<Original Papers>
  1. Furuki T, Shimizu T, Kikawada T, et. al., Salt effects on the structural and thermodynamic properties of a group 3 LEA protein model peptide. Biochemistry, 2011. 50, :p.7093−7103
  2. Cornette R and Kikawada T, The Induction of Anhydrobiosis in the Sleeping Chironomid: Current Status of Our Knowledge. IUBMB Life, 2011. 63(6): p.419–429.
  3. Gusev O, Nakahara Y, Vanyagina V,, Anhydrobiosis-associated nuclear DNA damage and repair in the sleeping chironomid: Linkage with radioresistance. PLoS ONE, 2010, 5(11):e14008.
  4. Cornette R, Kanamori Y, Watanabe M, et. al., Identification of anhydrobiosis-related genes from an expressed sequence tag database in the cryptobiotic midge Polypedilum vanderplanki (diptera; chironomidae). J. Biol. Chem., 2010. 2085 (46) :p.35889-35899
  5. Gusev O, Cornette R, Kikawada T, Okuda T., Expression of heat shock protein-coding genes associated with anhydrobiosis in an African chironomid Polypedilum vanderplanki. Cell Stress Chaperones. 2010.
  6. Mitsumasu K, Kanamori Y, Fujita M et. al., Enzymatic control of anhydrobiosis-related accumulation of trehalose in the sleeping chironomid, Polypedilum vanderplanki. FEBS Journal, 2010. 277(20) :p.4215–4228
  7. Shimizu T, Kanamori Y, Furuki T, et. al., Desiccation-induced structuralization and glass formation of Group 3 late embryogenesis abundant protein model peptides. Biochemistry, 2010, 49(6):p. 1093–110.
  8. Kanamori Y, Saito A, Hagiwara-Komoda Y,, The Trehalose transporter 1 gene sequence is conserved in insects and encodes proteins with different kinetic properties involved in trehalose import into peripheral tissues. Insect Biochem. Mol. Biol., 2010. 40(1):p. 30-37.
  9. Nakahara Y, Imanishi S, Mitsumasu K,, Cells from an anhydrobiotic chironomid survive almost complete desiccation., Cryobiology, 2010. 60(2):p. 138-146.
  10. Nakahara, Y., M. Watanabe, A, Fujita, et. al., Effects of dehydration rate on physiological responses and survival after rehydration in larvae of the anhydrobiotic chironomid. J. Insect Phys., 2008. 54(8): p. 1220-1225.
  11. Sakurai,M., T. Furuki, K. Akao, et. al., Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplanki. Proc. Natl. Acad. Sci. U. S. A., 2008. 105(13): p. 5093-5098.
  12. Kikawada, T., A. Saito, Y. Kanamori, et al., Dehydration-inducible changes in expression of two aquaporins in the sleeping chironomid, Polypedilum vanderplanki. Biochimica et Biophysica Acta (BBA) Biomembranes, 2008. 1778(2): p.5514-5520.
  13. Kikawada, T., A. Saito, Y. Kanamori, et al., Trehalose transporter 1, a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells. Proc. Natl. Acad. Sci. U. S. A., 2007. 104(28): p. 11585-11590.
  14. Watanabe, M., Y. Nakahara, T. Sakashita, et al., Physiological changes leading to anhydrobiosis improve radiation tolerance in Polypedilum vanderplanki larvae. J. Insect Physiol., 2007. 53(6): p. 573-579.
  15. Horikawa, D.D., T. Sakashita, C. Katagiri, et al., Radiation tolerance in the tardigrade Milnesium tardigradum. Int. J. Radiat. Biol 2006. 82(12): p. 835-842.
  16. Watanabe, M., T. Sakashita, A. Fujita, et al., Estimation of radiation tolerance to high LET heavy ions in an anhydrobiotic insect, Polypedilum vanderplanki. Int. J. Radiat. Biol., 2006. 82(12): p. 835-842.
  17. Watanabe, M., T. Sakashita, A. Fujita, et al., Biological effects of anhydrobiosis in an African chironomid, Polypedilum vanderplanki on radiation tolerance. Int. J. Radiat. Biol., 2006. 82(8): p. 587-592.
  18. Kikawada, T., Y. Nakahara, Y. Kanamori, et al., Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid. Biochem. Biophys. Res. Commun., 2006. 348(1): p. 56-61.
  19. Watanabe, M., T. Kikawada, A. Fujita, et al., Induction of anhydrobiosis in fat body tissue from an insect. J. Insect Physiol., 2005. 51: p. 727-731.
  20. Kikawada, T., N. Minakawa, M. Watanabe, et al., Factors inducing successful anhydrobiosis in the African chironomid Polypedilum vanderplanki: significance of the larval tubular nest. Integr. Comp. Biol., 2005. 45(5): p. 710-714.
  21. Watanabe, M., T. Kikawada, A. Fujita, et al., Physiological traits of invertebrates entering cryptobiosis in a post-embryonic stage. Eur. J. Ent., 2004. 101: p. 439-444.
  22. Watanabe, M., T. Kikawada, and T. Okuda, Increase of internal ion concentration triggers trehalose synthesis associated with cryptobiosis in larvae of Polypedilum vanderplanki. J. Exp. Biol., 2003. 206(Pt 13): p. 2281-2286.
  23. Watanabe, M., T. Kikawada, N. Minagawa, et al., Mechanism allowing an insect to survive complete dehydration and extreme temperatures. J. Exp. Biol., 2002. 205(Pt 18): p. 2799-2802.
<Reviews & Other Publications>
  1. 畑中 理恵, 古木隆生, 櫻井実, 黄川田隆洋, ネムリユスリカ由来の細胞保護タンパク質の機能と低分子ペプチドによる代替. バイオインダストリー, 2011. 28(5):p.43-48.
  2. コルネット・リシャー, ネムリユスリカ(Polypedilum vanderplanki)の極限乾燥耐性(アンヒドロビオシス)に関連した遺伝子の探索. 極限環境生物学会誌, 2010. 9(2):p.90-97.
  3. 古木隆生, 奥田隆, 黄川田隆洋, 櫻井実, 雨で蘇る乾燥昆虫の謎−ガラス化したトレハロースが水代替作用−. 熱測定, 2009. 36(2):p.105-111.
  4. 黄川田隆洋, ネムリユスリカの乾燥耐性−アンヒドロビオシス−の分子機構. 比較内分泌学, 2009. 35(133):p.98-106.
  5. 古木隆生, 奥田隆, 黄川田隆洋, 櫻井実, トレハロースが鍵を握る昆虫の極限乾燥耐性. 生物物理, 2009. 49(3):p.130-131.
  6. 中原雄一, ネムリユスリカの放射線耐性と乾燥耐性, in 耐性の昆虫学 . 2008, 東海大学出版会. p.302-312 .
  7. 黄川田隆洋, ネムリユスリカの乾眠誘導の分子メカニズム, in 耐性の昆虫学 . 2008, 東海大学出版会. p.147-160 .
  8. 黄川田隆洋, トレハロースを細胞の内外に輸送する遺伝子 -トレハローストランスポーターの発見と応用の可能性について-. ブレインテクノニュース 2008. 127: p.1-6.
  9. 黄川田隆洋、奥田隆, ネムリユスリカ -驚異的な乾燥耐性とその分子メカニズムー. 遺伝 2007 61(2): p. 82-86.
  10. Nakahara, Y., M. Watanabe, T. Kikawada, et al., Radiation tolerance linked to anhydrobiosis in Polypedilum vanderplanki. JAEA Review 2007. 60: p.113.
  11. Horikawa, D.D., T. Sakashita, C. Katagiri, et al., Effects of heavy ions and gamma-rays on the tardigrade Milnesium tardigradum. JAEA Review 2007. 42: p. 116.
  12. Watanabe, M., Anhydrobiosis in invetebrates. Appl. Ent. Zool., 2006. 41(1): p. 15-31.
  13. 奥田隆, ネムリユスリカの極限的な乾燥耐性とトレハロース. 熱測定, 2006. 33(1): p.20-26.
  14. 渡邊匡彦, 古木隆生, 櫻井実, et al., ネムリユスリカの幼虫におけるクリプトビオシスの物理化学的性質:トレハロースのガラス化の重要性. 低温生物工学会誌, 2005. 51(2): p. 131-135.
  15. 奥田隆, 渡邊匡彦, and 黄川田隆洋, ネムリユスリカの極限的な乾燥耐性のメカニズム解析とその利用, in 昆虫テクノロジー研究とその産業利用. 2005, シーエムシー出版. p. 166-175.
  16. Watanabe, M., T. Kikawada, Y. Nakahara, et al., Relationships between RBE and LET in larvae of an anhydrobiotic insect, Polypedilum vanderplanki, in JAEA-Review. 2005. p. 124-126.
  17. 渡邊匡彦, 究極の乾燥耐性, in 休眠の昆虫学 . 2004, 東海大学出版会. p. 187-197.
  18. 櫻井実, 赤尾賢一, 古木隆生, et al., ネムリユスリカの乾燥耐性メカニズムに関する物理化学的研究. 低温生物工学会誌, 2004. 50(2): p. 77-80.
  19. 奥田隆, 渡邊匡彦, 黄川田隆洋, クリプトビオシス:驚異的な乾燥耐性を持つ生き物たち. 生物物理, 2004. 44(4): p. 172-175.
  20. Watanabe, M., T. Okuda, A. Fujita, et al., Effect of high-energy ion irradiation on larval development and metamorphosis in larvae of a cryptobiotic chironomid, Polypedilum vanderplanki and non-cryptobiotic chironomid, P. nubifer and Chironomus yoshimatsui. JAERI-Review, 2004: p. 103-105.
  21. Okuda, T., M. Watanabe, T. Kikawada, et al., Cryptobiosis in the African chironomid: physiological mechanism to survive complete dehydration. Proc. Arthropod. Embryol. Sci. Jpn., 2004. 39: p. 1-7.