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ABSTRACT 
 

The amount of experimental and simulated data produced by scientists 

working on climate change impact assessment has grown exponentially 

during the last two decades. The growth of the literature on climate change 

was faster than the growth in other areas of research. Scientists are now 

facing a ‘data synthesis challenge’ making increasingly difficult the conduct 

of rigorous and comprehensive assessments. Quantitative research synthesis 

methods are needed to maintain a high level of credibility in the scientific 

assessments of climate change impacts and in the evaluation of mitigation 

strategies in agriculture. Here, I show that simple and efficient statistical 

tools could help climate and crop scientists to synthetize large sets of studies 

in order to provide the decision makers with reliable conclusions. More 

specifically, I demonstrate that Bayesian hierarchical statistical models 

constitute powerful tools for analyzing ensembles of experimental data. 

Through several examples, I illustrate how this type of statistical models can 

be fitted to large sets of studies for estimating the global effects of climate 

change on crop productions accounting for the relative accuracy of each 

individual study. Once fitted to data, these models can be easily run to 

explore a diversity of scenarios and analyze uncertainties in projections of 

crop responses to climate change. They can also be implemented to derive 

more plausible estimations of climate change impacts by constraining 

ensembles of process-based crop model outputs using experimental data. I 

advocate for the inclusion of this type of statistical model in the tool boxes of 

scientists working on climate change impact assessment. More rigorous 

quantitative syntheses could help scientists to promote evidence-based 

decision making. 
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INTRODUCTION 
 

The number of papers published on climate change is increasing 

exponentially. In this area of science, the annual growth rate of the number 

of published papers is about equal to 16%, i.e., much larger than the rate of 

4% measured over all scientific domains (Minx et al. 2017). Scientists and 

decision makers are now facing a « data synthesis challenge »; as more and 

more data become available, how to conduct rigorous and comprehensive 

assessments on climate change?  

This challenge is made difficult by the explosion of the number of papers 

published on climate change. At the time of the first assessment report (AR) 

cycle of the Intergovernmental Panel on Climate Change (IPCC) 

(1986-1990), 1697 studies on climate change were referenced in ISI Web of 

knowledge while 108277 were available at the time of the fifth AR cycle 

(2008-2013) (Minx et al., 2017). Only a fraction of these published studies 

was cited in the reports of IPCC. Although 63% of the published literature 

was cited in the first report (AR1) of IPCC, only 23% of the available studies 

was cited in the 5th assessment report (Minx et al., 2017). This result reveals 

that scientists are now overwhelmed by the number of publications and have 

difficulties to conduct rigorous and comprehensive literature synthesis.  

Reliable methods are required to help scientists delivering high quality 

syntheses to decision makers. Meta-analysis is one of most powerful method 

for quantitative synthesis. Meta-analysis consists in analyzing a large 

collection of results from individual studies for the purpose of integrating the 

findings (Albert and Makowski, 2018; Borenstein et al., 2009; Makowski et 

al., 2018). It includes a systematic review of existing studies and a statistical 

analysis of the data extracted from these studies. The first step of a 

meta-analysis is to conduct a systematic review and to select relevant studies. 

The systematic review produces a set of studies dealing with a specific topic. 

Here, I will consider a specific problem related to climate change impact on 

crop yield, i.e., the estimation of the percentage of yield loss resulting from 

an increase of the temperature during the growing season. In this specific 

case, each study corresponds to one paper reporting the results of a specific 

experiment conducted to measure the effect of a temperature increase on 

crop yield. At the second step, the extracted data are used to compute the 

effect size for each individual study separately (here, the yield loss or yield 

grain resulting from +1°C), and the result is a set of individual effect sizes 

covering the set of selected studies. The third step is to estimate the mean 

effect size, i.e., the weigthed average of all individual effect sizes. The mean 
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effect size (MES) summarized the results across all studies. A confidence 

interval is computed to show the level of uncertainty in the estimated MES. 

The MES is a single number summarizing the whole dataset, but the 

individual effect sizes may vary a lot between studies and take values well 

below or above the MES depending on the study characteristics. In such case, 

it is sometimes possible to explain part of the between-study variability of 

the individual effect sizes using one or several covariates.   

In this paper, I show how simple hierarchical Bayesian statistical models 

can help scientists to estimate the effect of temperature increase on crop 

yield from large sets of field warming experiments. I advocate for the 

inclusion of this type of statistical model in the tool boxes of scientists 

working on climate change impact assessment. 
 

DATA 
 

In order to illustrate the flexibility of the proposed approach, I consider here 

two datasets successively, one on rice and one on wheat. 

The rice dataset includes 83 values of yield sensitivity calculated from 

the results of field warming experiments located in different sites in several 

countries (Zhao et al. 2016a). Data were extracted from each published study 

in turn. On each site, yield data were collected during several years. For each 

site-year, yield was measured in a field control (under ambient temperature) 

and in an adjoined field with an increased temperature ΔT. For each site-year, 

the two yield observations were used to compute the following relative yield 

difference 
 

Δ𝑌 =
𝑌𝑖𝑒𝑙𝑑 𝑤𝑖𝑡ℎ 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 𝑌𝑖𝑒𝑙𝑑 𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑌𝑖𝑒𝑙𝑑 𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 

 

and, then, the yield sensitivity equal to 𝑆 = 100 ∗ Δ𝑌/ΔT . The yield 

sensitivity S measures the yield change in % resulting from +1°C.  

The wheat dataset (Zhao et al., 2016b) includes the same type of data for 

wheat. Yield data were collected in field warming experiments located in 14 

sites in China. Several years of data are available in each site, and a yield 

sensitivity was calculated for each site-year as explained above. The total 

number of sensitivity values available for wheat is equal to 45.   
 

STATISTICAL MODEL 
 

The model is a Bayesian version of a random-effect model including two 

levels, namely the within-study level and the between-study level. The 

within-study level describes the within-study variability of the data and is 

defined by: 
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𝑆𝑖𝑗 = 𝜇 + 𝑏𝑖 + 𝜀𝑖𝑗      (1) 

 

where 𝑆𝑖𝑗 is the yield sensitivity in the ith study (site) and the jth year, 𝜇 is 

the mean sensitivity value over all studies, 𝑏𝑖~𝑁(0, 𝜎𝑏
2) is a random study 

effect,  𝜀𝑖𝑗~𝑁(0, 𝜎𝜀𝑖
2 )  is a random term describing the within-study 

variability (i.e., here, the between year variability). The two variances 𝜎𝑏
2 

and 𝜎𝜀𝑖
2  correspond to the between-study variance and to the within-study 

variance, respectively. Here, the within-study variance is indexed by i 

because this variance is assumed variable across studies, depending on the 

level of variability of 𝑆𝑖𝑗 between years within a given study (the higher the 

between-year variability in study i, the higher the value of 𝜎𝜀𝑖
2 ). Each study 

is thus characterized by a specific value of 𝜎𝜀𝑖
2 . 

This model includes three types of parameters, namely 𝜇, 𝜎𝑏
2, and 𝜎𝜀𝑖

2 , 

i=1, …, N. As these parameters are estimated here using a Bayesian method, 

it is necessary to define prior distributions for all the unknown parameters of 

the model. Here, non-informative priors are defined, specifically 

𝜇~𝑁(0, 106), 𝜎𝑏
2, 𝜎𝜀𝑖

2 ~𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎 (
𝑘

2
,

𝑘

2
). Several values were tested for k 

in order to analyze the sensitivity of the results to the prior, i.e., k=1, 0.2, 

0.02, and 0.002.  

The model described above can be expanded in order to explain part of 

the between-study variability using one or several covariates. This approach 

is illustrated here for the wheat dataset where the average temperature 

measured during the growing season is used to explain part of the variability 

of the wheat yield sensitivity to temperature increase. The model is expanded 

as follows: 
 

𝑆𝑖𝑗 = 𝜇0 + 𝜇1𝑋𝑖𝑗 + 𝑏𝑖 + 𝜀𝑖𝑗      (2) 

 

where 𝑋𝑖𝑗 is the average temperature in the site i for year j, and 𝜇1 is an 

additional parameter to be estimated from the data.  

 In some meta-analyses, the model (1) is simplified and the random term 

𝑏𝑖 is omitted. This simplified version of the model is often named “fixed 

effect model”. This model assumes that all studies share the same effect size 

and that the heterogeneity among studies is negligible. This assumption is 

often unrealistic and the use of a fixed-model in case of strong 

between-study variability can lead to underestimation of the level of 

uncertainty of the estimated values. Here, I illustrate the consequence of the 

inappropriate use of a fixed-model by comparing the results obtained with 

this model to those obtained with the random-effect model (1).  

 All models are fitted using a Markov chain Monte Carlo algorithm 
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implemented using the R package MCMCglmm (Hadfield, 2010). The 

posterior distributions are computed with 100,000 or 1,000,000 iterations and 

a burnin period of size 10,000. An example of chain and of posterior 

distribution is shown in Fig. 1. 
 

          

Fig. 1. Chain of values of 𝜇 obtained with MCMC (left) and corresponding 

posterior distribution (right). 

 

RESULTS 
 

The results obtained with the random-effect model (1) for rice (dataset 1) are 

summarized in Fig. 2 and Table 1. The mean effect-size ranges from -4.87% 

to -5.09% depending on the prior chosen for the variance parameters of the 

model. The influence of the prior on the results is thus relatively weak. The 

individual effect sizes estimated site-by-site show contrasted values; some 

are smaller than 9% or even 10% while others are not different from zero. 

However, the results reveal that the effect size is never positive; no positive 

effect of +1°C on yield is estimated for the sites included in the dataset.  

For wheat in China (dataset 2), the estimated effects of an increase of 

+1°C on yield are quite different (Fig. 3) compared to rice (Fig. 2). The MES 

is not significantly different from zero for wheat and this result reveals that, 

in average over the experimental sites, an increase of +1°C has no substantial 
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effect on wheat yield. However, the effect of +1°C on wheat yield strongly 

varies across sites. Some sites show a positive effect while the effect on yield 

is negative in other sites. The range of yield sensitivity values is very large, 

from +10% to -10%, depending on the sites.  

A model including a covariate was fitted to the wheat data in order to 

explain part of the strong variability of wheat yield sensitivity. The selected 

covariate is the mean temperature recorded during the growing season. This 

covariate is reported in the x-axis of Fig. 4. The y-axis of this figure shows 

yield sensitivities site-by-site. The fitted model reveals a decreasing trend; 

the yield sensitivity values tend to be positive in cold areas (on the left) and 

to be negative in warm areas (on the right). But the uncertainty remains high 

and a substantial part of the variability is not explained by this covariate.  

Finally, Fig. 2 and Fig. 3 show that, although the MES estimated by the 

fixed-effect model are similar to those obtained with the random-effect 

model, the level of uncertainty is strongly underestimated by the fixed-effect 

model; the use of a fixed-effect model gives an over-optimistic view of the 

level of accuracy of the estimated values.  

 
Table 1. Mean effect size (MES=mean yield sensitivity to +1°C) estimated with 

model (1) for different parameter values (k) of the prior distribution 

(Inverse Gamma), and lower and upper bounds of the associated 

95% credibility intervals of MES 

 

k MES Q2.5 Q97.5 

1 -4.57 -8.44 -0.29 

0.2 -5.02 -9.02 -0.66 

0.02 -5.10 -9.26 -0.88 

0.002 -5.09 -9.87 -0.64 
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Fig. 2. Meta-analysis of field warming experiments: Rice yield sensitivity to 

+1°C (ambient [CO2]). The black points correspond to the yield 

sensitivity estimated for each site. The red point corresponds to the 

mean effect size estimated with the random-effect model (RE) and the 

orange point corresponds to the mean effect size estimated with the 

fixed-effect model (FE). The bars correspond to the 95% credibility 

intervals. Results were obtained with k=1 (see text).  
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Fig. 3. Meta-analysis of field warming experiments: Wheat yield sensitivity to 

+1°C (ambient [CO2]) in China. The black points correspond to the yield 

sensitivity estimated for each site. The red point corresponds to the 

mean effect size estimated with the random-effect model (RE) and the 

orange point corresponds to the mean effect size estimated with the 

fixed-effect model (FE). The bars correspond to the 95% credibility 

intervals. Results were obtained with k=1 (see text). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Meta-regression: Wheat yield sensitivity vs. Mean temperature. 
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CONCLUSION 
 

Bayesian hierarchical statistical models are powerful tools for analyzing the 

effect of climate change on crop yields from large sets of experimental 

studies. Here, I showed how this type of statistical models can be used to 

estimate the global effects of climate change on crop productions accounting 

for the relative accuracy of each individual study. Once fitted to data, these 

models can be easily run to explore a diversity of scenarios and analyze 

uncertainties in projections of crop responses to climate change. I advocate 

for the inclusion of this type of statistical model in the tool boxes of 

scientists working on climate change impact assessment. More rigorous 

quantitative syntheses could help scientists to promote evidence-based 

decision making. 
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