花本数 (株当たり)、切花品質 (7月9日、LL級について調査)

<table>
<thead>
<tr>
<th>区名</th>
<th>5月27日(内 LL)</th>
<th>6月9日(内 LL)</th>
<th>7月9日(内 LL)</th>
<th>8月8日(内 LL)</th>
<th>計本数</th>
<th>内 LL</th>
<th>花枝数(個)</th>
<th>茎長(%)</th>
<th>茎長(%)</th>
<th>開花率 (%)</th>
<th>茎径(mm)</th>
<th>切花重(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.4</td>
<td>0</td>
<td>5.4</td>
<td>1.3</td>
<td>10.4</td>
<td>6.8</td>
<td>15.4</td>
<td>6.7</td>
<td>32.6</td>
<td>14.8</td>
<td>4.0</td>
<td>2.4</td>
</tr>
<tr>
<td>2.</td>
<td>1.6</td>
<td>0</td>
<td>6.8</td>
<td>3.3</td>
<td>14.2</td>
<td>11.1</td>
<td>19.7</td>
<td>14.6</td>
<td>42.3</td>
<td>29.0</td>
<td>5.0</td>
<td>3.2</td>
</tr>
<tr>
<td>3.</td>
<td>1.1</td>
<td>0</td>
<td>9.1</td>
<td>2.9</td>
<td>14.1</td>
<td>10.2</td>
<td>20.3</td>
<td>10.7</td>
<td>44.6</td>
<td>23.8</td>
<td>4.6</td>
<td>2.6</td>
</tr>
<tr>
<td>4.</td>
<td>1.3</td>
<td>0</td>
<td>7.5</td>
<td>2.6</td>
<td>12.4</td>
<td>9.4</td>
<td>16.9</td>
<td>9.3</td>
<td>38.1</td>
<td>21.3</td>
<td>5.8</td>
<td>3.9</td>
</tr>
</tbody>
</table>

(2) 切花本数、切花品質

上物切花本数は、初期生育が良いN - 5区で多く、次いでN - 10区、N - 20区の順であり、N - 0区の上物は最も少なかった。

(3) 養分吸収量

三要素の吸収は、窒素24から28kg/10ha, リン4kg 前後, 鎳10から30kg/10haであった。三要素吸収量の多い区は、生育が優れ切花本数の多いN - 5区で、次いでN - 20区、N - 10区、N - 0区の順であった。
表 4 養分吸収量（g/ml）

<table>
<thead>
<tr>
<th>区名</th>
<th>N</th>
<th>P</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0.72</td>
<td>5.66</td>
<td>7.10</td>
</tr>
<tr>
<td>2.</td>
<td>0.57</td>
<td>6.92</td>
<td>9.02</td>
</tr>
<tr>
<td>3.</td>
<td>0.43</td>
<td>5.64</td>
<td>9.16</td>
</tr>
<tr>
<td>4.</td>
<td>0.51</td>
<td>6.00</td>
<td>9.04</td>
</tr>
</tbody>
</table>

表 5 養分吸収経過（N-10区 g/ml）

<table>
<thead>
<tr>
<th>区名</th>
<th>N</th>
<th>P（内はP2O5）</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/9</td>
<td>6/9</td>
<td>7/9 8/8 部位ごとの割合 (%)</td>
</tr>
<tr>
<td>花茎</td>
<td>3.24</td>
<td>9.92 40.4</td>
</tr>
<tr>
<td>茎葉</td>
<td>8.11</td>
<td>12.25 49.8</td>
</tr>
<tr>
<td>根</td>
<td>0.34</td>
<td>0.31 1.3</td>
</tr>
<tr>
<td>合計</td>
<td>13.96</td>
<td>24.58 100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>区名</th>
<th>K（内はK2O）</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/8</td>
<td>6/9 7/9 8/8 部位ごとの割合 (%)</td>
</tr>
<tr>
<td>花茎</td>
<td>9.27 34.2</td>
</tr>
<tr>
<td>茎葉</td>
<td>21.98 56.7</td>
</tr>
<tr>
<td>根</td>
<td>0.29 1.0 0.14 0.06 0.05 0.6</td>
</tr>
<tr>
<td>合計</td>
<td>27.14 (32.69) 100</td>
</tr>
</tbody>
</table>

表 6 素母吸収内訳

<table>
<thead>
<tr>
<th>区名</th>
<th>項目</th>
<th>月</th>
<th>日</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/27</td>
<td>6/9</td>
<td>7/9</td>
<td>8/8</td>
<td>計</td>
</tr>
<tr>
<td>2.</td>
<td>施肥由来 (a)</td>
<td>0.04</td>
<td>0.36</td>
<td>0.58</td>
</tr>
<tr>
<td>土壤由来 (b)</td>
<td>0.53</td>
<td>6.56</td>
<td>8.44</td>
<td>11.21</td>
</tr>
<tr>
<td>計 (a+b)×100 (C)</td>
<td>0.57</td>
<td>6.92</td>
<td>9.02</td>
<td>11.92</td>
</tr>
<tr>
<td>3.</td>
<td>施肥由来 (a)</td>
<td>0.05</td>
<td>0.36</td>
<td>0.55</td>
</tr>
<tr>
<td>土壤由来 (b)</td>
<td>0.38</td>
<td>5.28</td>
<td>8.61</td>
<td>8.85</td>
</tr>
<tr>
<td>計 (a+b)×100 (C)</td>
<td>0.43</td>
<td>5.64</td>
<td>9.16</td>
<td>9.35</td>
</tr>
<tr>
<td>4.</td>
<td>施肥由来 (a)</td>
<td>0.09</td>
<td>1.02</td>
<td>1.04</td>
</tr>
<tr>
<td>土壤由来 (b)</td>
<td>0.42</td>
<td>4.98</td>
<td>8.00</td>
<td>9.74</td>
</tr>
<tr>
<td>計 (a+b)×100 (C)</td>
<td>0.51</td>
<td>6.00</td>
<td>9.04</td>
<td>10.40</td>
</tr>
</tbody>
</table>

(4) 養分吸収経過

窒素10kg/10a施用区（N-10区）での主要5要素の養分吸収経過をみると、切花開始時（植付後80日）までに50％以上を吸収しており、収穫期後では、窒素で88％、リンで79％、カリ83％、石灰68％、苦土の90％を吸収していた。

(5) 原素吸収内訳

重窒素（3.08 atom％の硝酸ナトリウム）でトレースし分析した原素吸収量のうち施肥由来のものは、N-5区、N-10区で5.9％、N-20区で10.8％と極めて施肥由来の部分が低かった。残りの部分、すなわちN-5区で27kg/10a、N-10区、N-20区で23kg/10aが土壤より吸収された窒素であり、この土壤由来の原素吸収量はN-0区の吸収量にほぼ一致した。また、施肥毎の施肥由来窒素は、生育が進むにつれ徐々に低下しており、生育後半は土壤から原素吸収が大部分を占めており、ステータスの養分吸収特性と考えられた。

4 ま え

以上のことから、ステータスへの施肥は、初期生育を促進するためのスターター役割と考えられる。また、作物自体の吸収量が多く、吸収する原素の大部分を土壤に依存している作物であるので、栽培に当たっては、作付土の養分状態を良くしておく必要がある。