この試験結果より検討すると、木薬早期栽培における粟菌病の発病時期は、苗代期には少なくなるが、急に本田期において感染するものと思われる。特に5月中旬より6月上旬におけるツマグロコロイの加害が早期栽培木薬の粟菌病の発生にもっとも影響するものと思われる。今後更に検討を加えたい。

業種歯菌病に対する有機水銀粉剤散布後の病状進展状況について
小 林 研 三

KoNavyShi, K. On the Developing Process of the Symptom of Sclerotinia Rot after Dusting of Organic Mercuric Compounds against it

業種の歯菌病に対しては最近有機粉剤の効果が認められているものに経済的効果の観点の一資料とする為、生育後期に於て、有機水銀粉剤散布後の病状進展状況を平面的に観察し、その経緯について調査検討した。未だ不明の点が多いが今後充分検討を続ける事にして一応報告する。

試験方法 木薬内の木苗栽培田を対象とし、品種若林14号、播種期、10月1日、移植日、12月7日、栽培法は木薬の歯菌栽培法によって実施、病菌は自然発生、薬剤名セレシオン石灰（1:5）反応5kgr散布期、日4月5日、11月2回、実験区供試面積は各10坪検である。

調査方法、並びに成績、散布後、1週間目の22日に処理区、無処理区共10区、木苗の発生株を抽出した、（当時は病斑は形成されたばかりで細小病斑であっ）各区毎に4月22日より3日遅き、の病斑長の伸長度を測定した。日は、11月21日（2）25日（3）4月28日（4）5月1日（5）4月9日（7）12日（7）19日（9）18日（10）21日、であり約1ヶ月間であった。成績は下記の如くである。

（1）各調査区の歯菌病発病度の推移（第1表）
（2）病状進展速度、4月22日後の第1回の調査開始日よりその病斑長をとって行ければ、第1図の如く、同一型の曲線をとって行くが、処理区と対照区とにおいては、散布後3週間目よりその伸長度を異に

第1表 10 柱分調査

<table>
<thead>
<tr>
<th>処理名</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>セレシオン石灰</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>18</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>対照区</td>
<td>32</td>
<td>32</td>
<td>34</td>
<td>34</td>
<td>36</td>
<td>36</td>
<td>38</td>
<td>38</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

（3）病状伸長速度の散布試の傾度、次の分散について、病斑長の大小によって分散数を分析してみた。即ち、10 50cm、10 30、20 50、30 60、50 80、60 100、の2つの階級に分けて散布数を調査した結果では凡で第2図の如くであった。

処理区は、30cm以上の散布数が極度に少ないのに反し、対照区では50cm以上の場合数はかなり多い傾向にあり、（5月12日、21日）の調査時）5月1日の調査
時においては、10 cm 以下の病斑長を持つ分枝数は処理区に比べ無処理区の方に数ヶで多い数である。
（4）発病部位の密度について 発病部位別について調査終了時に観察すれば、半部分枝区では病斑の形
成は無処理区と処理区には変わりはないが、下部分枝区には無処理区に比べて処理区は一般に病斑の密度は少か
った。（第3図参照）
（5）本調査においては、病害の確認と診断の参考に調査した本調査個体のみでは、処理区は無処理区に
して予防重視が大であった。

第2図 発病枝長約別の発病枝の頻度

西瓜果実の腐敗病を生起する Pythium について（予報）
藤川 崇

FUKIWA, T. On the Pythium causing Cottony Leak of Water-melon Fruit (Preliminary Report)

著者は1953年9月8日農林省九州農試在職中、福
岡県久大町（現久泊市）平井氏の店舗において、新
利西瓜の果実に直径6 〜 7 cm の油浸状病斑のある
を認め、と西瓜疫病ではないかとの疑により9月10
日調査したところ、先の病斑は急激に16 cm 大に拡
大し、病斑中央部は白色細毛状の菌糸がし状状存在
するを見た。同日果実に接種してのも馬鈴薯寒天培
養基に移植した結果菌類、菌胞類、菌胞目、
腐敗菌科の腐敗菌属の1種であることが判明した。即
ち Pythium 属菌については外国では DRECHSLER
(1925), MALER & WEIBER (1931), KHEREWALLA (1936,
1937), GOTTLEB & BUTLER (1939) 等により報告さ
れ本邦においては西瓜の果実に病原菌を認めた田辺
高志 (1935), 植木 (1952), 高橋 (1954) の報告があり
更に私信により植木博士は東京地方にて、基板接種
を知事や円庭地方でも果実属の菌類の発病を認
めているようである。それ等国における Pythium
sp. による西瓜の果実に細菌状を呈する病害発生の
報告を未だ見かねないので一応西瓜腐敗病（Cottony
leak）と称することにする。何にしてしても本病の検
査法は後にゆるやし、二、三の基礎的実験を検簡単
に報告する。

1. 本病の寄生性 大和西瓜3号の直径5 cm の果
実を馬鈴薯寒天培養基に28℃ で10日間培養し、
本病第1 9日間を28℃ で接種した結果、有病のものは
24時間後に浸浸状病斑を形成し、無病に当たる4日後に
判然たる病斑を形成した。なお子実及び葉葉に対して
も同様に寄生性を有する。その他茄子、胡瓜、菱豆の
子実及び苦瓜、牛ハクの果実には寄生性を有するよう
である。

2. 病原菌の発育と温度との関係 1955年2月発病
ベト編に馬鈴薯寒天培養基を10 cc 御注入して
その中央部に別の培養せる菌類の温線部を培養基と共に
5 m m 平方に切り移し、供試培養に温度調節した陰
温器中封じて20及び40時間後に菌類の発病を測定し
その平均値を求めた。供試ベト編数は各回各温度に
3個とし、実験は4回反復し、同時に菌類の発
生及び菌類数は5日後、基板子2個間に観察
した結果、菌系の発育最適温度は36℃ にして以下
28, 24, 20, 18℃ の順となり陰温にて検べる
発育と最高発育温度は40℃ にて最も発育し、44℃
では全く発育しないようである。24℃ 〜11℃ に
て僅かに発育するが、それ以下では発育は困難なもの
のようである。気温菌系は28〜36℃ 最も良好で24℃
に次ぎ20℃ 以下では極めて減少する。さらに
菌類数は32〜36℃ 最も良好にしてついて28, 24,
20, 16℃ と減少している。基板子の生成は20〜28℃
が最も良好で16及び32℃ これについ、その他は極
めて僅かに形成しないようである。

3. 病原菌の越冬 1953年11〜12月にかけて野菜は
ソグネル2万の1分枝を使用して、室は乾燥状態
に保存し翌年5月大和西瓜3号を使用し越冬の有無の
実験を行ったところ、被害病斑や被害残存物、病原菌
自体は共に野菜や室において容易に越冬し翌年の第
1次発病源となることが判明した。