有機物の施用が土壌中の腐植及び
その他化学成分に及ぼす影響

小畠 秀雄・新嘉喜寛英・中岡 昭
鹿児島県農業試験場


火山灰（灰砂）を用材とした騒い空気囲気 Spy砂土壌の本場開発において、昭和14年以降有機物の施用及び地力維持に関する試験を実施中であるが、さきに水稲及び大麦の収穫及び小麦の収量に関係報告したので、本報告においては主として有機物の施用が土壌中の化学成分の変化に及ぼす影響について報告したい。

試験方法の概要

無肥料区の外に夏作、冬作とも堆肥反応100 貫、200 貫、300 貫、400 貫、500 貫、600 貫及び施した区を設け、さらに夏作には青豆大豆反応200 貫を施し、冬作に堆肥を反応300 貫、400 貫、500 貫、600 貫及び施した区を設け、対照区として緑肥及び堆肥を施さずしてみずみを施した区を設けた。共通肥料として無肥料区以外は反応硫酸とし、過石灰を基肥に施し、追肥として硫酸を25 貫を施した。なお緑肥区のみは硫磺酸反応2 貫を施し、1区1/4検クリート格10区の試験で、夏作に水稲秋穂18 号、冬作に小麦農林34号を供用した。

試験成績

土壌の分析結果は第1表（其の1及び其の2）に示すとおりである。

第1表の分析結果を要約すれば次のとおりである,

（1）全窒素をみるに、夏作・冬作とも堆肥を施した場合及び夏作に堆肥100 貫を施し、冬作に堆肥を施した場合においても、同様に堆肥の施用量を増やすにしたがって窒素含量を増加する。堆肥1,000 貫区の全窒素量は、無肥料区は勿論のこと標準区に比較しても明らかに高い。

（2）全炭素したがつて腐植含量をみると、窒素と同様に堆肥の施用量を増やすにしたがって次第に炭素含量を増加する。夏作・冬作堆肥30 貫区及び400 貫区の腐植含量は他区に比して明らかに高くなり、堆肥1,000 貫区の腐植含量は標準区に比較して高く43.6%に達した。

（3）窒素含量をみると、石灰は各区の間に一定の傾向を認め難く、苦土及び加里も大差がない。堆肥1,000 貫区の窒素含量は標準区にくらべて明らかに高い。

（4）窒素含量は、堆肥の施用量を増やすにしたがって次第に増加する傾向を示し、特に堆肥1,000 貫区は標準区にくらべて高く、24.63 m.e.を示した。

（5）pH, 置換亜酸は、各区の間に一定の傾向を認め難く、堆肥1,000 貫区のpHは標準区にくらべて高く、24.56 m.e.を示した。

（6）Simon 法により土壌酸化の分野定量を行ったが、HFは夏作・冬作堆肥400 貫区は金肥区に比し、堆肥1,000 貫区は標準区にくらべて高く、PSも夏作・冬作堆肥400 貫区、堆肥1,000 貫区は金肥区及び標準区に比較して高い。

（7）水稲及び小麦の収量成績は省略するが、昭和
第1表 土壌分析成績（共の1）

<table>
<thead>
<tr>
<th>試験区名</th>
<th>風乾土</th>
<th>100分中</th>
<th>C/N</th>
<th>Ca(mol.)</th>
<th>Mg(mol.)</th>
<th>K(mol.)</th>
<th>SiO2(H2O)</th>
<th>pH</th>
<th>化学酸度</th>
</tr>
</thead>
<tbody>
<tr>
<td>無施肥料区</td>
<td>3.34</td>
<td>0.132</td>
<td>0.11</td>
<td>1.91</td>
<td>8.7</td>
<td>5.53</td>
<td>3.02</td>
<td>0.66</td>
<td>11.18</td>
</tr>
<tr>
<td>夏・冬作堆肥1000区</td>
<td>3.03</td>
<td>0.139</td>
<td>1.17</td>
<td>2.02</td>
<td>8.5</td>
<td>4.69</td>
<td>3.01</td>
<td>0.70</td>
<td>11.56</td>
</tr>
<tr>
<td>200区</td>
<td>2.96</td>
<td>0.146</td>
<td>1.22</td>
<td>2.01</td>
<td>8.4</td>
<td>5.14</td>
<td>2.98</td>
<td>0.69</td>
<td>11.61</td>
</tr>
<tr>
<td>300区</td>
<td>3.11</td>
<td>0.175</td>
<td>1.36</td>
<td>2.34</td>
<td>7.9</td>
<td>5.47</td>
<td>3.00</td>
<td>0.72</td>
<td>12.35</td>
</tr>
<tr>
<td>400区</td>
<td>3.12</td>
<td>0.190</td>
<td>1.54</td>
<td>2.66</td>
<td>8.1</td>
<td>5.13</td>
<td>2.96</td>
<td>0.71</td>
<td>12.36</td>
</tr>
<tr>
<td>全作堆肥200区</td>
<td>3.01</td>
<td>0.138</td>
<td>1.26</td>
<td>2.17</td>
<td>9.2</td>
<td>4.69</td>
<td>2.87</td>
<td>0.72</td>
<td>12.40</td>
</tr>
<tr>
<td>400区</td>
<td>3.19</td>
<td>0.161</td>
<td>1.33</td>
<td>2.28</td>
<td>8.3</td>
<td>5.22</td>
<td>2.99</td>
<td>0.69</td>
<td>12.47</td>
</tr>
<tr>
<td>多作堆肥500区</td>
<td>3.24</td>
<td>0.176</td>
<td>1.35</td>
<td>2.33</td>
<td>7.7</td>
<td>4.81</td>
<td>2.97</td>
<td>0.71</td>
<td>12.69</td>
</tr>
<tr>
<td>金肥区</td>
<td>3.16</td>
<td>0.131</td>
<td>1.18</td>
<td>2.03</td>
<td>9.0</td>
<td>5.00</td>
<td>2.87</td>
<td>0.72</td>
<td>12.42</td>
</tr>
<tr>
<td>10.無施肥料区</td>
<td>3.08</td>
<td>0.117</td>
<td>1.12</td>
<td>1.93</td>
<td>9.6</td>
<td>3.19</td>
<td>0.37</td>
<td>0.52</td>
<td>4.59</td>
</tr>
<tr>
<td>11.標準区</td>
<td>4.19</td>
<td>0.222</td>
<td>1.74</td>
<td>2.99</td>
<td>7.8</td>
<td>3.63</td>
<td>0.38</td>
<td>0.63</td>
<td>12.23</td>
</tr>
<tr>
<td>12.堆肥1000区</td>
<td>3.20</td>
<td>0.278</td>
<td>2.54</td>
<td>4.38</td>
<td>9.1</td>
<td>5.95</td>
<td>2.75</td>
<td>1.45</td>
<td>24.63</td>
</tr>
</tbody>
</table>

（共の2）

第2表 土壌分析成績（共の2）

<table>
<thead>
<tr>
<th>試験区名</th>
<th>吸收係数</th>
<th>腐植の形態</th>
<th>土性</th>
</tr>
</thead>
<tbody>
<tr>
<td>無施肥料区</td>
<td>231</td>
<td>563</td>
<td>T P</td>
</tr>
<tr>
<td>5. 夏・冬作堆肥400区</td>
<td>245</td>
<td>554</td>
<td>2.22</td>
</tr>
<tr>
<td>9. 金肥区</td>
<td>222</td>
<td>586</td>
<td>2.28</td>
</tr>
<tr>
<td>10.無施肥料区</td>
<td>201</td>
<td>579</td>
<td>2.42</td>
</tr>
<tr>
<td>11.標準区</td>
<td>263</td>
<td>538</td>
<td>2.33</td>
</tr>
<tr>
<td>12.堆肥1000区</td>
<td>231</td>
<td>588</td>
<td>2.67</td>
</tr>
</tbody>
</table>

備考 1. 試験区1〜9は昭和27年度種苗の収穫跡地4土壌2点の分析成績の平均である。
2. 試験区10〜12は昭和28年度稲作生育中の土壌を昭和29年4月18日に採取したもの
（稲畑調査）

結論及び考察

この試験個所のように堆肥を用材とする砂疎土で排水の速い（水深3cm程度として水持ち約12時間）水田においては、有機物の分解が速かで、土壌中に腐植として残存する量は少ないと推定される。昭和15年から昭和27年まで14年間毎年堆肥を用いた場合、前期に施した堆肥中の炭素及び窒素の総量を通算し、これより生成されたものと推定される堆肥施用区の作土中の炭素及び窒素を算出して、10年間に施した堆肥より生成された腐植の割合を比較計算してみると第2表に示すとおりである。

第2表にみられるように、夏作・冬作堆肥300負
<table>
<thead>
<tr>
<th>試験区域名</th>
<th>開始年間に</th>
<th>同期</th>
<th>堆肥</th>
<th>施用された堆肥 (t)</th>
<th>煤素</th>
<th>煤素</th>
<th>異常</th>
<th>煤素</th>
<th>異常</th>
</tr>
</thead>
<tbody>
<tr>
<td>夏作堆肥</td>
<td>100区</td>
<td>2,800</td>
<td>204</td>
<td>14</td>
<td>-</td>
<td>2,1</td>
<td>-</td>
<td>15,0</td>
<td></td>
</tr>
<tr>
<td>秋作堆肥</td>
<td>200区</td>
<td>5,600</td>
<td>409</td>
<td>23</td>
<td>11</td>
<td>4,0</td>
<td>2,7</td>
<td>14,3</td>
<td></td>
</tr>
<tr>
<td>冬作堆肥</td>
<td>300区</td>
<td>8,400</td>
<td>613</td>
<td>42</td>
<td>48</td>
<td>11,7</td>
<td>7,8</td>
<td>27,9</td>
<td></td>
</tr>
<tr>
<td>春作堆肥</td>
<td>400区</td>
<td>11,200</td>
<td>817</td>
<td>56</td>
<td>96</td>
<td>15,8</td>
<td>11,8</td>
<td>28,2</td>
<td></td>
</tr>
<tr>
<td>秋作堆肥</td>
<td>200区</td>
<td>4,200</td>
<td>307</td>
<td>21</td>
<td>21</td>
<td>1,9</td>
<td>6,8</td>
<td>9,0</td>
<td></td>
</tr>
<tr>
<td>冬作堆肥</td>
<td>300区</td>
<td>5,600</td>
<td>409</td>
<td>23</td>
<td>40</td>
<td>8,0</td>
<td>9,8</td>
<td>28,6</td>
<td></td>
</tr>
<tr>
<td>春作堆肥</td>
<td>400区</td>
<td>7,000</td>
<td>511</td>
<td>35</td>
<td>45</td>
<td>12,0</td>
<td>8,8</td>
<td>34,3</td>
<td></td>
</tr>
<tr>
<td>金肥</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>無施肥料</td>
<td>-</td>
<td>15,000</td>
<td>1,095</td>
<td>75</td>
<td>165</td>
<td>28</td>
<td>15,1</td>
<td>37,3</td>
<td></td>
</tr>
<tr>
<td>100区</td>
<td>-</td>
<td>50,000</td>
<td>3,650</td>
<td>250</td>
<td>378</td>
<td>43</td>
<td>10,4</td>
<td>17,2</td>
<td></td>
</tr>
</tbody>
</table>

備考 1. 堆肥の効果を7.3％、無施肥料を0.5％として計算した。
2. 1反実態土壤を10万kgとして計算した。

（年間600mm）のところから腐植の生成割合が数値多
くなる傾向があるが、いずれにしても堆肥からの腐植
生成割合は低値少いうがうがわる。

Simon 法によるTFが低いこと、またHQが相対高い点を
から、この土壌においては腐植
化が相当に進み、腐朽物質の増加が少なくなっているも
のと推論される。この試験地のような土壌に対する堆
肥の施用は、土壌の腐植的潜在化力を増加する方向に
働くことによりむしろ有機物の分解による作物養分の
供給源として役立つ方が大いと推論されるので、今
後作物養分の供給源としての有機物の効果を吟味す
る必要がある。以上は収穫期の結果であるが、水
稲収穫期土壌の分析結果は当然異なるものと思われる
が、この点については次の機会に検討したい。

大豆葉焼病に対する耐病性品種に関する研究

西沢正洋・木下末雄
九州農業試験場

Nishizawa, T. & Kinoshita, S. On the Varietal Resistance
of Soybeans to the Bacterial Pustule Disease

大豆葉焼病（Xanthomonas phaseoli var. sojae-Hosono）に関する研究については、F. A. Hedg
es(3) (1924), F. A. Wolf(3) (1924), S. G. Lehman and J. W. Woodside(3) (1929), E. R. Hartwing
and S. G. Lehman (1951), 田川(1) (1919), 石山(1) (1931), 石山・向(3) (1944)等の記載があるが、こ
れらの内訳性品種に関しては、Lehman及びWoo
dsideの接種法による品種耐病性検定方法の研究、
Hartwing及びLehmanによる抗性の品種間差異
及び遺伝に関する研究がある。

本邦における大豆品種は在来種が多く従って今後新
品種育成上の基とするため、また大豆品種特性検定
連続試験の一部として、1953年に秋大豆を用い、木病
に対する耐病性品種検定方法を見出すことを主体とし