イチゴセル成型苗を利用した‘さらのか’，‘とちおとめ’の
促成栽培における電照利用技術
鹿野 弘・高野 岩雄・大沼 康
（宮城県農業・園芸総合研究所・農産園芸課）
Lighting Method for Forcing Culture on Strawberry Varieties ‘Satinoka’ and ‘Tottotome’
by using Cell Plants
Hiroshi KANO，Iwao TAKANO and Ko ONUMA
（Miyagi Prefectural Agriculture and Horticulture Research Center，Miyagi Prefectural Agriculture Products and Division）

1 はじめに
本県のイチゴ促成栽培は‘女峰’に代わり‘さらのか’，‘とちおとめ’に移行した。また，省力化の観点から，セルトレイを利用した育苗の導入が図られつつある。そうしたことから，これら2品種の特性を把握し，セル成型苗を利用した促成栽培における安定生産技術の確立が必要となっている。
そこでセル成型苗を利用した‘さらのか’，‘とちおとめ’の促成栽培における冬期の草率確保と連続出荷を目的とした電照利用技術を検討した。

2 試験方法
(1) 試験施設及び土性
宮城県農業・園芸総合研究所バイブハウス，土性は壤土である。
(2) 試験品種及び試験規模
‘さらのか’及び‘とちおとめ’の2品種を供試し，1区10株3反復とした。
(3) 試験区別
試験区を下図のとおりとし，電照開始日の違いが供試品種の冬期の草率及び収量に及ぼす影響を検討した。

<table>
<thead>
<tr>
<th>電照開始</th>
<th>電照終了</th>
</tr>
</thead>
<tbody>
<tr>
<td>10月20日</td>
<td>11月1日</td>
</tr>
<tr>
<td>10月20日</td>
<td>11月1日</td>
</tr>
<tr>
<td>11月1日</td>
<td>11月1日</td>
</tr>
<tr>
<td>11月1日</td>
<td>2月20日</td>
</tr>
</tbody>
</table>

(4) 試験概要
①育苗はセル成型苗として35穴セルトレイ（130ccセル）を使用し，セル用土はピット土を主体とし細粒鹿沼土（体積比7:3）を混合した。育苗時の施設はロング100日タイプ肥料を1セル当りN100mgになるようにセル用土に施用した。

空中採苗により2001年7月31日を基に，葉数を1.5〜2.0葉に調整した後，セルトレイに植えた。仮植初期は適温処理等により発根促進が促進した。育苗日数は40日とし，2001年9月10日に定植した。
②本植施設；ロング140日タイプ及び180日タイプとカニガラ有機及び重蒸醸酵の配合肥料（商品名：イチゴコーチ）を窒素成分量として2.0kg/haに施用した。
③電照；75W白熱電球を高さ1.6mに5個/ha設置し，17時から20時まで3時間の電照とした。

途中中断は試験区当たり草高25cmの株が3割程度観察された時点まで電照中断した。電照の終了は2002年2月20日とした。
①栽培様式はうるう120cm，株間20cm，条数363（a当たり333株）。
②濃度管理は内張り150cm，1区11月1日から最低夜温8〜10℃に加温した。

3 試験結果及び考察
① 10月20日電照開始区は‘さらのか’‘とちおとめ’と電照開始とともに草高が高まった。11月27日頃には30cmを超えたが，12月17日頃から草高がやや低くなった（図2，1）。
② 11月1日電照開始区の‘とちおとめ’は，11月27日頃から草高25cm程度で確認され，12月17日頃まで若干ではあるが草高が高くなった。その後の草高の変化はわずかであった（図2，2）。
③ 11月10日電照開始区の‘さらのか’は‘とちおとめ’と同様に傾向を示したが，草高20cm以上の確保が難しくなった（図2，1）。
④ 11月10日電照開始区の‘とちおとめ’は電照期間中，ほぼ草高は一定で冬期の草高は20cm以上を確保したものの25cmには達しなかった（図2，2）。

両品種とも11月20日電照開始区では，無電照より草高は確保したもの，その発育状態は強く1月下旬では無電照とほぼ同程度の草高であった（図2，1）。
② ‘さらのか’‘とちおとめ’とも11月1日電照開始区で頂果数の着花数が多かった（表2，1）。
③収量は‘さらのか’‘とちおとめ’とも11月1日電照開始区で3月までの収量及び全期間の収量が多かった（図2，3，4）。
④ ‘さらのか’では電照開始が早くなり平均1果重が向上する傾向があり，‘とちおとめ’では11月1日電照開始区で平均1果重が大きくなった（表2，3，4）。

4 まとめ
本試験では，従来‘女峰’の促成栽培で行われていた電照利用技術を‘さらのか’‘とちおとめ’に応用し，電照開始時期の違いが，冬期のイチゴの草高と収量に及ぼす影響について検討した。その結果，両品種とも11月1日から電照を開始することで収穫開始初期に草高25cmを確保することができ，3月までの収量及び全期間の収量が向上した。また，電照により葉柄長とともに葉の生育も促進され，商品果1果重も大きくなった。
図1 電照開始時期（の違い）による「さらのか」の草高的推移

表1 電照開始時期（の違い）による

<table>
<thead>
<tr>
<th>区別</th>
<th>葉身長</th>
<th>葉幅</th>
<th>坐果数（個）</th>
<th>果房長（mm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/20 電照開始</td>
<td>62</td>
<td>46</td>
<td>153</td>
<td>16.6</td>
</tr>
<tr>
<td>10/20 電照開始 途中中断</td>
<td>58</td>
<td>42</td>
<td>122</td>
<td>18.8</td>
</tr>
<tr>
<td>11/1 電照開始</td>
<td>54</td>
<td>44</td>
<td>127</td>
<td>18.6</td>
</tr>
<tr>
<td>11/10 電照開始</td>
<td>53</td>
<td>41</td>
<td>124</td>
<td>14.5</td>
</tr>
<tr>
<td>11/20 電照開始</td>
<td>46</td>
<td>39</td>
<td>103</td>
<td>16.7</td>
</tr>
<tr>
<td>無電照</td>
<td>45</td>
<td>37</td>
<td>98</td>
<td>15.3</td>
</tr>
</tbody>
</table>

図2 電照開始時期（の違い）による「とちおとめ」の草高的推移

表2 電照開始時期（の違い）による

<table>
<thead>
<tr>
<th>区別</th>
<th>葉身長</th>
<th>葉幅</th>
<th>坐果数（個）</th>
<th>果房長（mm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/20 電照開始</td>
<td>69</td>
<td>59</td>
<td>148</td>
<td>17.5</td>
</tr>
<tr>
<td>10/20 電照開始 途中中断</td>
<td>69</td>
<td>58</td>
<td>139</td>
<td>17.9</td>
</tr>
<tr>
<td>11/1 電照開始</td>
<td>64</td>
<td>49</td>
<td>123</td>
<td>18.9</td>
</tr>
<tr>
<td>11/10 電照開始</td>
<td>63</td>
<td>50</td>
<td>115</td>
<td>17.8</td>
</tr>
<tr>
<td>11/20 電照開始</td>
<td>58</td>
<td>46</td>
<td>106</td>
<td>17.8</td>
</tr>
<tr>
<td>無電照</td>
<td>50</td>
<td>44</td>
<td>92</td>
<td>14.5</td>
</tr>
</tbody>
</table>

図3 電照開始時期（の違い）による「さらのか」

a当たり月別商品果収量

表3 電照開始時期（の違い）による「さらのか」

<table>
<thead>
<tr>
<th>区別</th>
<th>1月</th>
<th>2月</th>
<th>3月</th>
<th>4月</th>
<th>5月</th>
<th>全期間平均果重（g）</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/20 電照開始</td>
<td>19.4</td>
<td>12.4</td>
<td>12.7</td>
<td>15.9</td>
<td>12.6</td>
<td>14.5</td>
</tr>
<tr>
<td>10/20 電照開始 途中中断</td>
<td>16.6</td>
<td>12.7</td>
<td>12.5</td>
<td>14.3</td>
<td>10.6</td>
<td>13.3</td>
</tr>
<tr>
<td>11/1 電照開始</td>
<td>24.1</td>
<td>12.1</td>
<td>13.5</td>
<td>14.1</td>
<td>8.4</td>
<td>13.8</td>
</tr>
<tr>
<td>11/10 電照開始</td>
<td>19.9</td>
<td>10.7</td>
<td>11.2</td>
<td>12.0</td>
<td>10.3</td>
<td>12.1</td>
</tr>
<tr>
<td>11/20 電照開始</td>
<td>19.1</td>
<td>9.7</td>
<td>13.3</td>
<td>11.0</td>
<td>11.9</td>
<td>12.3</td>
</tr>
<tr>
<td>無電照</td>
<td>18.0</td>
<td>8.9</td>
<td>12.3</td>
<td>11.8</td>
<td>9.8</td>
<td>11.8</td>
</tr>
</tbody>
</table>

図4 電照開始時期（の違い）による「とちおとめ」

a当たり月別商品果収量

表4 電照開始時期（の違い）による「とちおとめ」

<table>
<thead>
<tr>
<th>区別</th>
<th>1月</th>
<th>2月</th>
<th>3月</th>
<th>4月</th>
<th>5月</th>
<th>全期間平均果重（g）</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/20 電照開始</td>
<td>19.8</td>
<td>16.7</td>
<td>14.5</td>
<td>13.1</td>
<td>14.7</td>
<td>14.7</td>
</tr>
<tr>
<td>10/20 電照開始 途中中断</td>
<td>20.3</td>
<td>14.7</td>
<td>13.2</td>
<td>17.2</td>
<td>13.1</td>
<td>15.6</td>
</tr>
<tr>
<td>11/1 電照開始</td>
<td>25.4</td>
<td>14.3</td>
<td>16.2</td>
<td>15.5</td>
<td>13.9</td>
<td>16.3</td>
</tr>
<tr>
<td>11/10 電照開始</td>
<td>24.3</td>
<td>12.6</td>
<td>15.5</td>
<td>15.9</td>
<td>13.6</td>
<td>15.8</td>
</tr>
<tr>
<td>11/20 電照開始</td>
<td>21.3</td>
<td>11.7</td>
<td>16.0</td>
<td>14.8</td>
<td>12.8</td>
<td>15.3</td>
</tr>
<tr>
<td>無電照</td>
<td>25.5</td>
<td>13.0</td>
<td>13.9</td>
<td>11.8</td>
<td>10.0</td>
<td>13.9</td>
</tr>
</tbody>
</table>