1 はじめに

2011年3月東京電力福島第一原子力発電所事故により、福島県内に拡散した放射性セシウム（以下、放射性Csとする。）が玄米に移行し、一定規制値を超える事例が発生した。本観察では2011年に比較的高い放射性Csを含む玄米を生産した山間のCECの低い水田において、ゼオライトとカリ資材の放射性Csの吸収抑制効果について観察した。

2 試験方法

試験は土壌中の137-Cs濃度が1800Bq/kg.DW程度、CECが11から14mcq/100gの細粒グライ化土の水田において実施した。水稲品種コンヒカリを用い、施肥は農業慣行（N、P、O、K/CEC = 0.52、1.28、0.4（kg/a））とした。前作の稲わらは田面から持ち出した。

(1) 吸着資材の効果（試験1）

試験は3本の水田を用い、1区48～63mとし、田塊法で1区を1ブロックの3反復とした。区の配置は表1のとおり。ゼオライトは福島市飯坂産を用いた。ゼオライトのカリ保証成分は2.2％であった。カリ資材はケイ酸カリを供給した。ケイ酸カリの施用量は、作付け前に土壌の交換性カリ含量を測定し、作土深15cmの交換性カリ含量25mg/100gを目標に施用したカリがすべて交換性カリになるものとして算出した。各資材とも4月に施用し、施用後二ヶ月まで観察し、土壌に混和した。

<table>
<thead>
<tr>
<th>区名</th>
<th>ゼオライト</th>
<th>ケイ酸カリ</th>
<th>適用量(kg/a)</th>
<th>載含量(kg/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ゼオライト</td>
<td>50</td>
<td>1.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ゼオライト100</td>
<td>100</td>
<td>2.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>併用</td>
<td>100</td>
<td>2.2</td>
<td>15.2～16.7</td>
<td>-</td>
</tr>
<tr>
<td>無処理</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(2) カリ肥料の種類と効果（試験2）

1区63mの2反復とし、ケイ酸カリ、塩化カリをそれぞれ施用量の交換性カリ含量25mg/100gを目標にケイ酸カリ15.2から16.5kg/a、塩化カリは5.2kg/aを4月に施用した。また、慣行施肥のみの無処理区を設置した。

(3) カリ肥料追肥の効果（試験3）

CECの低い水田では流亡による交換性カリの減少が予想されることから、塩化カリの追肥において放射性Csの吸収抑制効果を確認した。試験1の無処理区、併用区、試験2のケイ酸カリ区、塩化カリ区に追肥で6mlを区切り追肥区とした。塩化カリの追肥は一般のカリ追肥時期に7月10日（出穂34日前）に行った。施用量は1.0kg/aとした。各試験とも栽培期間中の土壌の交換性カリ含量及び玄米中の放射性Cs濃度を測定した。

3 試験結果及び考察

(1) 吸着資材の効果

ゼオライトは、有機物の含有率が低かったが、土壌の交換性カリ含量を増加させ、ゼオライトの施用量が多いほど土壌の交換性カリ含量が増加する傾向があった（表2）。ゼオライトにケイ酸カリを併用した畑区の交換性カリ含量が最も高く、推移した。玄米中の放射性Cs濃度は土壌の交換性カリ含量が高まると推移した区ほど低い傾向であった。

(2) カリ肥料の種類と効果

同じカリ含有量を施用した場合、有機物の含有率が異なったがケイ酸カリより塩化カリの方が放射性Csの吸収抑制効果が大きい傾向があった（表3）。ケイ酸カリより塩化カリでは土壌の交換性カリ含量の推移が大きく異なることが判明と考えられた。このことから、放射性Csの吸収抑制には栽培初期から土壌の交換性カリ含量を高める施肥法が重要と考えられた。一方で塩化カリ区の収穫時の土壌の交換性カリ含量は7mg/100g程度まで減少しており、放射性Csの吸収抑制対策として目標とされている作付け前の土壌の交換性カリ含量25mg/100gを塩化カリで維持するためには毎年多量の施肥が必要と考えられた。このため、CECが低く稲わらが持ち出される場では、土壌の施肥を増やし穏やかの還元など総合的な対策が必要と考えられた。

(3) カリ肥料追肥の効果

塩化カリの追肥により、玄米の放射性Cs濃度は各区とも追肥なしと比較して約50%程度に抑制され、基肥に塩化カリを施用した区では追肥により無処理区の10％まで吸収を抑制した（図1）。塩化カリ
リの追肥に高い効果が認められた要因として、7月に急激に土壌の交換性カリ含量が低下する条件であったと考えられた。

(4) 土壌の交換性カリ含量と玄米の放射性 Cs 濃度の関係

試験で得られたデータを元に栽培期間中の土壌の交換性カリ含量と玄米の放射性 Cs 濃度の関係を分析した結果、栽培期間中における時期の土壌の交換性カリ含量と玄米の放射性 Cs 濃度が高い相関が認められた(表 4)。ゼオライトを施用した区についても土壌の交換性カリ含量と玄米放射性 Cs の関係は他の区と同じ傾向を示しており、本試験のゼオライトの放射性 Cs 吸収抑制効果は、放射性 Cs 吸着による吸収抑制効果より含有するカリによる吸収抑制効果が大きいと考えられた。

4 まとめ

ゼオライトは水稲の放射性 Cs 吸収を抑制する傾向が認められたが、ゼオライトに含まれるカリの影響のため Cs 吸着による吸収抑制効果は明らかとならなかった。カリ肥料では、同じカリ含有量を施用した場合ケイ酸カリよりも塩化カリの方が放射性 Cs 吸収抑制効果が高い傾向であった。生育期間中の土壌の交換性カリ含量と玄米の放射性 Cs 濃度には高い相関が認められた。

なお、本研究は農林水産省農業プロジェクト「農地・森林等の放射性物質の除去・低減技術の開発」及びJA全農肥料委託試験により実施した。

表 2 ゼオライト施用による土壌の交換性カリ含量の推移と水稲の放射性 Cs 吸収抑制効果（試験 1）

<table>
<thead>
<tr>
<th>施用資材</th>
<th>資材</th>
</tr>
</thead>
<tbody>
<tr>
<td>資材投前</td>
<td>5月23日</td>
</tr>
<tr>
<td>ゼオライト50</td>
<td>3.7±0.6</td>
</tr>
<tr>
<td>ゼオライト100</td>
<td>3.7±0.5</td>
</tr>
<tr>
<td>ケイ酸カリ</td>
<td>3.6±0.5</td>
</tr>
<tr>
<td>塩化カリ</td>
<td>3.3±0.5</td>
</tr>
<tr>
<td>無處理</td>
<td>3.4±0.5</td>
</tr>
</tbody>
</table>

注：平均値土標準偏差
無処理区は無処理区を平均した。
分散分析により**は1%で有意差あり。
同一英文字を付した平均値間にはTukeyの多重比較により10%水準で有意差あり。

表 3 カリ肥料による土壌の交換性カリ含量の推移と水稲の放射性セリウム吸収抑制効果

<table>
<thead>
<tr>
<th>カリ肥料</th>
<th>資材</th>
</tr>
</thead>
<tbody>
<tr>
<td>投入前</td>
<td>5月23日</td>
</tr>
<tr>
<td>ケイ酸カリ</td>
<td>3.8±0.8</td>
</tr>
<tr>
<td>塩化カリ</td>
<td>3.6±0.1</td>
</tr>
<tr>
<td>無処理</td>
<td>3.6±0.2</td>
</tr>
</tbody>
</table>

注：平均値土標準偏差
分散分析により**は5%、***は1%で有意差あり。
同一英文字を付した平均値間にはTukeyの多重比較により10%水準で有意差あり。

図 1 塩化カリ追肥による玄米の放射性 Cs の吸収抑制効果

エラーパーは標準偏差を示す。

表 4 生育期間中の土壌の交換性カリ含量と玄米の放射性 Cs 濃度の関係

<table>
<thead>
<tr>
<th>資材</th>
<th>5月23日</th>
<th>6月15日</th>
<th>7月6日</th>
<th>7月25日</th>
<th>8月17日</th>
<th>収穫時</th>
</tr>
</thead>
<tbody>
<tr>
<td>放射性 Cs</td>
<td>0.88</td>
<td>0.71</td>
<td>0.89</td>
<td>0.84</td>
<td>0.87</td>
<td>0.89</td>
</tr>
<tr>
<td>ルン保の</td>
<td>n</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>ルン保の</td>
<td>n</td>
<td>0.92</td>
<td>0.89</td>
<td>0.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>すべて</td>
<td>n</td>
<td>0.84</td>
<td>0.83</td>
<td>0.91</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注：土壌を採取した月日を示す。
ルン保のはスパイスマンの順位相関係数を示す。