キュウリ半促成栽培におけるブルームレス台木の利用

三品和敏·千葉 實* ·蘇武 真

(宮城県園芸試験場・*宮城県農産課)

Use of Bloomless Rootstock for Semi-forcing Culture of Cucumber Kazutoshi MISHINA, Minoru CHIBA* and Shin SOBU

(Miyagi Prefecture Horticultural Experiment Station • *Agricultural Products Division of Miyagi Prefectural Government Office

1 はじめに

ブルームレス台木を利用したキュウリ栽培は、果実の市場性が高いことなどから年々増加しているが、低温伸長性が劣ることが問題で、主に夏秋及び抑制栽培を中心に導入され、促成・半促成栽培ではまだ少ない。そのため、'黒ダネ'を対照とし、半促成栽培における適応性の検討並びに、低温期の生育促進を目的とした地中加温の効果について検討した。また、ブルームレス台木苗の定植時の葉齢についても合わせて検討を行なった。

2 試験方法

(1) 台木の品種比較: (試験1)

台木は、'輝虎'、'ひかり1号'、'雲竜1号'、'スーパー雲竜'、'黒ダネ'の5品種を供試し、穂木はシャープ1を用いた。1989年1月14日に播種し、1月17日に呼び接ぎを行い、2月23日に定植した。栽植距離は、うね幅160 cm、株間40 cmで、1条植えとした。施肥量はa当り、N-3.5kg、 $P_2O_5-3.1$ kg、 $K_2O-3.4$ kgとした。整技法は主枝を23節で摘心し、側枝2節摘心、上段側枝3本放任とした。

(2) 地中加温の効果: (試験2)

地中加温は、重油温湯ボイラーを用い、植付位置直下30 cmにユカロンパイプを配管し、設定温度を18℃とした。地中加温は3月2日から開始し、無加温区での最低地温がほぼ18℃になる4月末まで行った。播種期は1月14日、定植期は3月3日で、台木品種は、'輝虎'、'穂木品種は、'シャープ1'を用いた。その他の耕種概要は、台木の品種比較に準じた。

(3) 定植時葉齢: (試験3)

定植時葉齢は、2.5葉期、3.0葉期、3.5葉期の3区を設定した。供試品種は、台木は'輝虎'、穂木は、'シャープ1'、播種期は1月14日、接ぎ木は1月26日、定植は2月23日(2.5葉期)、2月27日(3.0葉期)3月3日(3.5葉期)に行った。その他の耕種概要は、台木の品種比較に準じた。

3 試験結果及び考察

(1) 台木の品種比較: (試験1)

各台木を用いた生育は、表1のとおりで、初期生育は

表 1 定植後の生育及び果実調査(試験 1) (1989年)

台	木	草丈 (cm)	節数 (節)	長側枝の 発生率%)	根重 (g/株)	ブルーム 発生程度
輝	虎	158	19.1	82	52	0.59
雲 竜		149	18.8	86	31	0.52
	ペー雲竜	159	19.2	87	44	0.44
ひか	り 1号	149	19.2	80	36	0.58
黒	ダネ	181	20.4	58	72	2.31

注. 草丈, 節数は4月6日, 側枝は5月12日に調査 ブルームは1週間に1回収穫果すべてを調査 ブルーム発生指数:0:発生なし 1:極少量 2:普通 3:やや多い 4:かなり多い

発生程度=<u>Σ(発生程度×該当株数)</u> 調査果数

いずれのブルームレス台木も黒ダネよりやや劣ったが、側枝の発生率は'黒ダネ'の58%に対しブルームレス台木は80~87%で、特に長側枝の発生は良好であった。ブルームの発生程度は表1の注.に示した方法(0~4の5段階)で表示したが、収穫全期間の平均は、黒ダネの2.31に対しブルームレス台木は0.44~0.59で明らかな差が認められた。収穫始期は、黒ダネが3月27日で最も早く、ブルームレス台木は3月31日でやや遅れた。時期別収量は表2に示した

表 2 a 当り換算収量, 良果率(試験 1) (1989年)

/s	月 別 収 量 (kg/a)					良果率
台 木	4月	5月	6月	7月	合計	(%)
輝 虎	282	556	524	127	1,489	74
雲竜1号	259	530	563	129	1,481	76
スーパー雲竜	247	550	597	131	1,525	75
ひかり1号	281	637	646	156	1,720	75
黒 ダ ネ	312	527	438	121	1,398	77

注. 収穫始期: 黒ダネ3月27日 他は3月31日,調査打切り:7月10日

とおり、初期は黒ダネと比較して10~20%低かったが、5 月以降は '黒ダネ'と同等以上の収穫で推移し、総収量では、いずれのブルームレス台木も '黒ダネ'を上回る結果となった。収穫終了時の根重は '黒ダネ'の72gに対し31~52gで軽く、観察では、'黒ダネ'より細根が多かった。以上の結果、半促成栽培のブルームレス台木は、供試したいずれの台木とも '黒ダネ'より総収量が多く、果実のブルームの発生が少なく使用可能である。供試した台木の中では 'ひかり1号'が収量面で優った。

(2) 地中加温の効果: (試験2)

表3 側枝の発生程度及び収量(試験2) (1989年)

区		長側枝 の発生 率 (%)	,	ブルー				
	别		4月	5月	6月	7月	合計	ム発生 程 度
地加油	中	72	207 (94)	564 (83)	499 (85)	167 (82)	1,437 (85)	0.41
無温	加区	45	173 (95)	445 (71)	388 (69)	82 (77)	1,088 (73)	0.58

注, 収穫始期は地中加温区4月1日, 無加温区4月3日 側枝調査日は6月12日,()内数値は良果率 調査打切りは7月10日

無加温区の午前の9時地温は、定植時から3月末まで13 ℃前後で経過し、地中加温区とは5℃前後の差があった。 時期別収量は表3のとおりで収穫期間を通して地中加温区 が多く、総収量ではa当り換算で無加温区の1.088kgに対 し1,437kgとなった。地中加温区は長側枝の発生率が高く、 これが無加温区より多収になった原因と思われる。

以上の結果、地中加温を行うことによりブルームレス台 木の低温期における生育を促進し、長側枝の発生をうなが して、初期からの収量を高めることが可能であると判断さ れた。

(3) 定植時葉齢: (試験3)

初期生育は表4のとおりで、定植時の葉齢が若いものほ

表4 定植後の生育(試験3)

(1989年)

区	別	草 (cm)	節 数 (節)	長側枝の 発生率(%)
2.	5葉	149	18.8	86
3.	0葉	128	16.9	62
3.	5葉	108	14.9	45

注. 草丈, 節数は, 4月6日調査 側枝の発生率は、6月12日調査

表 5 a当り換算収量, 良果率(試験3)

(1989年)

X	别		月 別	収 量	(kg/a)		良果率
	נימ	4月	5月	6月	7月	合 計	
2.5	葉	231	510	480	129	1,350	75
3.0	(葉	178	515	466	142	1,301	74
3.5	葉	173	445	388	82	1,088	76

注, 収穫始期: 2.5葉期3月31日, 3.0葉期4月1日, 3.5 葉期 4 月 3 日

収穫打切り:7月10日

ど旺盛で、長側枝の発生率も高かった。総収量は、表5の とおり2.5葉期>3.0葉期>3.5葉期定植の順で多く、良果率 は各区がほぼ等しいことから良果収量についても同様の傾 向が見られた。

以上の結果. ブルームレス台木利用の半促成栽培では, 生育が旺盛でなおかつ長側枝の発生割合が高く、良果収量 の多い2.5葉期での定植が適する。

4 ま ۲ 80

播種及び定植が低温期にあたるキュウリ半促成栽培では ブルームレス台木を用いた場合に初期生育及び初期収量が '黒ダネ'よりやや劣るものの、外気温の上昇ともに生育 も旺盛となり、5月以降の収量は総収量も含め、従来の '黒ダネ'と同等以上となることから、今回供試したいず れのブルームレス台木も利用可能と判断された。また、ブ ルームレス台木を利用するに当たっては、2,5葉程度の若 苗を定植し、低温時の伸長を良くするために地中加温を行 うことが、生育促進ひいては初期からの安定生産につなが ることが明らかとなった。