緩効性窒素肥料による水稲の後期栄養管理

佐藤健司・中村富夫・沼倉正二

Control of Rice Nutrition in Latter Stage by Application of Slow-release Nitrogenous Fertilizer

1. Growth and yield of paddy rice in band dressing near the side of rice seedling with slow-release nitrogenous fertilizers

Kenji SATO, Tomio TYUBATI and Shoji NUMAKURA

(Miyagi Prefectural Agricultural Research Center)
はGUでは一穂粒数増による総穂数の増加が収穫要因でありIBでは穂数は増加したが登熟歩合が対照よりも低くなっ
tたため伸びなかった。次に追肥時期との関係をみると対照、
GU, IBともに減数分裂期1回追肥よりも幼穂形成期+乾
燥期の2回追肥の方が多収であった。これは減数分裂期
1回追肥では穂数不足により穂数が少なかったためである
(表 4)。
(2) LP40, LP70の結果
草丈は、歯数、乾物重、収量を減数分裂期追肥区でみると
草丈は幼穂形成期までは各被圧密度にほとんど差はなかった
が、程長ではLP40で対照と、LP70でやや低かった。歯
数は初期ではLP40, LP70とも対照よりも多く、穂数で
もLP40＞LP70＞対照であった（表 3）。

表 3 生育調査（昭61～62年平均）

<table>
<thead>
<tr>
<th>追肥期</th>
<th>幼形期</th>
<th>対照</th>
<th>减数分裂期</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6/8</td>
<td>6/22</td>
<td>幼形期</td>
</tr>
<tr>
<td>幼形期</td>
<td>371</td>
<td>829</td>
<td>930</td>
</tr>
<tr>
<td>対照</td>
<td>339</td>
<td>777</td>
<td>899</td>
</tr>
<tr>
<td>减数分裂期</td>
<td>282</td>
<td>679</td>
<td>898</td>
</tr>
<tr>
<td>LP40 幼形期</td>
<td>378</td>
<td>869</td>
<td>998</td>
</tr>
<tr>
<td>LP40 対照</td>
<td>399</td>
<td>896</td>
<td>990</td>
</tr>
<tr>
<td>LP40 减数分裂期</td>
<td>383</td>
<td>902</td>
<td>990</td>
</tr>
<tr>
<td>LP70 幼形期</td>
<td>337</td>
<td>782</td>
<td>897</td>
</tr>
<tr>
<td>LP70 対照</td>
<td>376</td>
<td>836</td>
<td>901</td>
</tr>
</tbody>
</table>

注：対照の幼形期追肥区は、61年のみの値

図 2 乾物重の推移（昭61～62年、減数分裂期追肥区）

乾物重は特にLP40で有効歯数決定期の大きさから幼穂形成
期にかけての増加が大きく、その後も高めに推移した。
LP70は幼穂形成期から減数分裂期にかけての増加が大きかった
（図 2）。その結果LP40の穂数は4万株以上でやや過
剰になり一方LP70では目標穂数に近かった。

収量はLP40では6%増収であったが、LP70では対照
並であった。これはLP40では穂数増による総穂数の増加
が収穫要因であり、LP70では一穂穂数が増えて登熟歩合
の低下が対照よりも大きかったため収量は伸びなかった。

また追肥時期との関係では各肥料とも幼穂形成期+乾燥期
の2回追肥が幼穂形成期又は減数分裂期1回追肥よりも多
収であった。これは幼穂形成期追肥のみでは穂数は確保す
ることが登熟歩合が低下したためである（表 5）。

まとめ
(1) 基肥肥料としてのGU, IB, LP40, LP70の施肥
効果は対照（速効性肥料）に比べて同様以上の生育、収量結果
を得た。
(2) IBはGUよりも生育中期の生育量が大きかった。
(3) LP40は生长期旺盛な生育をし、LP70は生育中期の
生育量が大きかった。
(4) 早期の歯数増加が収量に大きく影響する地域では
LP40が適し、中期の肥切れ防止をねらいとする地域では
LP70が適すると考えられる。
(5) 各基肥肥料とも追肥時期は幼穂形成期+乾燥期の2回
追肥が多収であった。

表 4 収量及び収量構成要素（昭60～61年平均）

<table>
<thead>
<tr>
<th>肥料</th>
<th>追肥期</th>
<th>総 穂数 (千粒/㎡)</th>
</tr>
</thead>
<tbody>
<tr>
<td>幼形期</td>
<td>60.7</td>
<td>101</td>
</tr>
<tr>
<td>対照</td>
<td>61.3</td>
<td>102</td>
</tr>
<tr>
<td>减数分裂期</td>
<td>60.2</td>
<td>100</td>
</tr>
<tr>
<td>G U</td>
<td>65.0</td>
<td>108</td>
</tr>
<tr>
<td>I B</td>
<td>64.4</td>
<td>107</td>
</tr>
</tbody>
</table>

注：各肥料の幼形期追肥区は、61年のみの値

表 5 収量及び収量構成要素（昭61～62年平均）

<table>
<thead>
<tr>
<th>肥料</th>
<th>追肥期</th>
<th>総 穂数 (千粒/㎡)</th>
</tr>
</thead>
<tbody>
<tr>
<td>幼形期</td>
<td>60.7</td>
<td>104</td>
</tr>
<tr>
<td>対照</td>
<td>60.5</td>
<td>104</td>
</tr>
<tr>
<td>减数分裂期</td>
<td>68.8</td>
<td>104</td>
</tr>
<tr>
<td>G U</td>
<td>65.9</td>
<td>96</td>
</tr>
<tr>
<td>I B</td>
<td>62.9</td>
<td>108</td>
</tr>
</tbody>
</table>

注：対照の幼形期追肥区は、61年のみの値