米の食味と玄米及び白米成分の関係
小田中温美・鈴木 良則・伊藤 公成・小野 剛志
(岩手県立農業試験場)

Relationship between Composition of Brown Rice or Milled Rice and Eating Quality
Atsumi ODANAKA, Yoshinori SUZUKI, Kousei Iro and Tsuyoshi ONO
(Iwate Prefectural Agricultural Experiment Station)

1 はじめに
米の食味と成分の関係については多くの報告がある。これらは、食味が米の成分によって左右されることを示している。本報告では岩手県産のあきたこまちについて3年間の食味評価と玄米及び白米の成分の関係を検討した結果を報告する。

2 試験方法
(1) 試験年次 平成3年（1991年）～5年
(2) 析試品種 あきたこまち
(3) 栽培場所
1) 平成3年: 岩手農試本場（滝沢村）
2) 平成4年: 岩手農試本場（滝沢村）、矢巾町、字石町、岩手町、石鳥谷町
(4) 試料調整 玄米は1.9mm筋調整、白米摂取歩合は90～91%とした。
(5) 成分分析方法
1) 分解: 硫酸・過酸化水素法
2) N: セミクロロゲルタル法（d, w％表示）
3) Mg: 原子吸光法（mg/100g d, w表示）
4) K: 炎光光度法（mg/100g d, w表示）
Mg/KはmEq/表示。
5) アミロース: シュウ素発色法（ブラランーベ社オトアナライザーⅡ, d, w％表示）
6) 試食試験
1) 基準米: あきたこまち玄米窒素濃度を測定した上で基準米（表1）を決定した。平成5年については高窒素濃度と低窒素濃度の二つを基準にした。
2) パネラー: 岩手農試職員17～28人
3) 食味評価: 平成3, 4年は−5～5の11段階の評価を行った。

表1 基準米の成分値

<table>
<thead>
<tr>
<th></th>
<th>玄米</th>
<th>白米</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mg</td>
</tr>
<tr>
<td>平成3年</td>
<td>1.62</td>
<td>153</td>
</tr>
<tr>
<td>平成4年</td>
<td>1.41</td>
<td>137</td>
</tr>
<tr>
<td>平成5年A</td>
<td>1.83</td>
<td>184</td>
</tr>
<tr>
<td>平成5年B</td>
<td>1.49</td>
<td>130</td>
</tr>
</tbody>
</table>

平成5年度は−3～+3の7段階評価。評価項目は外観、香り、味、粘り、硬さ、総合。良いと「+」、悪いと「−」とした。粘りは強いと「+」、硬さは硬くて「+」ととした。

3 試験結果及び考察
平成3年度から5年度の3か年に岩手県産あきたこまちの食味試験を行い、米成分と食味評価の関係を検討した。試験区で毎回同じ試験区から得られた米を基準米で用いた。基準米の成分を表1に示した。検討に際し、食味評価点数の平均値を用いた。
成分と食味評価の関係をみると、3か年とも同様の傾向を示し、かつ相関が高かったのは、①玄米窒素濃度と粘り（図1, 負相関）、②玄米塩素濃度と硬さ（図2, 正相関）、③玄米加里濃度と粘り（図3, 負相関）であった。それ以外の米の成分と食味評価の関係については年次により傾向が異なるか、相関が低かった（表2）。平成5年産米は特異的に高窒素、高アミロースとなったがこれは冷害による障害不稔多発の影響とみられる。基準に高窒素濃度を用いた場合、玄米、白米の成分と食味評価項目の間に相関関係の高い場合があった。特に他年次にはみられなかった総合評価との間で有意な相関が認められた。ただし、基準に低窒素濃度米を用いた場合は相関係数が低下した。

图1 玄米窒素濃度と粘り評価の関係
图2 玄米窒素濃度と硬さ評価の関係
成分間の関係をみると3年とも相関が認められたのは、
玄米窒素濃度と白米窒素濃度（図4、正相関）、玄米苦土
濃度と玄米加里濃度（図5、正相関）であった。平成5年
産米はこの他に玄米窒素濃度と玄米苦土及び加里に正の相
関が、また玄米窒素濃度と白米アミロース濃度に負の相
関が認められるなど成分間の相関が高かった。

4 まとめ

平成3年から5年の3年、岩手県産のあきたこまちに
ついて食味評価と米の成分の関係を検討した結果、玄米窒
素濃度が高くなると硬さが増し、粘りが弱く、食味総合評
価が劣る傾向が認められ、玄米加里濃度が高くなると、粘
りが弱くなる傾向が認められた。

表2 食味評価と米の成分の関係（単相関係数）

<table>
<thead>
<tr>
<th>成分</th>
<th>評価項目</th>
<th>外観</th>
<th>香り</th>
<th>味</th>
<th>粘り</th>
<th>硬さ</th>
<th>総合</th>
<th>相関係数の有意水準</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成3年</td>
<td>玄米</td>
<td>N</td>
<td>-0.194</td>
<td>0.061</td>
<td>-0.239</td>
<td>0.668</td>
<td>0.199</td>
<td>-0.242</td>
</tr>
<tr>
<td></td>
<td>Mg</td>
<td>-0.074</td>
<td>-0.104</td>
<td>-0.088</td>
<td>0.266</td>
<td>-0.341</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>-0.057</td>
<td>-0.303</td>
<td>-0.426</td>
<td>0.540</td>
<td>-0.156</td>
<td>-0.181</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mg/K</td>
<td>0.083</td>
<td>0.215</td>
<td>0.442</td>
<td>0.264</td>
<td>0.385</td>
<td>0.312</td>
<td></td>
</tr>
<tr>
<td></td>
<td>白米</td>
<td>アミロース</td>
<td>-0.142</td>
<td>0.444</td>
<td>0.120</td>
<td>0.388</td>
<td>0.455</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>-0.030</td>
<td>-0.100</td>
<td>-0.144</td>
<td>0.261</td>
<td>0.481</td>
<td>0.038</td>
<td></td>
</tr>
<tr>
<td>平成4年</td>
<td>玄米</td>
<td>N</td>
<td>-0.310</td>
<td>-0.003</td>
<td>-0.090</td>
<td>0.329</td>
<td>0.086</td>
<td>-0.267</td>
</tr>
<tr>
<td></td>
<td>Mg</td>
<td>-0.191</td>
<td>-0.258</td>
<td>-0.357</td>
<td>-0.035</td>
<td>0.528</td>
<td>-0.241</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>-0.355</td>
<td>-0.136</td>
<td>-0.354</td>
<td>-0.077</td>
<td>0.499</td>
<td>-0.324</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mg/K</td>
<td>-0.382</td>
<td>-0.169</td>
<td>-0.155</td>
<td>0.394</td>
<td>0.071</td>
<td>0.289</td>
<td></td>
</tr>
<tr>
<td></td>
<td>白米</td>
<td>アミロース</td>
<td>-0.169</td>
<td>-0.232</td>
<td>-0.105</td>
<td>0.091</td>
<td>0.448</td>
<td>-0.007</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>0.065</td>
<td>-0.261</td>
<td>-0.042</td>
<td>0.381</td>
<td>0.329</td>
<td>0.134</td>
<td></td>
</tr>
<tr>
<td>平成5年A</td>
<td>玄米</td>
<td>N</td>
<td>0.770</td>
<td>-0.170</td>
<td>-0.020</td>
<td>0.502</td>
<td>0.647</td>
<td>-0.631</td>
</tr>
<tr>
<td></td>
<td>Mg</td>
<td>0.664</td>
<td>-0.174</td>
<td>-0.571</td>
<td>-0.390</td>
<td>0.299</td>
<td>0.074</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>0.589</td>
<td>-0.135</td>
<td>-0.538</td>
<td>-0.423</td>
<td>0.262</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mg/K</td>
<td>0.621</td>
<td>-0.215</td>
<td>-0.439</td>
<td>0.106</td>
<td>0.263</td>
<td>0.454</td>
<td></td>
</tr>
<tr>
<td></td>
<td>白米</td>
<td>アミロース</td>
<td>0.735</td>
<td>-0.113</td>
<td>-0.088</td>
<td>0.653</td>
<td>0.710</td>
<td>0.682</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>0.762</td>
<td>0.137</td>
<td>0.658</td>
<td>0.557</td>
<td>-0.501</td>
<td>0.635</td>
<td></td>
</tr>
<tr>
<td>平成5年B</td>
<td>玄米</td>
<td>N</td>
<td>-0.599</td>
<td>-0.278</td>
<td>-0.367</td>
<td>-0.239</td>
<td>0.041</td>
<td>-0.336</td>
</tr>
<tr>
<td></td>
<td>Mg</td>
<td>-0.766</td>
<td>-0.210</td>
<td>-0.509</td>
<td>-0.546</td>
<td>0.327</td>
<td>0.482</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>-0.847</td>
<td>-0.256</td>
<td>-0.484</td>
<td>-0.415</td>
<td>0.216</td>
<td>0.474</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mg/K</td>
<td>-0.179</td>
<td>0.023</td>
<td>-0.458</td>
<td>-0.021</td>
<td>0.655</td>
<td>0.385</td>
<td></td>
</tr>
<tr>
<td></td>
<td>白米</td>
<td>アミロース</td>
<td>-0.310</td>
<td>-0.181</td>
<td>-0.261</td>
<td>-0.188</td>
<td>0.010</td>
<td>-0.220</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>0.616</td>
<td>0.254</td>
<td>0.364</td>
<td>0.293</td>
<td>0.068</td>
<td>0.327</td>
<td></td>
</tr>
</tbody>
</table>

図4 玄米窒素濃度と白米窒素濃度の関係
図5 玄米苦土濃度と加里濃度の関係