畑芸学における作物の養分代謝に関する研究
第7報 畑作水稲に対するけい酸塩土石炭の効果について

野口 隆・吉野 美
（鹿児島県農業試験場農田支場）
Noguchi, S. and Yoshino, M.

Studies on the Nutrient Metabolism of Crops under the Field Irrigation (Ⅶ) Supplying effects of a slag for the paddy rice grown on the upland field

水稲を畑に栽培するいわゆる「畑作水稲」はその生産特性と独自の栽培環境から、水稲水稲あるいは土畑とはかなり異なった栽培法がとられている。筆者らはさきに、畑作水稲は同じ施肥条件で栽培した水田水稲または土畑に比べ、生育が劣り穀量もやや不良で千粒重が低く、また出穂後コマハガレ病の発生が著しいことを認めた。またけい酸ははじめ各無機要素の吸収が幼穂形成期以後劣り、出穂登熟が進むにつれてその差はますます拡大する傾向を認めた。そしてこれ川畑作水稲に対する施肥法と密に窒素施用法の欠陥及びかん水稲の多少などに基盤を置くことを明らかにした。本報においては、さらにこれが畑作水稲と水田水稲との化学的性質の差異、とくにけい酸及び塩基類の多少にも原因しているものと考え、畑作水稲に対するけい酸塩土石炭の効果を検討した。

試験方法
試験区の構成及び施肥量は第1表に示すところである。'60年度は少栄区（土畑に対する標準施肥量）及び標準区（本黒色火山灰土における畑作水稲に対して適切と考えられる施肥量）、'61年度は標準区及び多栄区（各5割増施）を設け、それぞれにSlag（けい酸塩土石炭）0kg、15kg、25kg、の区を設けた。Slagの含有成分量は可溶性けい酸40％、可溶性塩土18％、アルカリ吸収分50％である。供試品種は'60年は藤倉5号、'61年はたかね錦である。けい酸塩土石炭は播種前に全面に散布し播種後で作土（0〜12cm）に混合した。

試験成績
Slag施用区は少栄、標準、多栄区とも初期生育が劣る点でときに25kg区においては顕著であった。しかし6月中旬以後は順調な生育を示し、生育遅れの傾向が認められた。第2表に収量調査成績を示したが、Slag施用量とならば、玄米収量との間に一定の傾向がみられなかった。また、穀量に及ぼすSlagの効果も認められなかった。畑作水稲に特有のコマハガレ病斑を主戦の葉、次戦について収穫期に調査した結果では、両年度ともわずかながらSlag施用区において発生が少ないと考えた。

第3、4表にSlagの主成分である石灰、塩土、けい酸塩土石炭の解析結果を示す。
第2表 収量調査成績 (kg/a)
2-1 (1960年度)

<table>
<thead>
<tr>
<th>区名</th>
<th>位置</th>
<th>重油</th>
<th>焼石灰</th>
<th>未処理</th>
<th>未処理の差分</th>
</tr>
</thead>
<tbody>
<tr>
<td>少肥料</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slg 0kg</td>
<td>40.9</td>
<td>0.8</td>
<td>28.7</td>
<td>100.0</td>
<td>20.7</td>
</tr>
<tr>
<td>Slg 25kg</td>
<td>32.4</td>
<td>1.6</td>
<td>26.2</td>
<td>91.2</td>
<td>20.4</td>
</tr>
<tr>
<td>Slg 5kg</td>
<td>47.0</td>
<td>1.1</td>
<td>34.7</td>
<td>100.0</td>
<td>21.0</td>
</tr>
<tr>
<td>Slg 15kg</td>
<td>50.0</td>
<td>2.0</td>
<td>35.7</td>
<td>102.8</td>
<td>20.3</td>
</tr>
</tbody>
</table>

第2表 収量調査成績 (kg/a)
2-2 (1961年度)

<table>
<thead>
<tr>
<th>区名</th>
<th>位置</th>
<th>重油</th>
<th>焼石灰</th>
<th>未処理</th>
<th>未処理の差分</th>
</tr>
</thead>
<tbody>
<tr>
<td>多肥料</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slg 0kg</td>
<td>52.7</td>
<td>2.1</td>
<td>48.7</td>
<td>100.0</td>
<td>23.1</td>
</tr>
<tr>
<td>Slg 15kg</td>
<td>42.4</td>
<td>2.1</td>
<td>48.8</td>
<td>100.2</td>
<td>22.8</td>
</tr>
<tr>
<td>Slg 25kg</td>
<td>52.2</td>
<td>1.3</td>
<td>48.9</td>
<td>100.4</td>
<td>22.1</td>
</tr>
<tr>
<td>Slg 5kg</td>
<td>64.6</td>
<td>1.7</td>
<td>52.0</td>
<td>100.0</td>
<td>22.6</td>
</tr>
<tr>
<td>Slg 15kg</td>
<td>59.6</td>
<td>2.0</td>
<td>49.1</td>
<td>100.4</td>
<td>22.2</td>
</tr>
</tbody>
</table>

第3表 収量調査における石灰、苦土、いき酸の含有率
(1960年度)

<table>
<thead>
<tr>
<th>区名</th>
<th>CaO</th>
<th>MgO</th>
<th>SiO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>少肥料</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slg 0kg</td>
<td>0.40</td>
<td>0.07</td>
<td>0.21</td>
</tr>
<tr>
<td>Slg 15kg</td>
<td>0.34</td>
<td>0.07</td>
<td>0.26</td>
</tr>
<tr>
<td>Slg 25kg</td>
<td>0.35</td>
<td>0.08</td>
<td>0.31</td>
</tr>
<tr>
<td>Slg 5kg</td>
<td>0.40</td>
<td>0.07</td>
<td>0.17</td>
</tr>
<tr>
<td>Slg 15kg</td>
<td>0.36</td>
<td>0.07</td>
<td>0.27</td>
</tr>
<tr>
<td>Slg 25kg</td>
<td>0.37</td>
<td>0.07</td>
<td>0.34</td>
</tr>
</tbody>
</table>

第4表 収量調査における石灰、苦土、いき酸の収量
(1960年度)

<table>
<thead>
<tr>
<th>区名</th>
<th>CaO</th>
<th>MgO</th>
<th>SiO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>少肥料</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slg 0kg</td>
<td>180.000</td>
<td>180.000</td>
<td>110.100</td>
</tr>
<tr>
<td>Slg 15kg</td>
<td>120.000</td>
<td>120.000</td>
<td>110.100</td>
</tr>
<tr>
<td>Slg 25kg</td>
<td>150.000</td>
<td>150.000</td>
<td>110.200</td>
</tr>
<tr>
<td>Slg 5kg</td>
<td>200.000</td>
<td>200.000</td>
<td>110.300</td>
</tr>
</tbody>
</table>

いき酸の収量調査における含有率、収量率を示した。年度ともに同様の傾向を示し、石灰は含有率、収量率とも Slg 施用区が明らかに高い値を示し、苦土は逆に明らかに高い値を示した。いき酸は Slg 施用量と土に明るい傾向性を認められなかった。

考察

シラス台地を中心とした火山灰地域を流れる河川水は、ときに石灰を多量に含有し、石灰、苦土、加里などの塩基豊かなる粘土質である。そのため河川水を利用した水田土壌はsteen土壌に比べてこれら成分をかなり多く含有している。したがって永田水

稲と石灰水稲の生育は両者の栽培方法の違いのほかに両土壌の水分、温度、土壌の性質の相違にも大きく影響され

るが考えられる。すなわち、一般に永田に栽培されている水稲を細かい栽培方法の場合には、これらの成分の欠失が生育収量に影響することが予想される。しかしこの実験においてはこれらの成分を含む Slg の投与にもかかわらず期待した効果を認められなかった。

近藤らは反応を異にする肥料の種類が河川水成分の

における水稲の生育収量に及ぼす影響を比較し、水

稲水稲は水稲より酸性を好むことを認めていた。また

水稲に対する pH の影響は吸収する窒素の形態によっ

てかなり異なり、アンモニアの形態で吸収した水稲は

high pH で正常な生育を示すが硝酸の形態で吸収

したものはアルカリによって生育障害をうけやすいこ

とが認められている。これらの実験は水稲の栽培方法

においてはアルカリによる障害が発現しやすいことを示

するものである。実験における Slg 施用量の差異、

収量の不揃いをこれに基づくところが大きいものと

と考える。

永田では Slg の施用量を認めた多くの報告があ

るが、本実験では Slg の施用量に応じたいき酸の吸収

増加があまりみられなかった。この理由としては、水

稲における水稲水稲の窒素の作成含有率が比較的高

い値を示すことから、本供試土壌で今現在の供試する

いき酸に不足する土壌に該当したかったことをあげ

ることができるが、しかしこの制限は水田及び

湖部における両者の栽培環境、ときに土壌水分条件の差

異がいき酸の吸収を決定的に左右しているものと推察

される。さらにいき酸、苦土、石灰、石炭三成分の分析成

績においていき酸及び石灰の施用量は Slg 施用量の

増加にもかかわらず、その含有率、収量率が増加しなかったものに対し、苦土及び Slg 施用量に応じて増加の

傾向がみられた。これはこれらの要素に対する鉱物状

態における鉱の吸収特性的差によるものと考えられる。

一方、Slg の施用量と용마라病との関にわずか

がは一定の傾向がみられたが、これは Slg の施用量が

용마라病に対して直接的に作用するのではなく、

稲体の耐性性または細胞組織の質的変化を通じて本病

に対する抵抗性を増すものと考えられる。