試験-I 标准区の施肥量を苗床3.3m²当りN75mg、P₂O₅ 360g、K₂O 115g とし、この标准量に対し、N、P、Kのそれぞれを倍量施した4区を設けて育苗した。実験-1後、苗および苗後の生育結果を比較した結果、苗については各要素間で生育に与える効果に差はみられなかったが、６区と4区では初期よりNの吸収を高め、タカボスのN%の高い3区の方が良好結果を示した。（第2表）

試験-II Nの増施は苗自体の葉と高める点および苗床肥土のN%も高くなること、この肥土を苗と共に本園に移行して移植直後のN吸収を助ける2点に関連するので、これを考慮して次の試験設計（第2表）により実験Iを行った。

結果および考察 移植苗まで育苗後、苗を均一に一例で30日間栽培し乾物重、内容分を調査した。Nの施用量に比例して苗の乾物重には差を認めないが、移植後30日後のタカボスの各部位の乾物重と全株数の高さは高くなり、初期生長は旺盛で同化収量の成長が促進される傾向を示した。同一施用量で移植した3区と4区では初期よりNの吸収を高め、タカボスのN%の高い3区の方が良好結果を示した。（第3表参照）

第3表 乾物重と内容成分（1区当り、乾物発）

活化機能を回復する効果が強いと思われる。

以上、苗の内容成分と移植後の生育状況よりみて苗のN含量の高いことは本園の生育経過に良い影響を与えると考えられる。

新燃岳噴出火山灰が農作物に与えた影響（第1報）

川禎次夫*・吉田栄一*・和田 稔*・河野 涼雄*・猪脇 久和*

Kawashima, T., Yoshida, E., Wada, M., Kawano, M., and Inomata, H.
Effects of New-Erupted Volcanic-Ash of SHINMOE-DAKE on the Plant Growth. (Part 1)

I. 緒 言
昭和34年2月17日、霧島連山の新燃岳（海拔1,421m）が突然噴火してその降灰を雨を交えた8m/sec内外の南西風によって新燃岳東側に位置する宮崎県西ノ海郡高町町一円に注がれた。この降灰の範囲は短径10km、長径20kmの半円形を呈し殆ど同町全域を覆い、耕地における堆積は4cmの厚さに達するとこらもあり、特に山麓の開拓地では当時生育中の麦、牧草等は殆ど埋没の状態であった。

然し一般には火山灰はただちに現われたものとしては、埋没は別として、作物体земの附着による物理的なもので、菜葉類、特に白花、うるわし草などは灰が堆積易いためか附着した部分より腐敗した。しかし、その他の作物では有害成分による害は認められなかった。

*宮崎県農業試験場
II. 噴出火山灰の性質（昭和34年2月19日、高原農協のコンクリート建物屋上にて採取）
色5/2(Mansel) 粒径分析 粗砂(2~0.2mm) 3.09％
細砂(0.2~0.02mm) 37.38％ 微砂(0.02~0.002mm)
20.52％粘土(0.002mm以下) 23.26％
沸騰容積率 1.36
光熱損失 5.87％ 置換酸度(Yr) 0.50 置換性石灰 0.80％

<table>
<thead>
<tr>
<th>pH</th>
<th>新鮮灰</th>
<th>風乾物</th>
<th>熱乾物</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O</td>
<td>7.10</td>
<td>6.35</td>
<td>6.00</td>
</tr>
<tr>
<td>n-KCl</td>
<td>6.80</td>
<td>6.00</td>
<td>5.42</td>
</tr>
</tbody>
</table>

塩酸及び水溶成分

<table>
<thead>
<tr>
<th>成分</th>
<th>塩酸</th>
<th>N/5塩酸</th>
<th>冷水</th>
<th>湿土地水</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe2O3</td>
<td>2.12</td>
<td>0.07</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>0.07</td>
<td>0.07</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Al2O3</td>
<td>5.66</td>
<td>0.69</td>
<td>0.06</td>
<td>0.10</td>
</tr>
<tr>
<td>CaO</td>
<td>3.64</td>
<td>0.49</td>
<td>0.06</td>
<td>0.10</td>
</tr>
<tr>
<td>MgO</td>
<td>0.23</td>
<td>0.13</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>MnO</td>
<td>0.23</td>
<td>0.13</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>K2O</td>
<td>3.33</td>
<td>3.14</td>
<td>0.45</td>
<td>3.03</td>
</tr>
<tr>
<td>SO3</td>
<td>3.33</td>
<td>3.14</td>
<td>0.45</td>
<td>3.03</td>
</tr>
<tr>
<td>Cl</td>
<td>3.33</td>
<td>3.14</td>
<td>0.45</td>
<td>3.03</td>
</tr>
</tbody>
</table>

Total: 8.1211% (SO3として)

上の分析結果を見ると、塩基を可なり多く含有し、現物の水深pHは酸アルカリ性である。

しかし乾燥すると酸性となる。このことは灰中の硫酸分は塩となっていて殆ど反応に与らないが、遊離のSあるいはS化合物は脱水、又は時間の経過により酸化されて硫酸になるものと考えられる。これらのことをより塩灰のあった場合での当分の間、酸度について余り大きな変化はなく、従って作物に大きな影響はないかも知れないが、月日がたつと共に酸度が高まり、被害が著しくなることが予想される。又S成分は極めて多量であるので還元条件下ではH2Oの発生源となり、この方の被害も予想される。

III. 試験成績

上記の点を確かめるため場内において5分の1アーボットに火山灰土壌を採り、これに新鮮灰を厚く各々0.5cm、1cm、3cmに相当するだけ混合し、畑状態と水田状態に2大別し、双方に5cmと15cmの深さに混合した区を設けた。

以上の処理により両地のまま目数とpHとの関係を見た結果は次のとおりである。

上記の図によれば、よその次のことのがうかがえる。
1）無処理区においてはpHの低下は認められないが、処理区ではいずれ低下の傾向があり、5cm耕起区の方が15cm耕起区よりも低下が著しい。
2）pH低下の程度は畑状態の方が水田状態よりも甚だしい。特に畑状態では74日目頃より4.0以下に圧下るものがあった。

IV. その後の被害

1）畑における被害……畑時圃場に作付させていた作物は殆ど恢復したが、降水量の多い畑では、その後に作付された甘藷、陸稲、豆類等に発芽及び伸長不良、下葉枯等の被害が現われ、最も甚だしい開拓地等では収穫無くと言う状態であった。
2）水田における被害……水田における降灰は僅少であったが、その後降雨の度毎に灌漑水中に懸濁された灰が導入され、苗の枯萎、夏季におけるH2Sの発生等の被害があらわれた。しかし該地方は排水良好な水田が多くその殆どは恢復したが、緑肥を多施した水田、排水不良田ではかなりの被害があった。