第2表 アルカロイドの組成（心葉第47日）

<table>
<thead>
<tr>
<th>Total Alkaloid (g)</th>
<th>Nicotine (g)</th>
<th>Nicoronic (g)</th>
<th>Free Nicotine (g)</th>
<th>(g)/(g) %</th>
<th>(g)/(g) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 NFT</td>
<td>0.51</td>
<td>0.28</td>
<td>0.23</td>
<td>0.04</td>
<td>45</td>
</tr>
<tr>
<td>4 NFT/NFT</td>
<td>1.22</td>
<td>0.83</td>
<td>0.39</td>
<td>0.32</td>
<td>32</td>
</tr>
<tr>
<td>2 BY/NFT</td>
<td>2.15</td>
<td>1.76</td>
<td>0.39</td>
<td>0.88</td>
<td>18</td>
</tr>
<tr>
<td>1 NFT/BY</td>
<td>2.01</td>
<td>1.30</td>
<td>0.71</td>
<td>0.42</td>
<td>35</td>
</tr>
<tr>
<td>3 BY/BY</td>
<td>2.70</td>
<td>2.26</td>
<td>0.44</td>
<td>0.97</td>
<td>16</td>
</tr>
<tr>
<td>5 BY</td>
<td>1.82</td>
<td>1.57</td>
<td>0.25</td>
<td>0.32</td>
<td>14</td>
</tr>
<tr>
<td>10 NC/BY</td>
<td>3.25</td>
<td>2.72</td>
<td>0.53</td>
<td>0.78</td>
<td>16</td>
</tr>
<tr>
<td>11 BY/NC</td>
<td>2.96</td>
<td>2.61</td>
<td>0.35</td>
<td>0.55</td>
<td>12</td>
</tr>
<tr>
<td>12 NC/NC</td>
<td>2.60</td>
<td>2.22</td>
<td>0.43</td>
<td>0.58</td>
<td>15</td>
</tr>
<tr>
<td>13 NC</td>
<td>1.84</td>
<td>1.58</td>
<td>0.26</td>
<td>0.49</td>
<td>14</td>
</tr>
</tbody>
</table>

明らかでなかった。
またタバコにトマトを接いだ場合、トマトの葉中には、2.07%個体当たり400mgのアルカロイドが見出され、さらに35日後には3.05%、592mgが見出された。
1965年には別にトマトとタバコの相接接木を行った。トマト/タバコの場合、0.43％、506mgが見出されるのに対し、トマト/タバコでは0.05％、77mgが含まれるにすぎなかった。とくに葉は前者で0.03％であるのに対し、後者では0.92％が認められた。
さらにタバコに接いたトマト中のアルカロイドの分布割合は葉に80％、茎に9～15％、根に11～15％で、大半は葉に存在している。トマトの果実中のアルカロイド含量は0.03％で全アルカロイドの1～10％が存在した。

春植サトウキビの養分吸収経過と蔗糖登熟相について
伊東裕二郎・大内山茂樹
(九州農業試験場)
Ito, Y. and Omouhyama, S.
On the Seasonal Changes of Inorganic Nutrient Contents and Ripening in the Spring Planted Sugarcane

サトウキビの養分吸収経過を知ることはその栽培管理、とくに施肥に関して重要なことであるが、温帯地におけるこの種の研究はほとんどなされていないようである。そこで春植サトウキビにおける養分吸収の推移とあわせて蔗糖登熟経過について試験し、若干の結果が得られたので報告する。

試験方法
供試圃場は当家種子島試験地圃場（腐植質火山灰土）で、供試品種はN:CO310である。施肥量はN:K2O:P2O5:K2O=12:12:8kg/10aでN（速効）は基肥、追肥（7月10日）に等量分施し、P（追肥）およびK（速効）は追肥1,200kg/10aとともに全量基肥とし、栽培密度は90×30cm、1株苗で1区面積21.6m²の3連制で実施した。植付日は1963年4月6日、収穫日は1964年3月16日であった。無機成分分析はサトウキビを予め1株当たり2株で分け、塩1本の計2本に限定し、新らに生じた発生葉は切り断したものについて行なった。

試験成績
サトウキビの乾物重の部位別増大割合は第1図に示す如く、生育初期においては茎部の占める割合が大きいが、蔗糖登熟期から収穫期にかけては約7割が茎（ハダス＋剝汁）で蔗糖部の割合が減少し（2割）、栄養部が徐々に増加の傾向にあつた。植物全体としては6月から11月まで急増し、それ以後の増加はあまり見受けられなかった。

第1図 乾物重の推移（g/株）
無機養分の含有率は、N、P、Kいずれも生育初期に高く乾物重の増加とともに急速に低下した。11月中旬以降では著しく漸減の傾向がみられるがほぼ一定の含有率に達するようである。含有率はN＞P＞Kの順でとくにKはつれての採取時期において著しく高い値を示した（第1表）。また、各時期ともN、P、Kいずれも基準より分けつ挙が若干高いようであるが、その差は僅少であった。

第1表 生育時期別の養分含有率（％）

<table>
<thead>
<tr>
<th></th>
<th>6月</th>
<th>7月</th>
<th>8月</th>
<th>9月</th>
<th>10月</th>
<th>11月</th>
<th>12月</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1.72</td>
<td>1.57</td>
<td>1.14</td>
<td>0.70</td>
<td>0.62</td>
<td>0.49</td>
<td>0.44</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.55</td>
<td>0.44</td>
<td>0.28</td>
<td>0.21</td>
<td>0.16</td>
<td>0.12</td>
<td>0.10</td>
</tr>
<tr>
<td>K2O</td>
<td>3.85</td>
<td>3.53</td>
<td>2.53</td>
<td>2.02</td>
<td>1.60</td>
<td>1.39</td>
<td>1.17</td>
</tr>
</tbody>
</table>

作果体の養分含有量は時期毎に供試個体が異なるため正確は期を難いが大略の推移はうかがえるものと思われる。時期別含有量とその部位別割合ならびに収穫時の各時期の養分吸収割合は第2表に示す通りで、含有量についてはN、P、Kともに10月まで急激に増加し、11月以降は大差ないように思われた。収穫時における含有量の比率はN：P2O5：K2O=1：0.3：2.9であった。また、収穫時に対する各時期の吸収割合についてみるとP2O5が最も早い時期から吸収され次いでN、Kの順であった。含有量の部位別割合は基準においてはN＞P2O5＞K2Oの順であり、K2Oでは大要でみた大差がないが若干Kの分布が低いようであった。収穫時についてはK2O＞P2O5＞Nの順であり、他の部位と異なりKの占める割合が著しく多かった。

第2表 生育時期別養分含有量（g/株）と部位別割合と吸収割合（％）

<table>
<thead>
<tr>
<th></th>
<th>6月28日</th>
<th>7月17日</th>
<th>8月16日</th>
<th>9月10日</th>
<th>10月17日</th>
<th>11月19日</th>
<th>12月</th>
</tr>
</thead>
<tbody>
<tr>
<td>含有</td>
<td>青 桃</td>
<td>紫 桃</td>
<td>青 桃</td>
<td>紫 桃</td>
<td>青 桃</td>
<td>紫 桃</td>
<td>青 桃</td>
</tr>
<tr>
<td>量</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>素</td>
<td>0.24</td>
<td>0.99</td>
<td>0.43</td>
<td>0.47</td>
<td>0.70</td>
<td>0.52</td>
<td>0.23</td>
</tr>
<tr>
<td>吸収</td>
<td>10</td>
<td>41</td>
<td>64</td>
<td>93</td>
<td>131</td>
<td>108</td>
<td>100</td>
</tr>
<tr>
<td>割合</td>
<td>0.24</td>
<td>0.99</td>
<td>0.43</td>
<td>0.47</td>
<td>0.70</td>
<td>0.52</td>
<td>0.23</td>
</tr>
</tbody>
</table>

第3表 稲作管理調査

<table>
<thead>
<tr>
<th></th>
<th>9月</th>
<th>10月</th>
<th>11月</th>
<th>12月</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brix</td>
<td>8.5</td>
<td>11.9</td>
<td>14.4</td>
<td>17.0</td>
</tr>
<tr>
<td>糖度</td>
<td>7.1</td>
<td>11.9</td>
<td>14.3</td>
<td>16.8</td>
</tr>
<tr>
<td>純糖率</td>
<td>8.1</td>
<td>11.9</td>
<td>14.3</td>
<td>16.8</td>
</tr>
<tr>
<td>適元糖分</td>
<td>3.24</td>
<td>6.45</td>
<td>79.0</td>
<td>86.8</td>
</tr>
<tr>
<td>乾物量</td>
<td>22.7</td>
<td>64.0</td>
<td>77.7</td>
<td>85.6</td>
</tr>
</tbody>
</table>

第4表 生育時期別養分含有量（g/株）と部位別割合と吸収割合（％）

<table>
<thead>
<tr>
<th></th>
<th>7月</th>
<th>8月</th>
<th>9月</th>
<th>10月</th>
<th>11月</th>
<th>12月</th>
</tr>
</thead>
<tbody>
<tr>
<td>含有</td>
<td>青 桃</td>
<td>紫 桃</td>
<td>青 桃</td>
<td>紫 桃</td>
<td>青 桃</td>
<td>紫 桃</td>
</tr>
<tr>
<td>量</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>素</td>
<td>0.08</td>
<td>0.30</td>
<td>0.27</td>
<td>0.33</td>
<td>0.32</td>
<td>0.35</td>
</tr>
<tr>
<td>吸収</td>
<td>14</td>
<td>53</td>
<td>70</td>
<td>100</td>
<td>119</td>
<td>116</td>
</tr>
<tr>
<td>割合</td>
<td>0.08</td>
<td>0.30</td>
<td>0.27</td>
<td>0.33</td>
<td>0.32</td>
<td>0.35</td>
</tr>
</tbody>
</table>

第5表 稲作管理調査

<table>
<thead>
<tr>
<th></th>
<th>9月</th>
<th>10月</th>
<th>11月</th>
<th>12月</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brix</td>
<td>8.5</td>
<td>11.9</td>
<td>14.4</td>
<td>17.0</td>
</tr>
<tr>
<td>糖度</td>
<td>7.1</td>
<td>11.9</td>
<td>14.3</td>
<td>16.8</td>
</tr>
<tr>
<td>純糖率</td>
<td>8.1</td>
<td>11.9</td>
<td>14.3</td>
<td>16.8</td>
</tr>
<tr>
<td>適元糖分</td>
<td>3.24</td>
<td>6.45</td>
<td>79.0</td>
<td>86.8</td>
</tr>
<tr>
<td>乾物量</td>
<td>22.7</td>
<td>64.0</td>
<td>77.7</td>
<td>85.6</td>
</tr>
</tbody>
</table>

第6表 生育時期别養分含有量（g/株）と部位別割合と吸収割合（％）

<table>
<thead>
<tr>
<th></th>
<th>7月</th>
<th>8月</th>
<th>9月</th>
<th>10月</th>
<th>11月</th>
<th>12月</th>
</tr>
</thead>
<tbody>
<tr>
<td>含有</td>
<td>青 桃</td>
<td>紫 桃</td>
<td>青 桃</td>
<td>紫 桃</td>
<td>青 桃</td>
<td>紫 桃</td>
</tr>
<tr>
<td>量</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>素</td>
<td>0.54</td>
<td>2.30</td>
<td>2.22</td>
<td>3.03</td>
<td>3.35</td>
<td>3.16</td>
</tr>
<tr>
<td>吸収</td>
<td>0.54</td>
<td>2.30</td>
<td>2.22</td>
<td>3.03</td>
<td>3.35</td>
<td>3.16</td>
</tr>
<tr>
<td>割合</td>
<td>0.54</td>
<td>2.30</td>
<td>2.22</td>
<td>3.03</td>
<td>3.35</td>
<td>3.16</td>
</tr>
</tbody>
</table>
九州農業研究・第28号・昭和41年7月

要約
(1)春植サトウキビのN、P、K含有率は初期において高く、しかし、11月以降では著しい減少を示すもの。また、各時期とも含有率はK>N>Pの順であった。
(2)N、P、Kの含有量についてはPが最も早くから、N、Kの順となり、収穫期における含有量はN：P>K>Ca=1:0.3:2:9でKの含有量が最も高かった。N、Pは栄養分分布割合が多いのに比してKは逆に低くなったりと穂粒中に多く含有されていた。
(3)春植春熟相については、気温の低下、生育の停止に伴って9~12月にかけて急激に春熟し、本試験の結果では分けっ葉より栄養分が良好な穂粒品質を示した。

四要素試験跡地における土壌と水稲の生育収量との関係
阿部和雄*・松本正徳
(福岡県立農業試験場)

Residual Effect of the Growth and Yield of Rice in the Four Elements Fertilizer Experimental Field

まえがき
本年統一の土壌を異なる施用によって化学的性質にいくらかの相違生じている場合における土壌の性質と
水稲の生産収量との関係を明らかにせんとして土壌調査後の
土壌区分、および各区別の施用を記載する場合の資料を得る
ため次の試験を行った。

試験の方法
福岡農試験場において10年間水稲および炭作小麦の
四要素試験を実施した場合見守り春水稲36年は10月の
欠除栽培、昭和37〜39年の3年間は各区共一栽培を
行い、その変化について生育状況、収量調査、水稲
体内的無機成分変化の推移（分けて、穂穂形成、出穂、
成熟）各期の土壌の理化学的分析を行った。

表

第1表 收量指 数

<table>
<thead>
<tr>
<th>区名</th>
<th>年次</th>
<th>欠除栽培</th>
<th>一栽培</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>四要素</td>
<td>36.37</td>
<td>38.39</td>
</tr>
<tr>
<td>37</td>
<td>無石灰</td>
<td>96.101.4</td>
<td>93.893.6</td>
</tr>
<tr>
<td>38</td>
<td>無加里</td>
<td>99.299.2</td>
<td>92.991.2</td>
</tr>
<tr>
<td>39</td>
<td>無硝素</td>
<td>77.189.1</td>
<td>95.196.1</td>
</tr>
</tbody>
</table>

第2表 水稲体無機成分濃度

<table>
<thead>
<tr>
<th>区名</th>
<th>年次</th>
<th>原生</th>
<th>郊外</th>
<th>原生</th>
<th>郊外</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>四要素</td>
<td>1.08</td>
<td>0.55</td>
<td>1.08</td>
<td>0.55</td>
</tr>
<tr>
<td>37</td>
<td>無石灰</td>
<td>1.04</td>
<td>0.01</td>
<td>1.04</td>
<td>0.01</td>
</tr>
<tr>
<td>38</td>
<td>無加里</td>
<td>1.42</td>
<td>0.49</td>
<td>1.42</td>
<td>0.49</td>
</tr>
<tr>
<td>39</td>
<td>無硝素</td>
<td>1.25</td>
<td>0.19</td>
<td>1.25</td>
<td>0.19</td>
</tr>
</tbody>
</table>

第3表 土壤無機成分

<table>
<thead>
<tr>
<th>区名</th>
<th>無石灰</th>
<th>無加里</th>
<th>無硝素</th>
<th>無加里</th>
<th>四要素</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>5.5</td>
<td>57.5</td>
<td>4.9</td>
<td>5.1</td>
<td>6.2</td>
</tr>
<tr>
<td>37</td>
<td>0.16</td>
<td>0.12</td>
<td>0.09</td>
<td>0.06</td>
<td>0.01</td>
</tr>
<tr>
<td>38</td>
<td>10.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>39</td>
<td>37.0</td>
<td>34.0</td>
<td>16.0</td>
<td>20.0</td>
<td>41.0</td>
</tr>
</tbody>
</table>

両次

*農業技術研究所