水稲 乾田直播栽培の施肥について
新原 勝輔
（福岡県立農業試験場）
SHINHARA K.,
Fertilizer Application Practice in Direct-seeding
Cultivation of Rice plants on Dry Paddy Field.

水稲作生産性向上のための栽培法についてその将来を展望してみた場合、田植栽培に代わる直直播栽培は今後も過渡期のものであってやはりその栽培が本命であるとの見方も少なくない。

福岡県において直直播栽培の栽培法の研究は本格的に行なわれるところに昭和39年ごろから始められている。以来約8年、この栽培法に適した条件下における技術体系は一応確立された状態に至っている。

本稿においては乾田直直播栽培の施肥技術についてその問題点と試験結果から得られた知見を述べてみた。

乾田直直播栽培の施肥上の問題点

1）播種して3～4週間は畄の状態で経過し、その後の灌水を行なわれると肥料の塩素はこの期間間に充分硝化改良が進行し入水と同時に大きな塩素が流失しやすい危険がある。

2）次にそのような理由から基肥塩素の肥効が低いとすれば、直直播栽培の基肥に相当する多量の塩素を灌水時に追肥として施用することになる。しかし灌水後の施用は土壌表面に施こされため脱塩による損失を無視することはできない。従って灌水時期の施肥法というものが一つの問題となる。

3）また乾田直直播栽培は水稲や脱窒による窒素の損失の他に、乾田期間中の地力窒素の消耗もあると考えられるので植物栽培に左右して施用量を増やす必要がある。

4）雑草草となり易い栽培法であるが、それを警戒して初期の窒素施用をひかえ目にして過ごすと、ともと穂が小さいというに穂数まで減少してしまう収量性的向上が望めなくなる。従って窒素の分施割合の検討も重要である。

5）次に肥料の種類であるが、緩効性窒素肥料とか硝化抑制剤などを効率的に応用すれば灌水期の施肥を省略し得て、基肥重点の一層省力的な施肥法をとり得ることが期待できる。

5）以上は主として窒素関連のことがあるが、その他の養分、たとえば磷酸・カリなどについても考慮の余地がある。その一つは乾田期間中に土壌有機物が消耗してしまうことや透水性が大きいことなどの理由から土壌Ehの低下が緩やかになり、のれんは土壌黑酸が効いてこないのではなかろうかと懸念する向きもある。

また代かき作業を行わないので透水性が良好で加里などが土壌によっては流失するおそれはないかという問題もある。

試験成績

第1図に硝化の一例を示す。第2・3図は基肥に重点的的にNを施用すると硝化によるNの損失が大きく減少することを示している。それと同時に、基肥を無肥料で出発し灌水時に重点的に施した区の収量が高いことがうかがえる。（この図の試験区名は基肥—灌水時施肥—穂肥の窒素施用量で示してある。）

<table>
<thead>
<tr>
<th>施肥後日数</th>
<th>乾土100gあたりNmg</th>
</tr>
</thead>
<tbody>
<tr>
<td>10日</td>
<td>5</td>
</tr>
<tr>
<td>20日</td>
<td></td>
</tr>
<tr>
<td>（灌水日）28日</td>
<td></td>
</tr>
<tr>
<td>灌水後7日</td>
<td></td>
</tr>
</tbody>
</table>

[NH₄-N | NO₃-N | 昔の直直播栽培による窒素化成をNとして10gあたり9.5g相当施用（6月22日）]

第1図 乾田期間の硝化化成進行の一例
（昭39・肥料研究室）
第1表 灌水期の施肥法試験
（S38 肥料研究室）

<table>
<thead>
<tr>
<th>葉 色</th>
<th>10日</th>
<th>20日</th>
<th>27日</th>
<th>34日</th>
</tr>
</thead>
<tbody>
<tr>
<td>流水後日数</td>
<td>月日</td>
<td>7月26日</td>
<td>8月5日</td>
<td>8月12日</td>
</tr>
<tr>
<td>温水前・側条覆土</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>温水後・全面</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>無 茎 素</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

施 肥 時 温 水 10aあたり N 9.6kg 種 肥 2.4kg

第2表 灌水期の施肥法試験
（S38 肥料研究室）

<table>
<thead>
<tr>
<th>生 産 状 況</th>
<th>生 産 時 期</th>
<th>最 高 分 解 期</th>
<th>成 熟 期</th>
</tr>
</thead>
<tbody>
<tr>
<td>供 試 区</td>
<td>施 用</td>
<td>草 丈</td>
<td>茎 数</td>
</tr>
<tr>
<td>温水前・側条覆土</td>
<td>55</td>
<td>574</td>
<td>77</td>
</tr>
<tr>
<td>温水後・全面</td>
<td>46</td>
<td>395</td>
<td>74</td>
</tr>
<tr>
<td>無 茎 素</td>
<td>41</td>
<td>316</td>
<td>69</td>
</tr>
</tbody>
</table>

（草丈・種長：cm 茎数・種数：個あたり本）

第3表 基肥Nの硝化損失および基肥無施行試験
（昭39・肥料研究室）

<table>
<thead>
<tr>
<th>水稲中N濃度</th>
<th>0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6-0-2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-9.6-2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4-7.2-2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4-9.6-2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第4表 灌水期の施肥法試験
（昭38・肥料研究室）

<table>
<thead>
<tr>
<th>収 量</th>
<th>10aあたりkg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>350</td>
</tr>
<tr>
<td>草丈20cm</td>
<td>700</td>
</tr>
</tbody>
</table>

第5表 基肥Nの硝化損失および基肥無施行試験
（昭39・肥料研究室）

<table>
<thead>
<tr>
<th>水稲中N濃度</th>
<th>0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6-0-2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-9.6-2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4-7.2-2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4-9.6-2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第6表 条間距離と施肥法試験
（昭37・普通作研究室）

<table>
<thead>
<tr>
<th>条間距離</th>
<th>20cm</th>
<th>25cm</th>
<th>30cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-4-2-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-6-2-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-4-2-4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
第3表　播種密度・施肥位置・前期施肥量・後期施肥量・播種期試験（S40 普通作物研究室）

<table>
<thead>
<tr>
<th>播種期（日）</th>
<th>播種密度</th>
<th>施肥位置</th>
<th>前期施肥量</th>
<th>後期施肥量</th>
<th>前期施肥量</th>
<th>後期施肥量</th>
<th>後期施肥量</th>
<th>後期施肥量</th>
</tr>
</thead>
<tbody>
<tr>
<td>5月10日</td>
<td>30cm・8kg</td>
<td>表層</td>
<td>5 - 3 kg</td>
<td>4.5kg - 0</td>
<td>516±28</td>
<td>519±28</td>
<td>533±28</td>
<td>533±28</td>
</tr>
<tr>
<td>5月25日</td>
<td></td>
<td>深層2回</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6月10日</td>
<td></td>
<td>表層</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第5表　播種密度・施肥法（分施割合）・施肥量・品種・播種期試験（S39 普通作物研究室）

<table>
<thead>
<tr>
<th>品種</th>
<th>播種期</th>
<th>施肥法（分施割合）</th>
<th>施肥量</th>
</tr>
</thead>
<tbody>
<tr>
<td>ホウ</td>
<td>5月10日</td>
<td>20cm・8kg</td>
<td>16kg</td>
</tr>
<tr>
<td>ヨウ</td>
<td>6月15日</td>
<td>2 - 4・2 - 2・0</td>
<td>14kg</td>
</tr>
<tr>
<td>ヤキ</td>
<td>6月20日</td>
<td>2 - 4・2 - 2・0</td>
<td>14kg</td>
</tr>
<tr>
<td>サイ</td>
<td>6月10日</td>
<td>0 - 4 - 3 - 0</td>
<td>13kg</td>
</tr>
<tr>
<td>マン</td>
<td>6月15日</td>
<td>0 - 4 - 3 - 0</td>
<td>13kg</td>
</tr>
<tr>
<td>ヨウ</td>
<td>6月20日</td>
<td>0 - 4 - 3 - 0</td>
<td>12kg</td>
</tr>
</tbody>
</table>

別な多要因試験で得られた最適水準を第4表に示す。これにより灌水期5kg一受け肥3kg一穂肥4.5kgの組合せが最も良い分施肥割といえることになる。この成績以外にも分施肥割に関する試験成績があるが、いずれもこの程度の分施肥割を支持しているようである。（第5表）

施肥量についての試験では移植栽培にくらべて30〜40%の増施が必要なようである。（第6図）なお第4表および第6図の区名は基肥・灌水期施肥・一受け肥・穂肥の順に10a当たりのN施用星（kg）で示している。

第4表　播種密度・施肥位置・前期施肥量・後期施肥量・播種期試験（S40 普通作物研究室）

最適栽培条件・期待収量

<table>
<thead>
<tr>
<th>播種期</th>
<th>各播種期の最適栽培条件</th>
<th>期待収量（kg/10a）</th>
</tr>
</thead>
<tbody>
<tr>
<td>5月10日</td>
<td>30cm・8kg 表層</td>
<td>516±28</td>
</tr>
<tr>
<td>5月25日</td>
<td>深層2回</td>
<td>519±28</td>
</tr>
<tr>
<td>6月10日</td>
<td>表層</td>
<td>533±28</td>
</tr>
</tbody>
</table>

第7図および第8図は掲示肥料と硝酸化抑制剤を応用して、灌水期施肥の省略の可能性を検討した試験の成績である。掲示肥料も硝酸化抑制剤もそれぞれ単独での一応の効果は認められるが、両者を併用すると一層効果が高い。

第9図は直播水稲栽培の無機進取を最高分け肥料の葉面と成熟期のすなわち分析したものの成績である。最高分け肥料については移植栽培と比較している。これによると乾田直播栽培の無機進取状況には特に大きな特長はないようである。
第7図 硝酸化成抑制剤・緩効性肥料による省力施肥試験（昭41・肥料研究室）

<table>
<thead>
<tr>
<th>施用量</th>
<th>10aに10g</th>
<th>15aに15g</th>
<th>25aに25g</th>
</tr>
</thead>
<tbody>
<tr>
<td>無効</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>標準複合3回分施</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>標準複合2回分施</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>標準複合+硝酸抑制A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>標準複合+硝酸抑制B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>種効性肥料（基肥）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>積効性肥料+硝酸抑制A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N施用量：3回分施3-3-3kg（基-基-基）その他の区1-0-3kg

第8図 硝酸抑制・緩効性肥料による省力施肥試験（昭41・肥料研究室）

<table>
<thead>
<tr>
<th>施用量</th>
<th>0.4%</th>
<th>0.8%</th>
</tr>
</thead>
<tbody>
<tr>
<td>緩効</td>
<td>4%</td>
<td>8%</td>
</tr>
<tr>
<td>加里</td>
<td>2%</td>
<td>4%</td>
</tr>
<tr>
<td>矾酸</td>
<td>0%</td>
<td>12%</td>
</tr>
<tr>
<td>石灰</td>
<td>0.2%</td>
<td>0.4%</td>
</tr>
</tbody>
</table>

第9図 直播水稲栽培中無機養分（昭38・肥料研究室）

むすび
以上の結果を要約すると次のようになる。
基肥に施した窒素の効率は著しく低いものである。干ばつなどで入水が遅れる場合に備えての安全性を考えると少量の窒素を基肥に適用していた方がよいと言われるが、反面において「少量化」はそれが入力で行なわれると逆に機械施肥で行なわれるにしろ作業としてするから困難なものであるので、むしろ基肥ゼロで出発した方が実情に副って
いるとも言える。
一方、積効性肥料に硝酸化成抑制剤を併用すれば基肥と細粒の省力施肥が行なうことができることがあるが、現状ではそのような肥料は少ない。このような肥料の開発と同時に、かなり粗粒の大きさの肥料が施肥できるような機械の開発が望まれる。
次に普通の肥料を用いる場合、『流水期の施肥』は流水期に倒立施肥して覆土を施す方法が効率の高い施肥法であるがその追肥も一度は省略できると思われるが、手軽に行なえる機械が製作されていない。従って当面は従来のように流水期全面散布で施肥されることになるがこの場合解消窒素の損失があることを施肥量の決定に反映させる必要がある。
ところで、このように移植栽培より増肥する必要があるのが量は概ね30〜40%であろうと思われる。また過疎茂をおくとあまり、分けつけ初期の肥料を抑えることは、窒素のロスが大きい栽培法であるとのことからみて不適当である。
流水期以後の追肥は、流水期分けつけ期〜穂肥の前40%〜30%〜30%〜は40%〜20%〜40%程度の分施肥割が適当であると考えられる。
硝酸・加里などの無機養分については通常の施肥量以上に考慮する必要はないと考えている。
ただし窒酸塩など土壌改良に有益な養料の土壌は移植栽培と同様な著ぎに出来ないことである。
以上乾田直生栽培の施肥上の問題点とそれらに関する試験成績について述べてきた。直生栽培はもとより省力を目指すものであって、その施肥法も省力的でなければならない。より効率的、より省力的の施肥が行なわれるために、それに適した肥料と機械の開発を期待してやまない。