考察 X線分析並に D.T.A 成績から、総合的に考察を加えると次の通りである。
1. 九泉岩系の土壌である採早、福江木場、巣白、福江崎山の各土地は上下層を通じて、ハロイサイト、加水ハロイサイト、ギブサイト等を主体とした 1:1 型鉱物と推定される。これらの土壌は一般に粘土含量が多く、通称重粘土層と呼ばれ、長崎県内に広く分布しているものであるが、重粘性の原因をなす粘土は、ハロイサイト-加水ハロイサイト系の鉱物と推定される。全部の試料について、ギブサイトの存在が非常に明かであるが、これは長く強い風化作用を受けていても考えられ、生成過程上注意すべき事である。又、石英の存在はどの土壌についても明かであるが、僅少の含有物として、福江本場、崎山南土壌に 2:1 型鉱物の存在が疑問となつたが、14Å のピークはエチレンジアミノ処理によって移行しないものであった。崎山土壌の D.T.A 曲線の変形は岩干の Allophane 類似物の混雑があるのではないかと思われるが確かではない。
2. 南高来郡楚原土壌は雲仙火山に由来するもので、表層黑色、下層黄褐色の腐植の多い土壌で、通称火山成土とされているが、ハロイサイト、加水ハロイサイト、ギブサイト、アルフェン等の混在したものと推定されるので、他方の火山灰土壌のようにアルフェンを主体としたものとは同一視されないようである。しかし全般的に結晶度が低い傾向が認められので、生成上は火山岩系の母材と火山灰土壌のものが混在しているものと考えるべきであろう。
3. 平戸土壌はカオリナイト、ハロイサイトを主体とし、ギブサイト、石英等の存在も明かであった。結晶片岩系の西彼杵郡大瀬戸土壌は、カオリナイト、ハロイサイト、ギブサイト、石英、パミルサイト等の存在が認められるが、主体をなしているのはカオリサイトであるに、北松浦郡小佐土壌は第三紀層系のものであるが、カオリナイトを主体としたもので、ハロイサイト、ギブサイト、石英の存在を明かに認められた。

要旨 長崎県各地域の代表的土壌について、その粘土鉱物の型と性状を明らかにした。その中、本報文ではX線分析並びに示差熱分析成績を中心にして検討を加えた。

麦に対する尿素の追肥適期について

木下光則* 細野 博* 北島 昇* 升田武夫* 坂 克也* 村上義勝*

KINOSHITA, M., HOSONO, H., KITASHIMA, T., MASUDA, T., HORI, K. and MURAKAMI, Y.
The Optimum Time of Top-dressing of Urea for Wheat.

麦作については、収穫期の雨害、良栄品種の不足など、見通しづつ、今日では不安定な作物となっているようであるが、畑面積 13 万顷 ha の広大面積を有する本県としては、解決できない問題である。なお、麦の増収率は施肥法の如何のみをとりあげてみて他作物に比し相当高いものである。加えて、ここ数年間の寒冬は今後も続くものと予想され、今日までの追肥時期が果たして、適期であるかどうかを検討する目的で、筆者らは 1957～1959 年の 3 年間にわたり追肥の適期試験を実施したので、その大要を報告したい。

1. 試験地の特徴

第 1 表 穗度* および化学的性質

<table>
<thead>
<tr>
<th>層位</th>
<th>深さ</th>
<th>肥分</th>
<th>水分</th>
<th>鹽基</th>
<th>鹽基陽イオン</th>
<th>pH</th>
<th>イオン</th>
<th>吸収率</th>
<th>吸収性</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 1</td>
<td>0〜10 cm</td>
<td>14.11</td>
<td>43.85</td>
<td>57.96</td>
<td>30.34</td>
<td>11.70</td>
<td>L</td>
<td>5.50</td>
<td>6.04</td>
</tr>
<tr>
<td>II 2</td>
<td>10〜20 cm</td>
<td>14.88</td>
<td>43.30</td>
<td>58.18</td>
<td>28.07</td>
<td>12.75</td>
<td>L</td>
<td>5.30</td>
<td>5.65</td>
</tr>
</tbody>
</table>

(1) 排水良好な白川沖積土壌、酸土（本場畑）
(2) 土壌の理化学性は第 1 表のとおりである。

*熊本県農業試験場
2. 試 験 区 名

3. 施 肥 設 計
(1) 元肥全施用量 試験区 2 区と 3 区は相手当り 0.675 kg を、他区は 0.270 kg を尿素、または硫安で施した。
(2) 追肥窒素量 試験区 1, 2, 7, 8 区を除き相手当り 0.045 kg を尿素または硫安で施した。
(3) 濃酸及び硫黄は元肥として過剰と塩加を用い、各々相手当り 0.750 kg と 0.600 kg 施した。
(4) 追肥期は、A区が 2 月 18 日、B区が 2 月 28 日、C区が 3 月 10 日、D区が 3 月 20 日としたが、1959年度は各区とも 7 日間早く施した。

4. 収量調査成績
収量は第 2 表に示した。

<table>
<thead>
<tr>
<th>訓験 区名</th>
<th>1年目</th>
<th>2年目</th>
<th>3年目</th>
<th>平均</th>
<th>4年目</th>
<th>5年目</th>
<th>平均</th>
<th>指数</th>
<th>子実率</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 尿素無追肥区</td>
<td>41.59</td>
<td>57.34</td>
<td>51.74</td>
<td>50.22</td>
<td>26.03</td>
<td>27.83</td>
<td>27.70</td>
<td>27.19</td>
<td>81.3</td>
</tr>
<tr>
<td>2. 尿素全量基肥区</td>
<td>44.03</td>
<td>57.28</td>
<td>65.92</td>
<td>60.76</td>
<td>27.83</td>
<td>32.18</td>
<td>36.10</td>
<td>32.37</td>
<td>96.8</td>
</tr>
<tr>
<td>3. 尿素追肥A区</td>
<td>47.40</td>
<td>70.43</td>
<td>61.25</td>
<td>60.69</td>
<td>29.51</td>
<td>33.98</td>
<td>40.24</td>
<td>34.56</td>
<td>114.4</td>
</tr>
<tr>
<td>4. 尿素追肥B区</td>
<td>45.71</td>
<td>69.30</td>
<td>60.06</td>
<td>61.36</td>
<td>31.01</td>
<td>35.45</td>
<td>39.91</td>
<td>34.79</td>
<td>106.0</td>
</tr>
<tr>
<td>5. 尿素追肥C区</td>
<td>42.15</td>
<td>62.78</td>
<td>67.76</td>
<td>57.56</td>
<td>28.10</td>
<td>32.51</td>
<td>38.38</td>
<td>33.03</td>
<td>98.7</td>
</tr>
<tr>
<td>6. 尿素追肥D区</td>
<td>39.86</td>
<td>66.86</td>
<td>60.92</td>
<td>55.58</td>
<td>27.34</td>
<td>31.84</td>
<td>36.63</td>
<td>31.94</td>
<td>95.5</td>
</tr>
<tr>
<td>7. 硫安全量基肥区</td>
<td>39.64</td>
<td>59.03</td>
<td>57.11</td>
<td>51.93</td>
<td>27.34</td>
<td>31.84</td>
<td>36.63</td>
<td>31.94</td>
<td>95.5</td>
</tr>
<tr>
<td>8. 硫安追肥A区</td>
<td>40.95</td>
<td>75.41</td>
<td>60.70</td>
<td>62.02</td>
<td>29.85</td>
<td>30.83</td>
<td>39.66</td>
<td>33.45</td>
<td>100.0</td>
</tr>
<tr>
<td>9. 硫安追肥B区</td>
<td>43.65</td>
<td>70.01</td>
<td>71.41</td>
<td>61.69</td>
<td>31.35</td>
<td>34.18</td>
<td>40.42</td>
<td>35.90</td>
<td>106.1</td>
</tr>
<tr>
<td>10. 硫安追肥C区</td>
<td>53.03</td>
<td>67.24</td>
<td>71.41</td>
<td>63.91</td>
<td>31.91</td>
<td>32.78</td>
<td>40.07</td>
<td>34.92</td>
<td>114.4</td>
</tr>
<tr>
<td>11. 硫安追肥D区</td>
<td>39.64</td>
<td>69.11</td>
<td>64.30</td>
<td>57.61</td>
<td>30.41</td>
<td>32.55</td>
<td>39.71</td>
<td>34.22</td>
<td>102.3</td>
</tr>
<tr>
<td>12. 硫安追肥E区</td>
<td>36.86</td>
<td>69.30</td>
<td>63.38</td>
<td>56.51</td>
<td>29.25</td>
<td>32.06</td>
<td>37.14</td>
<td>32.82</td>
<td>98.1</td>
</tr>
</tbody>
</table>

これらの平均値を第 1 図に示した。

5. 裸地における尿素と硫安の分解
裸地における尿素と硫安の分解に基づいて生成されるアンモニア硝酸塩量は第 3 表および第 2 表に示した。

6. 結 果
(1) 尿素の発芽抑制率は、乾燥の年年やや現われ、1年目と 3年目には、尿素全量基肥区に現れた。しかし収量までで著明elierようなである。

第 1 図 収量調査結果

第 2 表 尿素の分解に対する尿素の添加量

<table>
<thead>
<tr>
<th>区名</th>
<th>7日目</th>
<th>14日目</th>
<th>21日目</th>
<th>30日目</th>
<th>40日目</th>
<th>60日目</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 尿素無追肥区</td>
<td>1.818</td>
<td>2.027</td>
<td>0.955</td>
<td>1.099</td>
<td>1.28</td>
<td>0.957</td>
</tr>
<tr>
<td>2. 尿素全量基肥区</td>
<td>1.423</td>
<td>1.765</td>
<td>2.690</td>
<td>2.369</td>
<td>1.931</td>
<td>1.343</td>
</tr>
<tr>
<td>4. 尿素追肥B区</td>
<td>5.917</td>
<td>6.897</td>
<td>17.027</td>
<td>15.287</td>
<td>9.286</td>
<td>3.393</td>
</tr>
<tr>
<td>5. 尿素追肥C区</td>
<td>1.547</td>
<td>3.093</td>
<td>5.960</td>
<td>5.583</td>
<td>8.243</td>
<td>4.482</td>
</tr>
<tr>
<td>8. 硫安全量基肥区</td>
<td>1.673</td>
<td>3.088</td>
<td>5.031</td>
<td>3.743</td>
<td>6.035</td>
<td>3.447</td>
</tr>
</tbody>
</table>
(2) 尿素及び硫酸の全量基肥施では、子実重の割に施
重が高く、逆に追肥A区とB区は子実重が高かった。
(3) 本試験では（追肥1回、尿素基肥追肥窒素の割合4:6）、追肥の適期はA区及びB区、すなわち大暦2月の
下旬頃となる。（4）尿素、硫酸の施用はほとんど変わ
ない。（5）アノミオの分析をみると、尿素は11月〜
12月の冬期においても、3日〜7日で最高に達し、以
後急激に減少（0〜10cm）では減少し、60日後はほと
んど無窒素と変わらぬ。硫酸も尿素のアノミオ化後
は殆ど同じようである。（6）硝酸態の窒素は硫酸よ
りやや尿素が高い。硝酸態の窒素は、降雨量により移
動が著しく、材料は省略したが、20cm〜30cm の
下層に移動しているのを認めた。（7）なお該地土壤の
pH調査では、尿素・硫酸の各区（窒素施用量アー
ル当たり0.675kg）とも大差はみられなかった。

飼肥料作物導入試験跡地土壌の懸植の形態について

近 野 純

Chikano, K. Types of Humus in Green-Manuring Soils.

（本報は1959年10月14日 倉光島大学における日本土壌肥料学会秋季大会において発表したものである）

1. はじめに

一般に水田においても畑においても、作物が土壌よ
り吸収利用する養分そのからの畑に還元する肥料養分
との間には均衡がとれていることが多く、中でも有
機物の還元については、多くの場合、需要が供給を上
廻ており、これは所謂地方保全上好ましくないこと
である。水田では、かねてから緑肥が取入れられてお
り、一方畑地帯ではそれが殆ど手ぬかりになっている
。殊に開拓地では開墾により経営面面が拡張するにつ
いて、一般に堆肥の自給能力が低下しており、当初ア
ール当たり150〜200kgもの堆肥を入れていたが、
現在では、減らしの半量しか入れないといった処が多
く、その土壌の質も一般に粗認なものが少なく、有機
物の還元が途失せになり勝ちである。又経営規模の
割合に稲作率が少なく、堆肥の不足と、資本不足によ
る化学肥料の購入力が弱いことのために、自然、あり
合せの肥料で作物を作り、又、冬期休耕状態におかれ
ている処も可成り見受けられる現状である。開拓地の
ような低発生地において、その農業生産力を高いくす
るためには、その実態に即応した作付け体系を確立す
ることが大切である。そこで飼料の供給を確保する意味
をも兼ねて作付け体系に飼肥料作物を抜絶した試験を行
い、今回はその跡地土壤について、特に有機物の変動
を調べめてみたので、その結果の概要を報告する次第で
ある。

2. 試験及び調査の方法

試験は、2600ヘクタールの開拓地を対象とし、その
代的な土壤として黒木県菊池郡の合志開拓地の土地
を選んだ、火山土壌で厚く覆われた深耕層の合志に
在り、波状の緩斜地である。試験毎は昭和27年に
開墾し、畑地無農を行うために整地されている。試験
区は第1表のように、夏作については全区とも飼料

第1表

<table>
<thead>
<tr>
<th>試験区</th>
<th>順</th>
<th>処理</th>
<th>全窒素</th>
<th>全窒素</th>
<th>C/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>休</td>
<td>8.30</td>
<td>0.66</td>
<td>12.8</td>
<td>N-mg</td>
</tr>
<tr>
<td>2</td>
<td>水</td>
<td>8.41</td>
<td>0.67</td>
<td>12.6</td>
<td>N-mg</td>
</tr>
<tr>
<td>3</td>
<td>コシノ・ベニイ (飼料供給)</td>
<td>8.98</td>
<td>0.67</td>
<td>13.4</td>
<td>N-mg</td>
</tr>
<tr>
<td>4</td>
<td>コシノ・グサ (緑肥）</td>
<td>8.90</td>
<td>0.68</td>
<td>13.1</td>
<td>N-mg</td>
</tr>
<tr>
<td>5</td>
<td>コシノ・ベニイ (緑肥）</td>
<td>8.90</td>
<td>0.68</td>
<td>13.4</td>
<td>N-mg</td>
</tr>
<tr>
<td>6</td>
<td>コシノ・ベニイ 緑肥</td>
<td>8.72</td>
<td>0.68</td>
<td>12.8</td>
<td>N-mg</td>
</tr>
</tbody>
</table>

*鹿児島県農業試験場

の交互作とし、冬作については6処理を設けた。①は
③と施肥量が同一で、普通作と飼肥料作物とを比較す