RID
82
745
50001
1D9
2.4-D1
2a
867?
AC866
ASD6
AW5
AXD1
B197
B6-10
B6-5
B6-9
BRI6001
BTH
C11CL
C1CL
CH2D11
CHK
CS1
CS2
CSV90
D10
D2(1)Ba
D2D9
D8
E2w1
EMA
EML130
EML131
EML132
EML133
EML134
EML135
EML137
EML140
EML141
EML142
EML143
EML144
EML145
EML146
EML147
EML148
EML149
EML1549
EML155
EML157
EML158
EML159
EML160
ERA
ERB
ERC
EST1001
EST4002
EWA
EWB
EWC
EWD
F7-2
HBP1
HW1
HW13
HWK11
HWK12
HWK24
I-17
I-18
JD1
JD12
JD16
JD17
JD2
JD6
JMP116
JMP130
JMP131
JMP133
JMP134
JMP135
JMP142
JMP144
JMP363
JMP364
JMP365
JMP366
JRB1
K1443
K17
K712
M1
MC1
P212a/2
P230
P2301
P3
P4a
PCD4
Pcep
PLAE2
PLAE3
PLAE4
PLAE6
POD3
RASC
RCO
RD5-C2
TCP
TFD?V
TFD1
TFD10
TFD11
TFD12
TFD13
TFD14
TFD15
TFD16
TFD17
TFD18
TFD19
TFD2
TFD20
TFD21
TFD22
TFD23
TFD24
TFD25
TFD26
TFD27
TFD28
TFD29
TFD3
TFD30
TFD31
TFD32
TFD33
TFD34
TFD35
TFD36
TFD37
TFD38
TFD39
TFD4
TFD40
TFD41
TFD42
TFD43
TFD44
TFD45
TFD46
TFD5
TFD6
TFD8
TFD9
TV1
Genus
Alacligenes
Alcaligenes
Alcaligenes
Bradirizobium
Bradyrhizobium
Bradyrhizobium
Burkholdeira
Burkholderia
Burkholderia
Comamonas
Flavobacterium
Halomonas
Pseudomonas
Pseudomonas
Ralstonia
Ralstonia
Rhodoferax
Rhodoferax
Rhodopseudomonas
Sphingomonas
Sphingomonas
undetermined
Variovorax
Variovorax
Species
acidovorans
andropogonis
azelaica
cepacia
eutropha
fermentans
mallei
palustris
paradoxus
putida
sp.
testosteroni
undetermined
undetermined (uncultured)?
xylosoxidans
Other cluster
BANA cluster in meso-Protecbacteria
isolated place
?
Australia
Canada
Canada (Saskatchewan)
Canada(Ontario)
Canada(Quebec)
Canada(Saskatchewan)
Chile
Estonia
France(Citeaux)
France(Dijion)
France(Dijon)
France(Versailles)
French Polinesia (Moorea)
Germany
Germany
India (Bangalore in Karnataka State
Indonesia
Italy
Japan (Shimane)
Puerto Rico (El Loquillo )
Same(avobe)
UK
USA
USA (Washington State)
USA(California)
USA(Florida?)
USA(Hawaii)
USA(Kansas)
USA(Michigan)
USA(Montana)
USA(Oregon)
USA(Oregon)
USA(Oregon)
isolated source
?
2.4.5-T
a fixed bed reacter
activated sludge
activated sludge(shaker)
activated sludge(static)
Agent Orange Contaminated soil
Agricultural soil
Agricultural soil (no prior 2.4-D treatment )
concrete sample from demolished herbicide factory
creek
Creek(running water)
Creek(sediment)
forest
forest soil
garden soil with 2.4-D
Indian Head Research Station (no prior 2.4-D treatment)
Indian Head Research Station soil (2.4-D teatment)
Indian Head Research Station soil (2.4-D teatment)
Indian Head Research Station soil (no prior 2.4-D treatment)
Indian Head Research Station Soil(-)
industrial effluent contaminated with 2.4-D collected by enrichiment
culture
industrial waste stream
just above the groundwater of hypersaline alkaline lake polluted with
2.4-D
Kellog Biological Station Soil
Kellogg Biological Station soil(2.4-D treatment)
Kellogg Biological Station soil(no prior 2.4-D treatment )
Konza Plairie soil
Lake (2.4-D contaminated)
lake water micro-cosm with 2.4-D
peat
Pond (shaker)
Pond(shaker)
Pond(static)
return activated sludge
Return active sludge
River
River
River(shaker)
River(static)
sewage sludge
soil
soil (prisitine environments)
soil treated with DNOC 50mg kg soil-1
soil with 2.4-D treatment
soil. no history of cultivation
standing water
upland soil that had no history of 2.4-D exposure
water
Reference of origin
Amy. P.S.. J.W. Schulke. L.M. Frazier. and R.J. Seidler. Characterization
of aquatic bacteria and cloning of genes specifying partial degradation
of .4-dichlorophenoxyacetic acid. Appl Environ Microbiol. 1985. 49(5):
p. 1237-45.
Amy. P.S.. J.W. Schulke. L.M. Frazier. and R.J. Seidler. Characterization
of aquatic bacteria and cloning of genes specifying partial degradation
of .4-dichlorophenoxyacetic acid. Appl Environ Microbiol. 1985. 49(5):
p. 1237-45.
Andreoni. V.. G. Baggi. M. Colombo. L. Cavalca. M. Zangrossi. and
S. Bernasconi. Degradation of 2.4.6-trichlorophenol by a specialized
organism and by indigenous soil microflora: bioaugmentation and self-remediability
for soil restoration. Lett Appl Microbiol. 1998. 27(2): p. 86-92.
Ausmees. N.R. and Heinaru. A.L. (1990) New plasmids of herbicide 2.4-D
degradation. Genetika 26. 770-772.
Beadle. C.A. and A.R. Smith. The purification and properties of 2.4-dichlorophenol
hydroxylase from a strain of Acinetobacter species. Eur J Biochem.
1982. 123(2): p. 323-32.
Bhat. M.A.. M. Tsuda. K. Horiike. M. Nozaki. C.S. Vaidyanathan. and
T. Nakazawa. Identification and characterization of a new plasmid
carrying genes for degradation of 2.4-dichlorophenoxyacetate from
Pseudomonas cepacia CSV90. Appl Environ Microbiol. 1994. 60(1): p.
307-12. Radjendirane. V.. M.A. Bhat. and C.S. Vaidyanathan. Affinity
purification and characterization of 2.4-dichlorophenol hydroxylase
from Pseudomonas cepacia. Arch Biochem Biophys. 1991. 288(1): p. 169-76.
Cavalca. L.. A. Hartmann. N. Rouard. and G. Soulas. Diversity of tfdC
genes: distribution and polymorphism among 2.4-dichlorophenoxyacetic
acid degrading soil bacteria. FEMS Microbiol Ecol. 1999. 29: p. 45-58.
Chaudhry. G.R. and G.H. Huang. Isolation and characterization of a
new plasmid from a Flavobacterium sp. which carries the genes for
degradation of 2.4-dichlorophenoxyacetate. J Bacteriol. 1988. 170(9):
p.3897-902.
Don. R.H. and Pemberton. J.M. (1981) Properties of six pesticide degradation
plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus.
J. Bacteriol. 145:681-686.
Dunbar(unpublished)
Ehrig. A... Muller. R.H.. Babel. W. (1997) Isolation of phenoxy herbicide-degrading
Rhodoferax species from contaminated building material. Acta. Biotechnol.
16: 121-131.
Fisher. P.R.. Appleton. J.. and Pemberton. J.M. (1978) J. Bacteriol.
135. 798-805.
Fourier. J.C. (1989) Aspects du comportement de la microflora degradant
les produits phtyosanitaries dans le sol. PhD. Thesis
Fulthope. R.R. (1991) Survival. activity and transfer of a bacterial
catabolic transposon in an aquatic ecosystem. PhD. Thesis
Fulthorpe. R.R.. C. McGowan. O.V. Maltseva. W.E. Holben. and J.M.
Tiedje. 2.4-Dichlorophenoxyacetic acid-degrading bacteria contain
mosaics of catabolic genes. Appl Environ Microbiol. 1995. 61(9): p.
3274-81.
Ghosal. D.. I.S. You. D.K. Chatterjee. and A.M. Chakrabarty. Genes
specifying degradation of 3-chlorobenzoic acid in plasmids pAC27 and
pJP4. Proc Natl Acad Sci U S A. 1985. 82(6): p. 1638-42.
Greer. C.W.. J. Hawari. and R. Samson. (1990) Influence of environmental
factors on 2.4-dichlorophenoxyacetic acid degradation by Pseudomonas
cepacia isolated from peat. Arch. Microbiol. 154:317-322.
Gunalan(1991) Etude du comportement dans le sol d’un inoculum bacterien
le 2.4-D. PhD.Thesis
Hoffmann. D.. R.H. Muller. B. Kiesel. and W. Babel. Isolation and
Characterization of an Alkaliphilic Bacterium Capable of Growing on
2.4-Dichlorophenoxyacetic Acid and 4-Chloro-2-methylphenoxyacetic
Acid. Acta Biotechnol. 1996. 16(2-3): p. 121-131.
Itoh. K.. et al.. Presence of 2.4-D-catabolizing Bacteria in a Japanese
Arable Soil that Belong to BANA (Bradyrhizobium-Agromonas-Nitrobacter-Afipia)
Cluster in alfa-Proteobacteria. Microbes and Environments. 2000. 15(2):
p. 113-117.
Ka. J.O.. W.E. Holben. and J.M. Tiedje. Analysis of competition in
soil among 2.4-dichlorophenoxyacetic acid- degrading bacteria. Appl
Environ Microbiol. 1994. 60(4): p. 1121-8.
Ka. J.O.. W.E. Holben. and J.M. Tiedje. Genetic and phenotypic diversity
of 2.4-dichlorophenoxyacetic acid (2.4- D)-degrading bacteria isolated
from 2.4-D-treated field soils. Appl Environ Microbiol. 1994. 60(4):
p. 1106-15.
Kamagata. Y.. R.R. Fulthorpe. K. Tamura. H. Takami. L.J. Forney. and
J.M. Tiedje. Pristine environments harbor a new group of oligotrophic
2.4- dichlorophenoxyacetic acid-degrading bacteria. Appl Environ Microbiol.
1997. 63(6): p. 2266-72.
Kavisaar. M.A.. Habicht. J.K. and Heinaru. A.L.:Degradation of phenol
and m-toluate in Pseudomonas sp. strain EST1001 and its Pseudomonas
putida transconjugants is determined by a multiplasmid system. J.
Bacteriol. 171. (1989) 5111-5116.
Lors(1997)PhD. thesis
Lors. C.(1997) Impact des produits phytosanitaires sur la diversite
et fonctionnelle de la microflora du soil. PhD Thesis
Lors. C.(1997) Impact des produits phytosanitaires sur la diversite
et fonctionnelle de la microflora du soil. PhD Thesis
Maltseva. O.. C. McGowan. R. Fulthorpe. and P. Oriel. Degradation
of 2.4-dichlorophenoxyacetic acid by haloalkaliphilic bacteria. Microbiology.
1996. 142(Pt 5): p. 1115-22.
Maltseva. O.. C. McGowan. R. Fulthorpe. and P. Oriel. Degradation
of 2.4-dichlorophenoxyacetic acid by haloalkaliphilic bacteria. Microbiology.
1996. 142(Pt 5): p. 1115-22.
Matheson. V. G. (unpublished)
Muller. R. H. and Babel. W. (1994) Biodegradative properties of alkaliphilic
microorganisms from building materials of herbicide production plants.
IChemE. 2nd U.K. Congress of Biotechnology. Second International Symposium
on Environmental Biotechnogy. Brighton 4-6 July. 1994. 73-75.
Pemberton(1979)
Pemberton. J.M.. Corney. B.. and Don. R.H. (1979) Evolution and spread
of pesticide degarading ability amons soil micro-oraganisms. In Plasmids
of Medical. Environmental and Commercial Importance. Timmis. K.N.
and Puhler. A. ed. pp287-299.
R.Sanford
Rice.J.F. Jr.. Hay.A.G.. Sanseverino.J.. Menn.F.-M. and Sayler.G.S.
(unpublished:AF439768. AF439770) Degradation of 2.4-Dichlorophenoxyacetic
Acid and .4.5-Trichlorophenoxyacetic Acid by Bacteria Isolated from
Agent Orange Contaminated Soil.
Schmid(unpubl.)
Smejikal C. W. et al.(unpublished)
Smith(unpubl.)
Tonso. N.L.. V.G. Matheson. and W.E. Holben. Polyphasic Characterization
of a Suite of Bacterial Isolates Capable of Degrading 2.4-D. Microb
Ecol. 1995. 30: p. 3-24.
Vallaeys(1992) Isolement d’une communaue microbienne degradatant l’acied
2.4-dichlorophenoxyacetique a partir d’un sol de Dijon. PhD. Thesis
Weightman.(unpubl.)
GenBank accession No. (SSU rDNA)
AB035489
AF049530
AF049531
AF049532
AF049533
AF049534
AF049535
AF049536
AF049537
AF049538
AF049539
AF049540
AF049541
AF049542
AF049543
AF049544
AF049545
AF049546
pCICLb
U22836
DDBJ Accession
+
AB028643
AB035489
AB062679 AB074492
AB074490
AB074491
AB074493
AF029344
AF035159
AF041364
AF043451
AF047032
AF049530
AF049531
AF049532
AF049533
AF049534
AF049535
AF049536
AF049537
AF049538
AF049539
AF049540
AF049541
AF049542
AF049543
AF049544
AF049545
AF049546
AF068237
AF068241
AF068243
AF068272
AF068273
AF068276
AF068277
AF068278
AF068279
AF068280
AF068281
AF068282
AF073470
AF073471
AF073472
AF077910
AF077911
AF077912
AF077913
AF176240
AF176242
AF176243
AF176244
AF181982
AF182758
AF377325
AF377326
AF439768
AF439770
AY078159
D16356
M16730
M35097
M36279
M36280
M57500
pAC27
pAWs
pBS5
pCICLb
pCS1
pCS2
pEST1226
pEST4011
pIJB1
pJP2
pJP3
pJP3
pJP4
pJP5
pJP7
pJP9
pKO51
pMAB1
pRC10
pTV1
U22499
U22836
U25717
U32188
U43196
U43197
U43276
U65531
U73900
U87394
U88192
plasmid
+
pAC27
pAWs
pBS5
pCS1
pCS2
pEST1226
pEST4011
pIJB1
pJP2
pJP3
pJP3
pJP4
pJP5
pJP7
pJP9
pKO51
pMAB1
pRC10
pTV1
tfdA
AB062679 AB074492
AB074490
AB074491
AB074493
AF176240
AF181982
AF182758
AF377325
AF439768
M16730
U22499
U25717
U32188
U43196
U43197
U43276
U65531
U87394
tfdB
AF068272
AF068273
AF068276
AF068277
AF068278
AF068279
AF068280
AF068281
AF068282
AF073470
AF073471
AF073472
AF176242
AF377326
AF439770
M35097
M57500
U32188
U73900
U88192
tfdC
AB028643
AF029344
AF035159
AF041364
AF043451
AF047032
AF068237
AF068241
AF068243
AF077910
AF077911
AF077912
AF077913
AF176243
AF176244
AY078159
D16356
M36279
M36280
U32188
Other References
Bhat. M.A.. M. Tsuda. K. Horiike. M. Nozaki. C.S. Vaidyanathan. and
T. Nakazawa. Identification and characterization of a new plasmid
carrying genes for degradation of 2.4-dichlorophenoxyacetate from
Pseudomonas cepacia CSV90. Appl Environ Microbiol. 1994. 60(1): p.
307-12. Vallaeys. T.. L. Courde. C. McGowan. A.D. Wright. and F. R.R..
Phylogenetic analysis indicate independent recruitment of diverse
gene cassettes during assemblage of the 2.4-D catabolic pathway. FEMS
Microbiology Ecology. 1999. 28: p. 373-82.
Cavalca. L.. A. Hartmann. N. Rouard. and G. Soulas. Diversity of tfdC
genes: distribution and polymorphism among 2.4-dichlorophenoxyacetic
acid degrading soil bacteria. FEMS Microbiol Ecol. 1999. 29: p. 45-58.
Cavalca. L.. et al.. Diversity of tfdC genes: distribution and polymorphism
among 2.4-dichlorophenoxyacetic acid degrading soil bacteria. FEMS
Microbiol Ecol. 1999. 29: p. 45-58.
Don(1981). Vallaeys. T.. R.R. Fulthorpe. A.M. Wright. and G. Soulas.
The metabolic pathway of 2.4-dichlorophenoxyacetic acid degradation
involves different families of tfdA and tfdB genes accoridng to PCR-RFLP
analysis. FEMS Microbiology Ecology. 1996. 20: p. 163-72. Pemberton.
J.M.. Corney. B.. and Don. R.H. (1979) Evolution and spread of pesticide
degarading ability amons soil micro-oraganisms. In Plasmids of Medical.
Environmental and Commercial Importance. Timmis. K.N. and Puhler.
A. ed. pp287-299.
Don. R.H. and Pemberton. J.M. (1981) Properties of six pesticide degradation
plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus.
J. Bacteriol. 145:681-686.
Don. R.H. and Pemberton. J.M. (1981) Properties of six pesticide degradation
plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus.
J. Bacteriol. 145:681-686.
Don. R.H. and Pemberton. J.M. (1981) Properties of six pesticide degradation
plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus.
J. Bacteriol. 145:681-686. Cavalca. L.. A. Hartmann. N. Rouard. and
G. Soulas. Diversity of tfdC genes: distribution and polymorphism
among 2.4-dichlorophenoxyacetic acid degrading soil bacteria. FEMS
Microbiol Ecol. 1999. 29: p. 45-58.
Don. R.H. and Pemberton. J.M. (1981) Properties of six pesticide degradation
plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus.
J. Bacteriol. 145:681-686. Amy. P.S.. J.W. Schulke. L.M. Frazier.
and R.J. Seidler. Characterization of a
Fulthorpe. R.R.. C. McGowan. O.V. Maltseva. W.E. Holben. and J.M.
Tiedje. 2.4-Dichlorophenoxyacetic acid-degrading bacteria contain
mosaics of catabolic genes. Appl Environ Microbiol. 1995. 61(9): p.
3274-81.
Fulthorpe. R.R.. C. McGowan. O.V. Maltseva. W.E. Holben. and J.M.
Tiedje. 2.4-Dichlorophenoxyacetic acid-degrading bacteria contain
mosaics of catabolic genes. Appl Environ Microbiol. 1995. 61(9): p.
3274-81. McGowan. C.. R. Fulthorpe. A. Wright. and J.M. Tiedje. Evidence
for interspecies gene transfer in the evolution of 2.4- dichlorophenoxyacetic
acid degraders. Appl Environ Microbiol. 1998. 64(10): p. 4089-92.
Fulthorpe. R.R.. C. McGowan. O.V. Maltseva. W.E. Holben. and J.M.
Tiedje. 2.4-Dichlorophenoxyacetic acid-degrading bacteria contain
mosaics of catabolic genes. Appl Environ Microbiol. 1995. 61(9): p.
3274-81. McGowan. C.. R. Fulthorpe. A. Wright. and J.M. Tiedje. Evidence
for interspecies gene transfer in the evolution of 2.4- dichlorophenoxyacetic
acid degraders. Appl Environ Microbiol. 1998. 64(10): p. 4089-92.
Fulthorpe. R.R.. C. McGowan. O.V. Maltseva. W.E. Holben. and J.M.
Tiedje. 2.4-Dichlorophenoxyacetic acid-degrading bacteria contain
mosaics of catabolic genes. Appl Environ Microbiol. 1995. 61(9): p.
3274-81. McGowan. C.. R. Fulthorpe. A. Wright. and J.M. Tiedje. Evidence
for interspecies gene transfer in the evolution of 2.4- dichlorophenoxyacetic
acid degraders. Appl Environ Microbiol. 1998. 64(10): p. 4089-92.
Vallaeys. T.. L. Courde. C. McGowan. A.D. Wright. and F. R.R.. Phylogenetic
analysis indicate independent recruitment of diverse gene cassettes
during assemblage of the 2.4-D catabolic pathway. FEMS Microbiology
Ecology. 1999. 28: p. 373-82.
Fulthorpe. R.R.. C. McGowan. O.V. Maltseva. W.E. Holben. and J.M.
Tiedje. 2.4-Dichlorophenoxyacetic acid-degrading bacteria contain
mosaics of catabolic genes. Appl Environ Microbiol. 1995. 61(9): p.
3274-81. Vallaeys. T.. R.R. Fulthorpe. A.M. Wright. a
Fulthorpe. R.R.. C. McGowan. O.V. Maltseva. W.E. Holben. and J.M.
Tiedje. 2.4-Dichlorophenoxyacetic acid-degrading bacteria contain
mosaics of catabolic genes. Appl Environ Microbiol. 1995. 61(9): p.
3274-81. McGowan. C.. R. Fulthorpe. A. Wright. and J.M. Tiedje. Evidence
for interspecies gene transfer in the evolution of 2.4- dichlorophenoxyacetic
acid degraders. Appl Environ Microbiol. 1998. 64(10): p. 4089-92.
Fulthorpe. R.R.. C. McGowan. O.V. Maltseva. W.E. Holben. and J.M.
Tiedje. 2.4-Dichlorophenoxyacetic acid-degrading bacteria contain
mosaics of catabolic genes. Appl Environ Microbiol. 1995. 61(9): p.
3274-81. Vallaeys. T.. R.R. Fulthorpe. A.M. Wright. and G. Soulas.
The metabolic pathway of 2.4-dichlorophenoxyacetic acid degradation
involves different families of tfdA and tfdB genes accoridng to PCR-RFLP
analysis. FEMS Microbiology Ecology. 1996. 20: p. 163-72. McGowan.
C.. R. Fulthorpe. A. Wright. and J.M. Tiedje. Evidence for interspecies
gene transfer in the evolution of 2.4- dichlorophenoxyacetic acid
degraders. Appl Environ Microbiol. 1998. 64(10): p. 4089-92.
Ghosal. D. and I.S. You. Nucleotide homology and organization of chlorocatechol
oxidation genes of plasmids pJP4 and pAC27. Mol Gen Genet. 1988. 211(1):
p. 113-20.
Itoh. K.. R. Kanda. Y. Sumita. H. Kim. Y. Kamagata. K. Suyama. H.
Yamamoto. R.P. Hausinger. and J.M. Tiedje. tfdA-like genes in 2.4-dichlorophenoxyacetic
acid-degrading bacteria belonging to the Bradyrhizobium-Agromonas-Nitrobacter-Afipia
cluster in alpha-Proteobacteria. Appl Environ Microbiol. 2002. 68(7):
p. 3449-54.
Ka. J.O.. W.E. Holben. and J.M. Tiedje. Analysis of competition in
soil among 2.4-dichlorophenoxyacetic acid- degrading bacteria. Appl
Environ Microbiol. 1994. 60(4): p. 1121-8.
Kleinsteuber. S.. D. Hoffmann. R.H. Muller. and W. Babel. Detection
of Chlorocatechol 1.2-Dioxygenase Genes in Proteobacteria by PCR and
Gene Probes. Acta Biotechnol. 1998. 18(3): p. 231-240.
Kleinsteuber. S.. D. Hoffmann. R.H. Muller. and W. Babel. Detection
of Chlorocatechol 1.2-Dioxygenase Genes in Proteobacteria by PCR and
Gene Probes. Acta Biotechnol. 1998. 18(3): p. 231-240.
Kleinsteuber. S.. D. Hoffmann. R.H. Muller. and W. Babel. Detection
of Chlorocatechol 1.2-Dioxygenase Genes in Proteobacteria by PCR and
Gene Probes. Acta Biotechnol. 1998. 18(3): p. 231-240. Muller.R.H..
Kleinsteuber.S. and Babel.W. (2001) Physiological and genetic characteristics
of two bacterial strains utilizing phenoxypropionate and phenoxyacetate
herbicides. JOURNAL Microbiol. Res. 156 (2). 121-131 (2001)
Lucia(1999) . Vallaeys. T.. R.R. Fulthorpe. A.M. Wright. and G. Soulas.
The metabolic pathway of 2.4-dichlorophenoxyacetic acid degradation
involves different families of tfdA and tfdB genes accoridng to PCR-RFLP
analysis. FEMS Microbiology Ecology. 1996. 20: p. 163-72. Cavalca.
L.. A. Hartmann. N. Rouard. and G. Soulas. Diversity of tfdC genes:
distribution and polymorphism among 2.4-dichlorophenoxyacetic acid
degrading soil bacteria. FEMS Microbiol Ecol. 1999. 29: p. 45-58.
Lucia(1999). Cavalca. L.. A. Hartmann. N. Rouard. and G. Soulas. Diversity
of tfdC genes: distribution and polymorphism among 2.4-dichlorophenoxyacetic
acid degrading soil bacteria. FEMS Microbiol Ecol. 1999. 29: p. 45-58.
Lucia(1999). Cavalca. L.. A. Hartmann. N. Rouard. and G. Soulas. Diversity
of tfdC genes: distribution and polymorphism among 2.4-dichlorophenoxyacetic
acid degrading soil bacteria. FEMS Microbiol Ecol. 1999. 29: p. 45-58.
Lucia(1999). Cavalca. L.. A. Hartmann. N. Rouard. and G. Soulas. Diversity
of tfdC genes: distribution and polymorphism among 2.4-dichlorophenoxyacetic
acid degrading soil bacteria. FEMS Microbiol Ecol. 1999. 29: p. 45-58.
Lucia(1999)? Cavalca. L.. A. Hartmann. N. Rouard. and G. Soulas. Diversity
of tfdC genes: distribution and polymorphism among 2.4-dichlorophenoxyacetic
acid degrading soil bacteria. FEMS Microbiol Ecol. 1999. 29: p. 45-58.
Mae. A.A.. R.O. Marits. N.R. Ausmees. V.M. Koiv. and A.L. Heinaru.
Characterization of a new 2.4-dichlorophenoxyacetic acid degrading
plasmid pEST4011: physical map and localization of catabolic genes.
Journal of General Microbiology. 1993. 139: p. 3165-3170. Vallaeys.
T.. L. Courde. C. McGowan. A.D. Wright. and F. R.R.. Phylogenetic
analysis indicate independent recruitment of diverse gene cassettes
during assemblage of the 2.4-D catabolic pathway. FEMS Microbiology
Ecology. 1999. 28: p. 373-82. Vedler. E.. V. Koiv. and A. Heinaru.
Analysis of the 2.4-dichlorophenoxyacetic acid-degradative plasmid
pEST4011 of Achromobacter xylosoxidans subsp. denitrificans strain
EST4002. Gene. 2000. 255(2): p. 281-288.
McGowan. C.. R. Fulthorpe. A. Wright. and J.M. Tiedje. Evidence for
interspecies gene transfer in the evolution of 2.4- dichlorophenoxyacetic
acid degraders. Appl Environ Microbiol. 1998. 64(10): p. 4089-92.
Nurk. A.. L. Kasak. and M. Kivisaar. Sequence of the gene (pheA) encoding
phenol monooxygenase from Pseudomonas sp. EST1001: expression in Escherichia
coli and Pseudomonas putida. Gene. 1991. 102(1): p. 13-8. Vallaeys.
T.. L. Courde. C. McGowan. A.D. Wright. and F. R.R.. Phylogenetic
analysis indicate independent recruitment of diverse gene cassettes
during assemblage of the 2.4-D catabolic pathway. FEMS Microbiology
Ecology. 1999. 28: p. 373-82.
Sandford(personal). Fulthorpe. R.R.. C. McGowan. O.V. Maltseva. W.E.
Holben. and J.M. Tiedje. 2.4-Dichlorophenoxyacetic acid-degrading
bacteria contain mosaics of catabolic genes. Appl Environ Microbiol.
1995. 61(9): p. 3274-81. Vallaeys. T.. R.R. Fulthorpe. A.M. Wright.
and G. Soulas. The metabolic pathway of 2.4-dichlorophenoxyacetic
acid degradation involves different families of tfdA and tfdB genes
accoridng to PCR-RFLP analysis. FEMS Microbiology Ecology. 1996. 20:
p. 163-72. Vallaeys. T.. L. Courde. C. McGowan. A.D. Wright. and F.
R.R.. Phylogenetic analysis indicate independent recruitment of diverse
gene cassettes during assemblage of the 2.4-D catabolic pathway. FEMS
Microbiology Ecology. 1999. 28: p. 373-82.
Smejkal(2001-b)
Smejkal. C.W.. T. Vallaeys. S.K. Burton. and H.M. Lappin-Scott. Substrate
specificity of chlorophenoxyalkanoic acid-degrading bacteria is not
dependent upon phylogenetically related tfdA gene types. Biol Fertil
Soils. 2001. 33: p. 507-13.
Vallaeys. T.. L. Courde. C. McGowan. A.D. Wright. and F. R.R.. Phylogenetic
analysis indicate independent recruitment of diverse gene cassettes
during assemblage of the 2.4-D catabolic pathway. FEMS Microbiology
Ecology. 1999. 28: p. 373-82.
Vallaeys. T.. L. Courde. C. McGowan. A.D. Wright. and F. R.R.. Phylogenetic
analysis indicate independent recruitment of diverse gene cassettes
during assemblage of the 2.4-D catabolic pathway. FEMS Microbiology
Ecology. 1999. 28: p. 373-82. Lucia(1999). Cavalca. L.. A. Hartmann.
N. Rouard. and G. Soulas. Diversity of tfdC genes: distribution and
polymorphism among 2.4-dichlorophenoxyacetic acid degrading soil bacteria.
FEMS Microbiol Ecol. 1999. 29: p. 45-58.
Vallaeys. T.. R.R. Fulthorpe. A.M. Wright. and G. Soulas. The metabolic
pathway of 2.4-dichlorophenoxyacetic acid degradation involves different
families of tfdA and tfdB genes accoridng to PCR-RFLP analysis. FEMS
Microbiology Ecology. 1996. 20: p. 163-72.
Xia. X.S.. A.R. Smith. and I.J. Bruce. Identification and sequencing
of a novel insertion sequence. IS1471. in Burkholderia cepacia strain
2a. FEMS Microbiol Lett. 1996. 144(2-3): p. 203-6. Xia. X.S.. S. Aathithan.
K. Oswiecimska. A.R. Smith. and I.J. Bruce. A novel plasmid pIJB1
possessing a putative 2.4-dichlorophenoxyacetate degradative transposon
Tn5530 in Burkholderia cepacia strain 2a. Plasmid. 1998. 39(2): p.
154-9. Vallaeys. T.. L. Courde. C. McGowan. A.D. Wright. and F. R.R..
Phylogenetic analysis indicate independent recruitment of diverse
gene cassettes during assemblage of the 2.4-D catabolic pathway. FEMS
Microbiology Ecology. 1999. 28: p. 373-82.
Others
tfdB:X077754 tfdC:M35097
gene