農業構造改善事業における基盤整備直後の土壌条件の変化がトラクター作業の可能性におよぼす影響について

南部美紀雄・上田克己・野垣義登・近藤健昭
（熊本県農業試験場）

The Maneuverability of the Tractor Implements as influenced by the Change of Soil Conditions as the Direct Consequences of the Construction Operations in a Land Reform Project

農業構造改善事業実施地域の基盤整備直後の圃場の土壌硬度ならびに土壌水分の状態と、豆畑トラクター作業機の種類別による耕起作業の可能性の限界を把握し、現地指導者のための作業指導基準作成の資料を得る目的で、熊本県上名市上名の46haの圃場を昭和39年4月に本調査を实施した。

1. 調査方法の概要

調査対象地域は基盤整備前200筆余りあった圃場を短辺50m長辺200mの1筆2haの圃場50筆に整備したため、切り土区、盛り土区を生じたが、その状況は第1表の通りであった。

第1表 切り土区・盛り土区別区分及び比率

<table>
<thead>
<tr>
<th>区 分</th>
<th>領 別</th>
<th>面 積</th>
<th>比 率</th>
</tr>
</thead>
<tbody>
<tr>
<td>盛り土区</td>
<td>深さ35cm以上</td>
<td>3.51ha</td>
<td>7.6%</td>
</tr>
<tr>
<td></td>
<td>25cm~34cm</td>
<td>2.64ha</td>
<td>5.7%</td>
</tr>
<tr>
<td></td>
<td>15cm~24cm</td>
<td>7.26ha</td>
<td>15.7%</td>
</tr>
<tr>
<td></td>
<td>5cm~14cm</td>
<td>8.19ha</td>
<td>17.6%</td>
</tr>
<tr>
<td></td>
<td>0cm</td>
<td>7.31ha</td>
<td>15.8%</td>
</tr>
<tr>
<td>切り土区</td>
<td>切り4cm~盛り4cm</td>
<td>5.32ha</td>
<td>11.5%</td>
</tr>
<tr>
<td></td>
<td>15cm~24cm</td>
<td>2.36ha</td>
<td>5.3%</td>
</tr>
<tr>
<td></td>
<td>25cm~34cm</td>
<td>2.73ha</td>
<td>5.9%</td>
</tr>
<tr>
<td></td>
<td>35cm以上</td>
<td>6.94ha</td>
<td>15.1%</td>
</tr>
<tr>
<td>計</td>
<td></td>
<td>46.26ha</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

盛り土区の4cm以下から切り土区の4cm以下までを0区として後は10cmきざみに切り、土壌盛り土区それぞれ4段階の計9つの区分をし、区ごとそれぞれ3ヶ所宛金合計27ヶ所に調査地点を設定した。

土壌水分は表面から4cm、14cm、19cm、24cm位置を測定し、土壌硬度はF21抑圧型硬度計による表層からの測定と、地表下4cmを基準点として5cm毎に29cmまでの水平硬度を平圧式土壌硬度計によって測定した。

トラクター作業はホイールタイプのインパクチュショナルB275、35PSの本機にハロードEM40の横山100cmのロータリー（140r.p.m.低×1速）と12時×3速ブラー（高×1速）作業を原則として組合せ、作業日数の少ない場合は14时×2速、或いは16時×1速で実施した。

作業成績は耕深、スリップ率、車速、車輪痕（トラクター沈下度）について調査し、作業限界は第2表の区分によって分類した。

なお調査地域における4月の降水量は第3表のとりおりで、11月は127.8mmと雨が多くその後調査に取りかかった21日目の10日間は全く降雨がなかった。

2. 調査地区土壌の概要

基盤整備の土壌は水田では概ね仮植え上に砂壌土の所が多き機械分析の結果は第4表及び第5表の通りであった。

盛り土区で計画面面の通りの盛土工事で行われており、予想されたように旧水田作土の上にそのまま盛土されている処が多く、旧水田作土に当る部分は暗黒灰
<table>
<thead>
<tr>
<th>原位</th>
<th>深さ</th>
<th>直砂</th>
<th>細砂</th>
<th>細砂合計</th>
<th>豌砂</th>
<th>粉砂</th>
<th>精土</th>
<th>土質</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0～16cm</td>
<td>14.3</td>
<td>48.6</td>
<td>63.0</td>
<td>20.1</td>
<td>16.3</td>
<td>0.0</td>
<td>C</td>
</tr>
<tr>
<td>II</td>
<td>16～45cm</td>
<td>9.8</td>
<td>47.4</td>
<td>57.2</td>
<td>23.7</td>
<td>18.9</td>
<td>0.0</td>
<td>CL</td>
</tr>
<tr>
<td>III</td>
<td>45～60cm</td>
<td>21.8</td>
<td>46.6</td>
<td>68.4</td>
<td>16.4</td>
<td>12.0</td>
<td>0.0</td>
<td>S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>原位</th>
<th>深さ</th>
<th>直砂</th>
<th>細砂</th>
<th>細砂合計</th>
<th>豌砂</th>
<th>粉砂</th>
<th>精土</th>
<th>土質</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0～25cm</td>
<td>36.9</td>
<td>36.8</td>
<td>73.7</td>
<td>15.0</td>
<td>12.0</td>
<td>0.0</td>
<td>S</td>
</tr>
<tr>
<td>II</td>
<td>25～42cm</td>
<td>46.5</td>
<td>42.8</td>
<td>89.3</td>
<td>19.0</td>
<td>17.6</td>
<td>0.0</td>
<td>CL</td>
</tr>
<tr>
<td>III</td>
<td>42～60cm</td>
<td>15.8</td>
<td>46.7</td>
<td>62.5</td>
<td>21.7</td>
<td>17.8</td>
<td>0.0</td>
<td>S</td>
</tr>
</tbody>
</table>

色の変元色をもとし、鋼材がそのまま残っており水分含有量も高く比較的軟い層となっていた。

盛土の種類は水田及び畑地であるが、水田作土以外の盛土では、畑土、水田下地土の識別は殆んど困難であった。

切土区では、調査手段の9/10が一度掘り取った後に再び盛土を行い、噴射レベルに対する工法がなされていなかった。下層と親近な異質の土が表層に盛り土されているところがかなり認められている。

切土区、盛土区、いずれも表層4～5cm程度の層はブローターよる均平作業時に移動されていた。ブローターやの運行回数の多かったも推定される散で圧縮の影響が大きく、地表面から4～5cmの深さが殆ど水の通過が困難な程度までに固められおり降雨後の排水は主として地表面からの排水にとらえられるべきはずであったが、調査結果では排水はかなりに因縁しコンベヤによる試験は極めて困難であった。

土壌断面調査を行った米山硬度について、山中士山硬度計を用いて地表面より4cmの深さの軟い層を基点として5cm毎に20cmの深さまで測定した。その結果を読み（mm）で示したもののが第6表で、絶対硬度（kg/cm²）で示したもののが第7表である。

盛土及び表層硬度は切土区に比較して、断面に軟かく、特に降雨後に調査した個所では表層4cmの土山硬度は降雨前には明らかに低く、降雨による土壌硬度の変化が認められた。盛土の深さと硬度との関に一定の傾向は認められなかった。又下層土のブローターよる圧縮の影響は盛土の深いものでは旧田作土下には及んでいない層で、旧田作土が浅い層に認められた。盛土5～14cm及び切土0～4cmでは又作土の部分もかなり圧縮の影響をうけて硬くなっていた。

切土区では、切土の深いものを特に顕著に土壌硬度は硬く、更に表層に近い程度低い傾向である。又下層の転圧の影響も盛土区に比べかなり下層まで認められ、切土35cm以上では下層30cm程度まで及んでいっているものもあった。降雨による影響も盛土区と同様に認められなかったが切土15～24cm区では表層4cmでは
第8表 土壌水分（含水比）％

<table>
<thead>
<tr>
<th>地区</th>
<th>深さ</th>
<th>No.4</th>
<th>14cm</th>
<th>19cm</th>
<th>24cm</th>
<th>34cm</th>
<th>44cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>盛</td>
<td>35cm以上</td>
<td>12</td>
<td>28.1</td>
<td>34.7</td>
<td>34.0</td>
<td>38.3</td>
<td>40.0</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>23.6</td>
<td>28.5</td>
<td>25.9</td>
<td>28.6</td>
<td>48.5</td>
<td>32.3</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>27.7</td>
<td>32.2</td>
<td>34.1</td>
<td>37.1</td>
<td>27.7</td>
<td>29.1</td>
</tr>
<tr>
<td></td>
<td>25～34</td>
<td>19</td>
<td>25.0</td>
<td>28.9</td>
<td>21.8</td>
<td>25.7</td>
<td>25.3</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>23.6</td>
<td>29.6</td>
<td>23.3</td>
<td>40.7</td>
<td>28.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>20.7</td>
<td>24.3</td>
<td>32.2</td>
<td>36.6</td>
<td>26.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>28.5</td>
<td>42.1</td>
<td>33.8</td>
<td>36.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5～14</td>
<td>5.9</td>
<td>19.9</td>
<td>38.7</td>
<td>26.7</td>
<td>32.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>28.9</td>
<td>23.1</td>
<td>28.3</td>
<td>30.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>34.3</td>
<td>26.7</td>
<td>26.3</td>
<td>37.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0区</td>
<td>5</td>
<td>26.8</td>
<td>23.0</td>
<td>24.2</td>
<td>25.9</td>
<td>36.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>25.3</td>
<td>30.9</td>
<td>23.1</td>
<td>36.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35cm以上</td>
<td>7</td>
<td>25.1</td>
<td>26.8</td>
<td>27.5</td>
<td>29.0</td>
<td>27.7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>19.4</td>
<td>28.5</td>
<td>26.9</td>
<td>25.3</td>
<td>23.8</td>
<td>27.2</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>20.4</td>
<td>28.4</td>
<td>30.3</td>
<td>30.3</td>
<td>33.6</td>
<td>32.7</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>21.8</td>
<td>27.3</td>
<td>31.6</td>
<td>31.4</td>
<td>33.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25～34</td>
<td>2</td>
<td>29.3</td>
<td>35.7</td>
<td>37.8</td>
<td>33.2</td>
<td>31.6</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>22.2</td>
<td>33.2</td>
<td>35.9</td>
<td>26.5</td>
<td>30.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>20.9</td>
<td>21.6</td>
<td>34.1</td>
<td>28.9</td>
<td>28.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15～24</td>
<td>16</td>
<td>22.2</td>
<td>27.3</td>
<td>33.9</td>
<td>25.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>21.8</td>
<td>26.9</td>
<td>34.2</td>
<td>30.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>26.5</td>
<td>30.3</td>
<td>24.6</td>
<td>26.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5～14</td>
<td>3</td>
<td>24.9</td>
<td>33.2</td>
<td>32.8</td>
<td>28.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>27.1</td>
<td>29.3</td>
<td>30.1</td>
<td>27.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

かなり硬度の低下が見られたが、これはいずれも一度深く切土したもので盛土の断面をしたものである。

P21抑込式土壌硬度計によって測定した土壌硬度も山中式土壌硬度計による測定結果に類似した傾向が認められるものが多くあった。土壌硬度を測定した位置の土壌水分を測定したもののが第8表であるが全層を通じて、盛土区切土区に比べて水分含有量が高い傾向が見られた、盛土区では旧田作土に相当する部分が高かった。

切土区では表面4cmでは含水率は明確でなかったが、14cm、19cm位置では切土35cm以上区に低いくものは多かった。

3. トラック作業を中心とした調査結果概要

盛土区ではいずれも12時3連ブラブの標準作業で問題はなかった。ロータリー作業の場合表層みにつく5cmを中心とした位置にブンター作業が兼ねる切土例でも下層が貧い場合は作業限界は①又は④で作業限界は可能であった。事実前記したとおり、盛土の5cm～14cm区で旧作土に相当する10cm～15cm位置に破壊層のある所では作業限界は③とトラックのエンジン負荷が多かったがもつ作業は困難であった。しかしこのような例でも盛土区は排土を12cm～13cm深度に達してい Hague 作業限界は①となりトラック作業も可能であった。

0区は盛土、切土の4cm以下の部分を含め全場面積の15.8％を占めているが、旧田作土地ばかりでブラブ、ロータリー作業ともに作業限界は①で問題はなかった。

トラック作業における問題点は当初から予想されただけに切土区の場合顕著にあらわれた。

ロータリー作業であるが、旧田作切土区の場合ブトナーによる破壊層が10cm～15cmにかかる場合はエンジン負荷が多く作業限界は③となり、表層近くに存する破壊層がある下層の土壌水分が多く軟かい場合はロータリーのたたずの間に土を抱き込み、以下の土を処理がなされずにロータリーによる作業が推進状況が見られ作業限界は③と全く不能であった。

切土区のうち25cm～34cm区、及び35cm以上区はいずれも旧田作で土壌の密度が高い。ブトナーの脱線による原因も原因していると思われるがロータリーの爪が全く土中に吸入され、ロータリー推進によるホイールの（一）スリップ状況が作業限界は③又は①と全く不能であった。

ブラブ作業では切土35cm以上区を除けば12時3連ブラブの使用で問題はなかった。切土35cm区でも調査所3数のうち2筆は作業限界は③で可能であったが考慮1筆は土壌可動が非常にわずかでブラブ先端のさりが悪く作業不能であった。

この調査において次に16時1連ブラブを使用したが、この場合排土ができるが滑結が緩和して安定でエンジン負荷も大きくまた排土した土壌の間が40cmから最大60cmのものもあり、作業が可能であるが特に速度を変えてても他の地点での作業が極めて困難であった。

更に14時2連ブラブを使用したがスリップ及びエンジン負荷が大で長時間作業は困難で作業精度も不良であった。

以上の結果から要約すれば10トン以上の重量のブトナーによる作業を予想以上に大規模で表層から5cm～10cmの所に不透水層を生じるくらい重度のため、乾田作業でトラック作業を行う場合は旧作土路路地でも作業は可能であった。

乾田整地後の乾田状態におけるロータリー排土作業は、盛土区では問題がなく切土区では不可能なため、現地の上昇に表土を担うことを切土区盛土区が1枚の図層に入れ混じつている所では不適と思われる。

使用するブラブの大きさは、切土作業のように極端に土壌硬度の高い所では16時1連ブラブを除く12時2連以下のブラブ使用しなければならないと思われる。
<table>
<thead>
<tr>
<th>硬度計</th>
<th>調整時10cmの探さまでの測定する</th>
<th>プラウ耕作</th>
<th>ロータリー耕作</th>
</tr>
</thead>
<tbody>
<tr>
<td>調整方法</td>
<td>絶対硬度</td>
<td>作業の可否</td>
<td>作業面耐性</td>
</tr>
<tr>
<td>27mm以上</td>
<td>46.5kg/cm³以上</td>
<td>120×3列</td>
<td>160×1列</td>
</tr>
<tr>
<td>22mm</td>
<td>14.2kg/cm³</td>
<td>120×3列</td>
<td>140×2列</td>
</tr>
<tr>
<td>27mm</td>
<td>46.5kg/cm³</td>
<td>160×1列</td>
<td>不可能</td>
</tr>
<tr>
<td>13mm</td>
<td>2.5kg/cm³</td>
<td>同上</td>
<td>同上</td>
</tr>
<tr>
<td>22mm</td>
<td>14.2kg/cm³</td>
<td>同上</td>
<td>同上</td>
</tr>
<tr>
<td>13mm以下</td>
<td>2.5kg/cm³以下</td>
<td>同上</td>
<td>同上</td>
</tr>
</tbody>
</table>

備考: 硬度計によって直接判定する場合は体重55kg程度の人を基礎にしたものであるので個人差を考慮するため硬度計の読みと比較しておくと判定に都合が良い。

が、他是概ね120×3列プラウの使用が可能です。

4. 土壌硬度からみたトラクター作業の判定基準

土壌硬度（中土式）による硬度と、基盤整備直後の乾田状態における耕作作業の可能性の判定法について取りまとめたものが第9表で、現地に於て測定器を用い調査する必要がある。土壌硬度の管理や耕作性を考慮して選定する必要がある。土壌硬度は、土壌硬度計により測定され、耕作性の判定を行うための基準となる。土壌硬度の管理は、土壌の耕作性を考慮して選定する必要がある。

5. まとめ

本県については、農業の構造を考慮し、基盤整備実施に伴い大型機械も県下各地に導入されることが国際的に認められ、整備状況ならびに之と関連した作業機の種類と作業方法の究明が急がれている。

調査地域は昭和38年10月に昭和40年7月に至るまでの1年度にわたる調査結果に基づき、作業の可能な土壌状態を観察し、土壌硬度の管理に伴い、基盤整備に関する方針を策定する必要がある。