移植なたねと直播なたねの子実の品質の相違点に関する2,3の知見

竹崎 力・井浦 徳
（九州農業試験場）

なたねの子実の品質検査では、粒の大小、整粒、粒色、色沢、虫害程度、臭気等を対象としているが、その有効成分の判別は、油分含有量の多少を大い要素とすべきであろう。一般に、九州地域のなたねの子実は、実地のものに比較して、品質が劣っているとされているが、このことは、今後の農地における、なたねの収穫品の栽培上の大きな問題であると考えられている。品質低下の理由としては、新品種育成に当たって、早生種を目標とする傾向が、近年、強く、打出されてきたことや、栽培法を主とする病不育の発生増大、或いは、菌類、その他の生物種の侵入を懸念なるか、登熟期における気象条件や、栄養条件と深い関係があると思われる。

最近、省力多収栽培法として、直接栽培が急激に普及してきたが、直接栽培は、従来の移植栽培に比較して、棚植による生育期間の短縮と穂数の密集をともなうので、これが品質への影響を無視するわけではない。

本稿においては、特性的異なる、なたねの数品種について、移植と直接の、栽培条件を異にする場合の品質、含油率について、2,3の比較調査を行ったので、その結果を報告する。なお、含油率については、測定方法によって、差異を生じるので、その問題点を検討した。

実験第1 分析試料調製法に関する検討
含油率の表示にあたっては、供試材料の水分が、正確でなければならぬ。従来、試料の乾燥方法が区々であったため、含油率の比較が困難な場合があったので、試料の適正な乾燥法を知るため、無処理（粒状）種子と乾燥種子について、105°Cにおける、乾燥時間と水分の変化量との関係を調査した。その結果は第1図に示すとおりである。

子実内含有の水分は、自然乾燥状態では、7〜10%程度を普通としているが、子実を粒状のまま、105°Cで乾燥すると、4時間経過して、始め、含油水分の大部分を消失させるが、乾燥後、乾燥すると、1時間で、その水分を消失させることができる。したがって、分析測定にあたっては、和解乾燥試料の場合から

第1図 粒状及び乾燥状における子実の乾燥と水分との関係

1部をとり、磨砂種子の状態で、105°C、1〜1.5時間、乾燥することによって、その含油率を測定し、その含油率を乾物%に換算するとよい。もし、粒状で、水分を求める場合は、105°Cで、4時間以上の乾燥時間を要するようである。

実験第2 移植と直播における、種子の充実度、並びに含油率についての品質間比較
a）試料方法供試品種として、早生種として、ハヤナタネ、ミチノカタネ、農林17号、中生種として、コガネナタネ、農林14号、晚生種として、アブラマサリ、九州24号を用いた。移植試験では、10月1日、直播で10月20日とし、乾燥度は、60cm×30cm。直播は1株3本植えとした。木箱の施肥量は、窒素1.3、磷酸1.5、カリ1.0、石灰10.0、飼料0.1（kg/ha当り）である。

子実の充実度は、17重、千粒重について比較し、供試品種は、ソクスレーによる、エーテル抽出法によって。エーテル抽出法では、磨砂種子、凡そ5gmをとつて、エーテルが、ソクスレーの側面を抽出する速度を5〜7分間に1回行うように、温度を調節し、抽出時間は7時間とした。

b）成績並びに考察
移植と直接における、生育経過を品種間で比較したものを第1表のとおりである。

第1表 生育経過調査成績

<table>
<thead>
<tr>
<th>品種</th>
<th>移植後開花期</th>
<th>常があり期</th>
<th>成熟期</th>
<th>幼苗期</th>
<th>常があり期</th>
<th>成熟期</th>
<th>常があり期</th>
<th>成熟期</th>
</tr>
</thead>
<tbody>
<tr>
<td>ハヤナクタネ</td>
<td>5.26</td>
<td>5.71</td>
<td>6.39</td>
<td>5.96</td>
<td>6.13</td>
<td>6.48</td>
<td>5.96</td>
<td>6.39</td>
</tr>
<tr>
<td>ミチノクタネ</td>
<td>5.26</td>
<td>5.71</td>
<td>6.39</td>
<td>5.96</td>
<td>6.13</td>
<td>6.48</td>
<td>5.96</td>
<td>6.39</td>
</tr>
<tr>
<td>農林17号</td>
<td>5.26</td>
<td>5.71</td>
<td>6.39</td>
<td>5.96</td>
<td>6.13</td>
<td>6.48</td>
<td>5.96</td>
<td>6.39</td>
</tr>
<tr>
<td>ハヤナクタネ</td>
<td>5.26</td>
<td>5.71</td>
<td>6.39</td>
<td>5.96</td>
<td>6.13</td>
<td>6.48</td>
<td>5.96</td>
<td>6.39</td>
</tr>
<tr>
<td>ミチノクタネ</td>
<td>5.26</td>
<td>5.71</td>
<td>6.39</td>
<td>5.96</td>
<td>6.13</td>
<td>6.48</td>
<td>5.96</td>
<td>6.39</td>
</tr>
<tr>
<td>農林17号</td>
<td>5.26</td>
<td>5.71</td>
<td>6.39</td>
<td>5.96</td>
<td>6.13</td>
<td>6.48</td>
<td>5.96</td>
<td>6.39</td>
</tr>
<tr>
<td>ハヤナクタネ</td>
<td>5.26</td>
<td>5.71</td>
<td>6.39</td>
<td>5.96</td>
<td>6.13</td>
<td>6.48</td>
<td>5.96</td>
<td>6.39</td>
</tr>
<tr>
<td>ミチノクタネ</td>
<td>5.26</td>
<td>5.71</td>
<td>6.39</td>
<td>5.96</td>
<td>6.13</td>
<td>6.48</td>
<td>5.96</td>
<td>6.39</td>
</tr>
<tr>
<td>農林17号</td>
<td>5.26</td>
<td>5.71</td>
<td>6.39</td>
<td>5.96</td>
<td>6.13</td>
<td>6.48</td>
<td>5.96</td>
<td>6.39</td>
</tr>
<tr>
<td>ハヤナクタネ</td>
<td>5.26</td>
<td>5.71</td>
<td>6.39</td>
<td>5.96</td>
<td>6.13</td>
<td>6.48</td>
<td>5.96</td>
<td>6.39</td>
</tr>
<tr>
<td>ミチノクタネ</td>
<td>5.26</td>
<td>5.71</td>
<td>6.39</td>
<td>5.96</td>
<td>6.13</td>
<td>6.48</td>
<td>5.96</td>
<td>6.39</td>
</tr>
<tr>
<td>農林17号</td>
<td>5.26</td>
<td>5.71</td>
<td>6.39</td>
<td>5.96</td>
<td>6.13</td>
<td>6.48</td>
<td>5.96</td>
<td>6.39</td>
</tr>
<tr>
<td>ハヤナクタネ</td>
<td>5.26</td>
<td>5.71</td>
<td>6.39</td>
<td>5.96</td>
<td>6.13</td>
<td>6.48</td>
<td>5.96</td>
<td>6.39</td>
</tr>
<tr>
<td>ミチノクタネ</td>
<td>5.26</td>
<td>5.71</td>
<td>6.39</td>
<td>5.96</td>
<td>6.13</td>
<td>6.48</td>
<td>5.96</td>
<td>6.39</td>
</tr>
<tr>
<td>農林17号</td>
<td>5.26</td>
<td>5.71</td>
<td>6.39</td>
<td>5.96</td>
<td>6.13</td>
<td>6.48</td>
<td>5.96</td>
<td>6.39</td>
</tr>
</tbody>
</table>

第2表 種子の生産量の比較（単位：g）

<table>
<thead>
<tr>
<th>品種</th>
<th>移植</th>
<th>直接</th>
<th>移植</th>
<th>直接</th>
</tr>
</thead>
<tbody>
<tr>
<td>ハヤナクタネ</td>
<td>685</td>
<td>687</td>
<td>2.6</td>
<td>2.7</td>
</tr>
<tr>
<td>ミチノクタネ</td>
<td>673</td>
<td>679</td>
<td>3.6</td>
<td>3.7</td>
</tr>
<tr>
<td>農林17号</td>
<td>680</td>
<td>657</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>ハヤナクタネ</td>
<td>673</td>
<td>665</td>
<td>3.2</td>
<td>3.4</td>
</tr>
<tr>
<td>ミチノクタネ</td>
<td>640</td>
<td>642</td>
<td>3.1</td>
<td>3.3</td>
</tr>
<tr>
<td>農林17号</td>
<td>644</td>
<td>647</td>
<td>3.5</td>
<td>3.8</td>
</tr>
</tbody>
</table>

第3表 移植と直培における収量の比較（単位：kg）

<table>
<thead>
<tr>
<th>品種</th>
<th>施用</th>
<th>出數</th>
<th>質量</th>
<th>出数</th>
<th>質量</th>
</tr>
</thead>
<tbody>
<tr>
<td>ハヤナクタネ</td>
<td>3.1</td>
<td>3.6</td>
<td>3.7</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>ミチノクタネ</td>
<td>3.1</td>
<td>3.6</td>
<td>3.7</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>農林17号</td>
<td>3.1</td>
<td>3.6</td>
<td>3.7</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>ハヤナクタネ</td>
<td>3.1</td>
<td>3.6</td>
<td>3.7</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>ミチノクタネ</td>
<td>3.1</td>
<td>3.6</td>
<td>3.7</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>農林17号</td>
<td>3.1</td>
<td>3.6</td>
<td>3.7</td>
<td>3.8</td>
<td></td>
</tr>
</tbody>
</table>

実験第3 種子の直培における移植剪枝密度と含油率の関係

a) 試験方法 供試品種として、農林17号、農林14号、アブラマサリを用い、試験を10月1日と10月20日とした。剪枝密度は、60cm×30cmとし、施肥条件、水分測定に関しては実験第2と同様である。

b) 成績ならびに考察

本稿では、含油率についての成績のみにとどめる。その含油率の比較は第4表のとおりである。

第4表 裁培の実験における移植剪枝密度（％）

<table>
<thead>
<tr>
<th>品種</th>
<th>裁培</th>
<th>移植</th>
<th>直培</th>
</tr>
</thead>
<tbody>
<tr>
<td>農林17号</td>
<td>40.0</td>
<td>41.2</td>
<td>42.0</td>
</tr>
<tr>
<td>農林14号</td>
<td>40.0</td>
<td>41.2</td>
<td>42.0</td>
</tr>
<tr>
<td>アブラマサリ</td>
<td>40.0</td>
<td>41.2</td>
<td>42.0</td>
</tr>
</tbody>
</table>

注：直培は1木3木、移植は1木3木移植を含む。