九州農業研究・第21号・昭和34年5月

トウモロコシの混播区は雑穀が播種期に近づくまで生芽したものを地際から割取って生収量を調査した。ツル大豆はスランダラスの混播区と同様一部は直接トウモロコシに完全開葉し、他の一部は開葉し養分が多いが花期が不完全に期している。生収量はトウモロコシの播種区の多い区がツル大豆の生芽は多い区が多く、トウモロコシも高産の方が生収量に影響がある。総生収量ではトウモロコシの播種区が最も優れ、次にツル大豆2区×トウモロコシ3区で他はやや劣っている。播種収量ではツル大豆2区×トウモロコシ3区が最も優れているようである。

水稲業耐期作として供試したツル大豆の生芽は地域のものに比べ優れており、播種区では青刈大豆（青目千石）にやや劣る程度であるが、トウモロコシとの混播区の生収量はスランダラス混播区のみに優れ、特にトウモロコシの出芽量に問題なくツル大豆も増収の傾向がある。今後水稲業耐期作耐作区としては青刈大豆に劣らない、有望な作物と思われる。

III. 摘 要

奄美大島、沖永良部島産のツル大豆を取寄せ、その潜在性状に寄与栽培における播種期、播種量、混播栽培法などについて試験を行い寄与栽培作物としての栽培実用性を検討した結果、以下は屋内試験のようにある。

1) ツル大豆は生育初期から茎葉が倒伏するので、下部の脱落が少ないが葉茂性は著しく大きい。
2) 播種期は茎葉の生長および生収収量から見て5月上旬が適期であり、播種量は1.5～2.5 gが望ましい。
3) ツル大豆は単作では茎葉が倒伏するため、支柱作物としてスランダラス、トウモロコシなどを混作すれば、これに軽減して下部茎葉の腐敗が少く寄与栽培上有利である。
4) 混作栽培における混作割合は生収収量を養分収量から見て、スランダラス2～3区×ツル大豆2区、またはツルモロコシ3区×ツル大豆2区の組合せが優れているようである。
5) ツル大豆は種子が小粒で青刈用大豆としては望ましい条件であり、しかも生育期の葉茂性の大きさ地面を被覆するので頑健な地などの収穫作物としても有望と思われる。

材料用甘薯の貯蔵法に関する試験

溝岡 勝*・甲斐光夫*・内村忠道*・足立照夫*

MAOKA, M., KAI, M., UCHIMURA, T. and ADACHI, T.

Several Methods of Ensilaging Sweet Potatoes for Feed.

総言 九州における甘薯の作付面積は約14万haで収穫量は22.5億tであるが、その内20%が家畜飼料として利用されている。家畜飼料としての甘薯の貯蔵法は種々あるが、最も簡単な方法として甘薯に生剝粉砕を混合して貯蔵の可否を試験したので報告する。

方法 供試した甘薯の品種は農林1号で11月21日採取したものを翌22日に水洗し、生剝粉砕を2～3時間水切りしたものを水分89.5%で混ざり詰め込み詰め込んだ。

サイロは直径1.2m、深さ2.4mのコンクリート製半地下式サイロ4基と、これを同規格の素サイロ2基計6基を用意した。なお素サイロは内壁を2cm幅で張り使用した。

詰込は第1図のに甘薯と生剝粉砕を広状に重ねて詰

*九州農業試験場
第1図

<table>
<thead>
<tr>
<th>輪切層状業</th>
<th>丸層状業</th>
<th>輪切中程度</th>
<th>丸中程度</th>
<th>素儲輪業中程度</th>
<th>素儲丸業中程度</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y,S</td>
<td>M,S</td>
<td>Y,N</td>
<td>M,N</td>
<td>S,Y,N</td>
<td>S,M,N</td>
</tr>
<tr>
<td>45mm</td>
<td>480μm</td>
<td>520μm</td>
<td>520μm</td>
<td>520μm</td>
<td>520μm</td>
</tr>
<tr>
<td>30mm</td>
<td>220μm</td>
<td>240μm</td>
<td>240μm</td>
<td>240μm</td>
<td>240μm</td>
</tr>
<tr>
<td>15mm</td>
<td>220μm</td>
<td>240μm</td>
<td>240μm</td>
<td>240μm</td>
<td>240μm</td>
</tr>
<tr>
<td>30mm</td>
<td>220μm</td>
<td>240μm</td>
<td>240μm</td>
<td>240μm</td>
<td>240μm</td>
</tr>
<tr>
<td>15mm</td>
<td>220μm</td>
<td>240μm</td>
<td>240μm</td>
<td>240μm</td>
<td>240μm</td>
</tr>
<tr>
<td>生産面積</td>
<td>1400kg</td>
<td>1400kg</td>
<td>1400kg</td>
<td>1400kg</td>
<td>1400kg</td>
</tr>
<tr>
<td>質量</td>
<td>880kg</td>
<td>960kg</td>
<td>1400kg</td>
<td>1400kg</td>
<td>1400kg</td>
</tr>
<tr>
<td>増進</td>
<td>生産面積</td>
<td>質量</td>
<td>輪切面積</td>
<td>丸業面積</td>
<td>九日面積</td>
</tr>
</tbody>
</table>

結び 素储サイロに詰込めたものは全体腐敗したが、コンクリート製サイロは殆ど腐敗がなかった。

品質は糖酸含量約1～2％、pH 3.2～4.5で豚の嗜好性は高い。

詰込み方法は層状業、中程度いずれも良好。丸業も

と輪切業とは、給与の面からすると輪切業の方が便利である。

本方法による甘藻の貯蔵は素储サイロ以外は可能である。

暖地における諏上用根菜類の貯蔵について

原田 朝平*・福田 重夫*

Harada, K. and Fukuta, T. On the Store of Forage Root Vegetables in the Warm Region of Japan.

1. 順言 暖秋から初冬にかけて諏上等の青汁製作のある暖地においても、1～3月の期間は気温が低下し、凍結によるその後の再生力への悪影響がある。他の作物（麦類、十字科）も利用期に至るまで、冬季青汁製造の延長期に当たる。

冬期における甘藻製造の重要性は勿論、この延長期対策としても、根菜類の給与が必要であり、その為には1月～3月の期間における貯蔵を要するので、ここに簡単な貯蔵法による比較試験を行った。

2. 試験方法 供試作物はルカハナガ（ホワイトフレッシュ・ドネクレス）及び青根用かぶ（セブントップ）で、9月20日植えのもので、畦間 60.6cm、株間 30.3cm、施肥量は硫安 75kg、過石 60kg、塩加 22.5kg、堆肥 1,125kgであった。3処理の中で、貯蔵室は地下 60cm の長方形の穴を掘り、周囲を稲縄でぐんで詰込み、再び稲縄を被せて掘上げた土を盛った。稲縄に放置する方法は、コンクリート室間に置いて乾燥させた。

次には、基盤に土寄せして立毛のまま放置した。調査は取扱時に押量し貯蔵後は3日～4日目に所重及乾燥物重を測定した。

3. 試験成績 3処理における気温（気象観測）において、貯蔵室内の温度は外気温 10.5℃以上になると、外気温より低く、10℃以下になると外気温より高くなくなった。稲縄内気温は常に外気温より高い。何れの環境においても低温域は外気温の時にその差は著しく、ルカハナガは乾燥重に（第1表）において根菜と貯蔵室の平均は変わりなく、基盤とは 0.9％の差が見られる。

*佐賀県農業試験場