伸長開始期の当分の間及び暗期を除き、伸長したものは太いものが多く、その時期には数穂の根が大部分であった。

(2) 畑植の伸長について: 畑植は3月上旬に伸長し同月下旬に移り、4月上旬に開始する。畑植では3月上旬に伸長し、下旬に伸長を始め直ちに成長する。1番植は昭和27年には5月上旬、2番植は5月上旬を経て7月上旬に停止し、28年には4月中旬の月をなして6月上旬に停止している。この差異は前述の掴の状態に著しくある。2番植は5月中旬および5月上旬より伸長し、7月上旬および5月までに伸長している。更に28年には3番植が8月中旬より伸長し、9月上旬まで伸長しているが、この間に1番穂は乾燥現象を現わした。

(3) 抱きの増大: 28年のみの調査であるが、これにより1番穂の伸長盛期(5月上旬)から肥大が始まり、10月中旬に経っている。抱きが全体を5月中旬、6月上旬及び8月上～下旬の3つの段階があるように見えるが、前2者を同様と見てい2つである。

(4) 果実の発育: 28年の栽培では緑化、横化ともに2つの肥大の山があり、第1の山は何れも1番穂の開花を停止した時期から直後に現れ、第2のものは最終的な7月下旬を山としており、この後藤植生長は次第に衰えているが、横植では再び収穫期まで肥大を続けている。

(5) 生長の相互関係について: 地上部の諸器官の中、1番穂の伸長と果実の発育及び幹周の肥大との間には明かなる交差性が見られ、幹周の増加と果実の肥大との関係においては、第1の山では対応性が見られ、第2のものでは相対性を示される。根においては、上部及び下部のそれぞれでは相対性を示される。また根の伸長と幹周増加の各2つの段階の間には対応性が見られる、従って前述の果実の肥大と幹周増加との間の関係が根と根も成立するものである。新根と根との関係は対応的であり、1、2番植と第1回の根の伸長及び3番植と第2回の新根伸長の山とが夫々この関係にある。

本文献

(1) 柄田秀夫他: 半世紀間における施設栽培果樹の活動に及ぼす影響、園芸及果樹芸 (1937) 14 巻、6 号
(2) 垣高嘉治: 半年林の栽培の発育相、園芸学会雑誌、18巻、1、2号 (1949)
(3) 高柳春助: 温州蜜柑の根の生長、園芸の研究28号 (1931)
(4) 小坂亮: 果樹果芸雑誌、環境、結実、栄養、1952～1954 (1954) 維和室

栄橘根系に関する研究（第2報）
温州蜜柑苗萌の根の発育について

中村寛吉・植藤一男
熊本県農試研究場

Nakamura, T. & Inaba, K. Studies on the Root System of Citrus. II. On the Root Development of Young Satsuma Orange Trees

根橘の発育、ネットボルトランドの根系については
第1報に報告したので、各種の根の発育を計測、栽培管理の資料を得る目的で昭和25年～28年に根植によって調査した成績を報告する。

この調査にあたっては田畑長の御指導と援助をいただいたため、25年の調査には川崎伸明氏の協力を得た。共に深謝申し上げる。

材料及び方法
昭和25年6月、内面縦56cm、横67cm、高さ67cmのガラス管を有する Root box 6箱に安山岩礫（未耕土）と砂を3：1の比で混合し、1箱当たり使用土量約70g、中に堆

栄橘根系に関する研究（第2報）
温州蜜柑苗萌の根の発育について

中村寛吉・植藤一男
熊本県農試研究場

Nakamura, T. & Inaba, K. Studies on the Root System of Citrus. II. On the Root Development of Young Satsuma Orange Trees

根橘の発育、ネットボルトランドの根系については
第1報に報告したので、各種の根の発育を計測、栽培管理の資料を得る目的で昭和25年～28年に根植によって調査した成績を報告する。

この調査にあたっては田畑長の御指導と援助をいただいたため、25年の調査には川崎伸明氏の協力を得た。共に深謝申し上げる。

材料及び方法
昭和25年6月、内面縦56cm、横67cm、高さ67cmのガラス管を有する Root box 6箱に安山岩礫（未耕土）と砂を3：1の比で混合し、1箱当たり使用土量約70g、中に堆
肥1貫を施用した。
栽培法は滋賀県普通農地1年生麦稲麦を、1尺2寸（10 cm）に植えて6月27日に栽培を行った。
肥料は年間1回当たりN 30, P 8, K 15 を使用し、鉄鉱酸石灰灰、石灰加熱にて行い、寒季に年間施用の40％、寒季に30％、暖季に30%を施用し、剪定は行わずにその他の管理は一般棚田基準にて行い、乾燥の程度充分に灌漑を行った。

調査方法は第1年度（昭和26年）はガラス面に生じた

<table>
<thead>
<tr>
<th>月</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>6, 2</td>
<td>1.7 (3)</td>
<td>1.9 (5)</td>
<td>8.6 (8)</td>
<td>0.2 (1)</td>
<td>0.9 (1)</td>
<td></td>
</tr>
<tr>
<td>7, 2</td>
<td>211.5 (23)</td>
<td>52.5 (9)</td>
<td>174.5 (25)</td>
<td>227.0 (27)</td>
<td>71.5 (13)</td>
<td>51.5 (9)</td>
</tr>
<tr>
<td>2, 6</td>
<td>34.5 (9)</td>
<td>113.3 (27)</td>
<td>21.5 (8)</td>
<td>93.5 (16)</td>
<td>63.0 (9)</td>
<td>1.5 (1)</td>
</tr>
<tr>
<td>8, 10</td>
<td>53.0 (20)</td>
<td>36.8 (8)</td>
<td>76.5 (13)</td>
<td>179.0 (17)</td>
<td>13.0 (2)</td>
<td>11.0 (3)</td>
</tr>
<tr>
<td>2, 0</td>
<td>120.0 (10)</td>
<td>133.0 (16)</td>
<td>7.0 (1)</td>
<td>85.5 (8)</td>
<td>61.5 (8)</td>
<td>27.0 (5)</td>
</tr>
<tr>
<td>3, 0</td>
<td>4.1 (4)</td>
<td>26.4 (13)</td>
<td>6.6 (1)</td>
<td>47.7 (21)</td>
<td>0.3 (1)</td>
<td>48.6 (28)</td>
</tr>
<tr>
<td>9, 10</td>
<td>35.5 (8)</td>
<td>33.5 (3)</td>
<td>10.5 (3)</td>
<td>50.4 (13)</td>
<td>21.8 (6)</td>
<td>24.4 (8)</td>
</tr>
<tr>
<td>2, 5</td>
<td>3.0 (1)</td>
<td>2.5 (1)</td>
<td>1.0 (1)</td>
<td>2.0 (3)</td>
<td>2.5 (1)</td>
<td></td>
</tr>
<tr>
<td>10, 2</td>
<td>0.5 (1)</td>
<td>1.0 (1)</td>
<td>0.5 (1)</td>
<td>5.5 (5)</td>
<td>3.3 (3)</td>
<td></td>
</tr>
<tr>
<td>11, 4</td>
<td>4.5 (1)</td>
<td>25.0 (4)</td>
<td>5.5 (5)</td>
<td>1.2 (1)</td>
<td>0.3 (1)</td>
<td></td>
</tr>
<tr>
<td>2, 6</td>
<td>2.1 (4)</td>
<td>3.1 (15)</td>
<td>2.1 (4)</td>
<td>3.2 (3)</td>
<td>3.3 (3)</td>
<td></td>
</tr>
<tr>
<td>12, 1</td>
<td>5.0 (1)</td>
<td>0.9 (1)</td>
<td>1.2 (1)</td>
<td>0.3 (1)</td>
<td>0.3 (1)</td>
<td></td>
</tr>
</tbody>
</table>

N 2 月

<table>
<thead>
<tr>
<th>月</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>5, 4</td>
<td>0.7 (1)</td>
<td>5.5 (8)</td>
<td>4.3 (1)</td>
<td>1.0 (1)</td>
<td>1.6 (3)</td>
<td></td>
</tr>
<tr>
<td>6, 2</td>
<td>223.0 (14)</td>
<td>76.5 (10)</td>
<td>117.5 (14)</td>
<td>39.5 (5)</td>
<td>19.0 (9)</td>
<td>119.0 (25)</td>
</tr>
<tr>
<td>7, 2</td>
<td>39.6 (14)</td>
<td>42.0 (9)</td>
<td>54.5 (9)</td>
<td>7.5 (2)</td>
<td>71.5 (8)</td>
<td>10.0 (1)</td>
</tr>
<tr>
<td>8, 1</td>
<td>67.1 (20)</td>
<td>46.5 (9)</td>
<td>88.5 (10)</td>
<td>63.5 (9)</td>
<td>8.0 (3)</td>
<td>18.5 (9)</td>
</tr>
<tr>
<td>2, 0</td>
<td>229.8 (12)</td>
<td>160.0 (13)</td>
<td>32.0 (2)</td>
<td>38.0 (9)</td>
<td>10.0 (2)</td>
<td>39.5 (4)</td>
</tr>
<tr>
<td>3, 0</td>
<td>41.1 (20)</td>
<td>103.1 (33)</td>
<td>7.0 (6)</td>
<td>98.0 (33)</td>
<td>3.9 (3)</td>
<td></td>
</tr>
<tr>
<td>9, 1</td>
<td>58.3 (8)</td>
<td>91.0 (11)</td>
<td>4.0 (2)</td>
<td>65.0 (13)</td>
<td>6.8 (6)</td>
<td>22.4 (14)</td>
</tr>
<tr>
<td>2, 5</td>
<td>1.5 (1)</td>
<td>5.5 (2)</td>
<td>6.5 (1)</td>
<td>16.0 (1)</td>
<td>9.5 (1)</td>
<td></td>
</tr>
<tr>
<td>10, 2</td>
<td>2.5 (1)</td>
<td>4.0 (1)</td>
<td>1.5 (1)</td>
<td>8.0 (4)</td>
<td>1.5 (2)</td>
<td></td>
</tr>
<tr>
<td>11, 4</td>
<td>4.0 (1)</td>
<td>17.5 (3)</td>
<td>11.8 (6)</td>
<td>13.0 (5)</td>
<td>11.0 (6)</td>
<td>1.5 (2)</td>
</tr>
<tr>
<td>2, 6</td>
<td>1.7 (8)</td>
<td>2.1 (4)</td>
<td>0.5 (1)</td>
<td>4.2 (3)</td>
<td>0.8 (1)</td>
<td></td>
</tr>
<tr>
<td>12, 1</td>
<td>0.4 (1)</td>
<td>0.2 (1)</td>
<td>1.9 (1)</td>
<td>2.7 (1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

その後7月に雨が豊富な時雨を行い、7月中旬で稍

9月下旬でそれぞれの完全長さを測定した。寒季の降雨は7月上旬に9㎜、7月下旬に10mmが降水し、7月中旬に7月上旬に9mm、7月下旬に10mmが降水した。また第2年度の7月上旬に9mm、7月下旬に10mmが降水した。
中村・稲葉：柑橘根系に関する研究（第2報）

第1及び第2の伸長相を示す6月～9月下旬が最も多い。

地上部の生長においては、4月2日に春梢の発芽を
初め生長停止は5月上旬であり、夏梢は5月上旬より
生長を初め8月下旬に停止する。秋梢は9月上旬より
初め10月下旬にて停止する。

地上部地下部の生長相は約2ヶ月間地上部が早く生
長を初め、地上部の生長が中止した6月上旬に地下部
の生長が始まる。以後両者共に交互的3つの生長相
を作る。

主枝の肥大は夏梢の生長の終了後が最も急激な肥
大をするようである。

第2年（昭和27年）

新根の伸長始めは、第1年と同様5月下旬に行われ
6月中旬が第1回の伸長相の山と思われ、7月上旬にて
少なくなつた。即ち前年に比して約1週間～10日間早
く伸長が観察された。第2の伸長相は第1回と同様に
より伸長を始め、大体9月下旬盛であり、伸長中止期
は前年同様と認められた。前年と比較し第1回の伸長
期の1週間～10日間早く伸長が観察された事及び第2回
の伸長始めが前年と10日間早かった事等本年は結
果させたごとの点明らかでない。

第2表 新根伸長量及本数

<table>
<thead>
<tr>
<th>月</th>
<th>日</th>
<th>(cm)</th>
<th>(本)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>2 3</td>
<td>74.8 (21)</td>
<td>49.4 (16)</td>
<td>4.8 (3)</td>
<td>21.9 (11)</td>
<td>21.3 (10)</td>
<td>12.8 (12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>1</td>
<td>113.0 (16)</td>
<td>14.0 (5)</td>
<td>9.0 (4)</td>
<td>49.5 (8)</td>
<td>18.0 (8)</td>
<td>26.0 (13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>4</td>
<td>106.0 (15)</td>
<td>12.5 (6)</td>
<td>15.5 (5)</td>
<td>18.0 (5)</td>
<td>25.0 (11)</td>
<td>9.0 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>13</td>
<td>13.0 (8)</td>
<td>25.0 (11)</td>
<td>5.0 (2)</td>
<td>9.0 (3)</td>
<td>25.0 (11)</td>
<td>9.0 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>19</td>
<td>42.5 (18)</td>
<td>47.5 (17)</td>
<td>13.5 (5)</td>
<td>46.0 (10)</td>
<td>9.5 (2)</td>
<td>46.5 (13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>3</td>
<td>0.3 (1)</td>
<td>0.3 (1)</td>
<td>0.3 (1)</td>
<td>0.3 (1)</td>
<td>0.3 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>18</td>
<td>9.0 (9)</td>
<td>13.0 (2)</td>
<td>4.0 (5)</td>
<td>1.0 (1)</td>
<td>28.0 (16)</td>
<td>15.0 (7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>29</td>
<td>14.0 (13)</td>
<td>29.5 (5)</td>
<td>17.0 (18)</td>
<td>9.0 (10)</td>
<td>5.0 (5)</td>
<td>6.0 (4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第3の伸長の山は10月中旬より12月中旬迄と思われる。
発根数及び1本当たり伸長量においては前年同様であっ
た。地上部と地下部の伸長相においては前年同様共に
交互的伸長を行う。また新根秋梢の全伸長量と年間根
の全伸長量とは密接な関係があり、地上部の生長の多
い1号～4号箱等低根の伸長も共に多い。
第3年目（昭和28年）

第3表 新根伸長量及本数

<table>
<thead>
<tr>
<th>月</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>1.8 (2)</td>
<td>1.8 (7)</td>
<td>1.8 (1)</td>
<td>2.6 (2)</td>
<td>2.0 (2)</td>
</tr>
<tr>
<td>19</td>
<td>2.8</td>
<td>31.5 (24)</td>
<td>31.5 (24)</td>
<td>3.0 (6)</td>
<td>22.6 (15)</td>
<td>12.6 (7)</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>3.2 (2)</td>
<td>105.5 (46)</td>
<td>45.1 (22)</td>
<td>11.3 (11)</td>
<td>15.5 (10)</td>
</tr>
<tr>
<td>30</td>
<td>4.5 (2)</td>
<td>408.4 (22)</td>
<td>15.0 (7)</td>
<td>6.3 (13)</td>
<td>523 (44)</td>
<td>104.0 (34)</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>4.1 (2)</td>
<td>31.2 (25)</td>
<td>4.7 (4)</td>
<td>9.5 (3)</td>
<td>48.0 (14)</td>
</tr>
<tr>
<td>20</td>
<td>4.7 (4)</td>
<td>11.5 (1)</td>
<td>1.0 (1)</td>
<td>34.0 (11)</td>
<td>3.5 (3)</td>
<td>25.0 (7)</td>
</tr>
<tr>
<td>8</td>
<td>22</td>
<td>13.0 (5)</td>
<td>5.2 (4)</td>
<td>34.4 (18)</td>
<td>10.3 (9)</td>
<td>14.0 (8)</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>3.5 (3)</td>
<td>32.5 (21)</td>
<td>17.1 (12)</td>
<td>435 (16)</td>
<td>57.5 (20)</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>1.0 (1)</td>
<td>6.5 (5)</td>
<td>6.0 (3)</td>
<td>5.0 (4)</td>
<td>8.1 (9)</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>6.3 (5)</td>
<td>6.3 (5)</td>
<td>6.3 (5)</td>
<td>6.3 (5)</td>
<td>6.3 (5)</td>
</tr>
</tbody>
</table>

N面

<table>
<thead>
<tr>
<th>月</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>19</td>
<td>16.5 (8)</td>
<td>17.8 (8)</td>
<td>16.5 (8)</td>
<td>17.8 (8)</td>
<td>16.5 (8)</td>
</tr>
<tr>
<td>28</td>
<td>57.7 (37)</td>
<td>57.7 (37)</td>
<td>57.7 (37)</td>
<td>57.7 (37)</td>
<td>57.7 (37)</td>
<td>57.7 (37)</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>4.4 (6)</td>
<td>141.4 (89)</td>
<td>34.5 (18)</td>
<td>6.7 (2)</td>
<td>12.6 (9)</td>
</tr>
<tr>
<td>30</td>
<td>6.2 (7)</td>
<td>37.4 (35)</td>
<td>17.4 (17)</td>
<td>11.1 (8)</td>
<td>7.5 (9)</td>
<td>3.7 (6)</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>15.5 (7)</td>
<td>19.8 (9)</td>
<td>3.3 (4)</td>
<td>50.8 (18)</td>
<td>43.3 (25)</td>
</tr>
<tr>
<td>20</td>
<td>4.0 (2)</td>
<td>35.4 (4)</td>
<td>5.5 (5)</td>
<td>79.8 (28)</td>
<td>40.1 (1)</td>
<td>22.0 (13)</td>
</tr>
<tr>
<td>8</td>
<td>22</td>
<td>16.5 (5)</td>
<td>16.0 (7)</td>
<td>2.0 (1)</td>
<td>44.1 (12)</td>
<td>4.3 (4)</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>7.5 (4)</td>
<td>16.0 (7)</td>
<td>2.0 (1)</td>
<td>44.1 (12)</td>
<td>4.3 (4)</td>
</tr>
<tr>
<td>9</td>
<td>20.5 (10)</td>
<td>35.7 (17)</td>
<td>3.5 (3)</td>
<td>22.6 (19)</td>
<td>17.0 (8)</td>
<td>15.5 (9)</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>1.0 (1)</td>
<td>14.1 (10)</td>
<td>5.5 (2)</td>
<td>12.0 (1)</td>
<td>12.0 (1)</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>2.3 (3)</td>
<td>2.3 (3)</td>
<td>2.3 (3)</td>
<td>2.3 (3)</td>
<td>2.3 (3)</td>
</tr>
</tbody>
</table>

新根伸長始めるは2号箱の外は前年同様5月下旬である。第1の伸長の山は6月下旬より7月下旬であり、前年度の場合と同様な伸長相を示す。第2の伸長の山と言えるのは7月中旬より伸長を始め、9月上旬に稲伸長が鈍る期間と見られ、その後10月上旬より12月上旬の伸長期を第3の伸長期として認め得る。

新根の伸長挙及び発生数においては前年同様の事が認められた。観察ではあるが地上部及び地下部の伸長相においては共に交互的な関係を有する。

要約

以上3ヶ年の結果として、各箱共に多少の差異はある次の事項をあげることが出来る。

1. 九州農地において普通温州幼鶏の新根伸長始めは5月下旬であり、7月上旬の間に第1回の伸長相を作る。
2. 第2回の伸長相は7月中旬より9月上旬である。
3. 第3回の伸長相は10月上旬より12月上旬と思われる。
4. 新根の成長は新根の伸長期（4月上旬）より行われ、以後地上、地下部共3回の伸長相を作ると交互的に行われた。
5. 新根の発生数及び1本当伸長量は、5月下旬より9月間の間のものが多く、10月上旬より12月上旬の間に伸長する根は少ない。
6. 主幹の肥大は特に夏根発生後に急速に行われる様である。
佐賀平野の土壌型について（予報）

吉野 三男・中原 美智男
佐賀県農業試験場

Yoshino, M. & Nakahara, M. On The Soil Types in Saga Plain (Preliminary Report)

はしかき

佐賀平野は、有明海沿岸沖積地の中でも代表的なものといわれ、その広さ2万数千町歩は、生产力に富む水田地帯を形成する。

筆者が昭和22年以降、低予生産地の１般調査及び特殊調査の際、佐賀平野とその周辺山麓地帯について研究し、土壌調査を行ったので、その結果から土壌型の分類を試み、今後調査研究上、参考となることを目指した。読者の御批判を賜れば幸いである。

分類案

ひろがって我国内の水田土壌型についてみれば、鴨下氏（1940～）は津軽平野を始めその他の地域で、Stremmeの所謂水田土壌型の概念を適用し、Gleiの出現、植林の有無等によって（1）褐色低地土（2）灰色低地土（3）低湿地土（4）泥炭土（5）黒湿土等の Type に分けた。

その後、内山氏は朝鮮（旧日本）の水田土壌のとりまとめによって、水田土壌生成の見地から耕作による土壌の還元脱色、耕作による酸化傾ら現象にもとづく分類を行い、まず淡水田、塩減水田、発達不充分な水田等に分け、淡水田で無機質のものを（1）褐色酸化型（2）灰褐色型（3）泥炭型（4）青色還元型、有機質を泥炭、黒湿土等に分け、また塩減水田をも含むに至ってさらに周辺のその他も分類した。

筆者等は佐賀平野及び周辺の水田土壌調査の結果から、以上の（1）(3)の様な分類を基幹とし、特に土壌の分化発達の Index として、主として形態的に鉱粒組合の発達に重点を置いた。即ちその発達傾向よりみて、内部の表層よりの溶脱集団と、鴨下の水田土壌（所謂Glei）との両者の影響とみられる鉱粒組群の発達傾勢によって、第１表の様に分類した。従各層は、地下水、水田状態、硬密、構造、反応、交換容量その他の分類についても細分することが出来た。

第１表 佐賀平野及び周辺地区の土壌型区分

<table>
<thead>
<tr>
<th>1. 河成水田</th>
<th>2. 海成水田</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 強～鉱粒型</td>
<td>(1) 強～鉱粒型</td>
</tr>
<tr>
<td>(2) 弱～鉱粒型</td>
<td>(2) 弱～鉱粒型</td>
</tr>
<tr>
<td>(3) 硫酸～鉱粒型</td>
<td>(3) 硫酸～鉱粒型</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. 発達不充分な水田

(1) 強～鉱粒型	1. 植生型
(2) 弱～鉱粒型	2. 根生型
(3) 硫酸～鉱粒型	3. 海生型

土壌型区分の基礎

佐賀平野等の土壌型区分の基礎となる調査成績は、主として次の通りである。

（1）佐賀平野水田の Glei 型の分布（1947～1950低生産地調査）第1表参照
（2）佐賀平野及び周辺地区水田の土壌型観及及理化学分析調査成績（低生産地～特殊調査）...（原の都合上省略）
（3）佐賀平野等、水田土壌の鉱粒組成成第2表及び第2図の通りである。

注。ここではA1層、B1層、B2層（または上に代る層）の鉱粒組成の比を計って溶脱比とみなした。