造成畑における地力増強のための作付体系について

立石 博
(長崎県総合農林センター)

TATEISHI, H.
Some Cropping Systems to Reenforce the Soil Fertility in New Field

はじめに
畑が新しく造成されたのを機に、造成畑の地力増強手段のひとつとして作付体系を検討した。

試作方法
作付体系の種類としては第1表に示すように甘しょを基軸作物とみえて作付けを異にした体系を主として、クローパー永年も加えた。そして、I～IVについては年毎の地力の変化を甘しょ作で調査しつつ、5年後に全体系で麦と甘しょで地力を判定した。

第1表 試験の構成（1区46畳・3区制）

<table>
<thead>
<tr>
<th>マメ科</th>
<th>冬作/甘しょ</th>
<th>夏作</th>
</tr>
</thead>
<tbody>
<tr>
<td>薩摩種</td>
<td>うの種（慣行）</td>
<td>ビール麦</td>
</tr>
<tr>
<td>サンシナ</td>
<td>うの種（慣行）</td>
<td>均一栽培</td>
</tr>
<tr>
<td>サンシナ</td>
<td>うの種（慣行）</td>
<td>均一栽培</td>
</tr>
<tr>
<td>サンシナ</td>
<td>サンシナ（慣行）</td>
<td>サンシナ</td>
</tr>
</tbody>
</table>

試験結果および考察
(1) 39～43年までの経過（第1図）
40年にイタリアン区が上位1個の重の増大によって多収の傾向がみられたが、その他の体系間には収量差が現れなかった。40年は夏作期間が多雨であったが、イタリアン区は他区よりもやや高積（この区だけ大型プラム）であったので理学的見解に大きな影響をあたえたと推察される。

(2) 均一栽培による地力判定
ビール麦（少・多肥）によって体系間の生産力の検定結果が第2表である。慣行の種植を甘しょ体系に比べて、クローパー（5年連作）は初期生産が優り、多収をもたらした。また、イタリアン、エンコ・ベッタ跡もわら重を加味して考えれば若干優の傾向がうかがえる。なお、多肥条件では慣行体系より多収することはなかった。子実重以外の形質から判断すればクローパー区は初期生育および穂重が優った。各区共多肥によって生育量は増大し、多収になったが、体系によって増収程度が異なり、作付体系間の収量の傾向が乱れた。

第2表 ビール麦均一栽培成績（43年は種）

<table>
<thead>
<tr>
<th>作付体系</th>
<th>3年目</th>
<th>4年目</th>
<th>5年目</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>316</td>
<td>286</td>
<td>202</td>
</tr>
<tr>
<td>Ⅰ</td>
<td>34.7</td>
<td>32.8</td>
<td>30.2</td>
</tr>
<tr>
<td>Ⅱ</td>
<td>35.4</td>
<td>33.2</td>
<td>30.8</td>
</tr>
<tr>
<td>Ⅲ</td>
<td>35.9</td>
<td>34.4</td>
<td>22.8</td>
</tr>
<tr>
<td>Ⅳ</td>
<td>31.7</td>
<td>34.0</td>
<td>25.0</td>
</tr>
<tr>
<td>V</td>
<td>39.2</td>
<td>41.3</td>
<td>27.3</td>
</tr>
<tr>
<td>Ⅰ</td>
<td>36.9</td>
<td>41.5</td>
<td>29.7</td>
</tr>
<tr>
<td>Ⅱ</td>
<td>37.3</td>
<td>38.6</td>
<td>24.7</td>
</tr>
<tr>
<td>Ⅲ</td>
<td>37.6</td>
<td>46.0</td>
<td>31.9</td>
</tr>
<tr>
<td>Ⅳ</td>
<td>37.5</td>
<td>48.6</td>
<td>30.7</td>
</tr>
<tr>
<td>V</td>
<td>41.5</td>
<td>40.3</td>
<td>31.1</td>
</tr>
<tr>
<td>L.S.D. 5%</td>
<td>6.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

さらに、次の甘しょ作でビール麦の場合と同様な検定を行なった結果（成績省略）は各体系間で地力差は現れなかった。

(3) 土壌の残効性

第3表 作付体系終了時の土壌の化学性

<table>
<thead>
<tr>
<th>作付体系</th>
<th>P2O5</th>
<th>K2O</th>
<th>CaO</th>
<th>MgO</th>
<th>P2O5（%）</th>
<th>K2O（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ⅰ</td>
<td>61.1</td>
<td>4.4</td>
<td>0.56</td>
<td>0.86</td>
<td>347</td>
<td>46</td>
</tr>
<tr>
<td>Ⅱ</td>
<td>5.9</td>
<td>0.3</td>
<td>0.73</td>
<td>0.091</td>
<td>335</td>
<td>54</td>
</tr>
<tr>
<td>Ⅲ</td>
<td>5.5</td>
<td>1.4</td>
<td>0.197</td>
<td>0.091</td>
<td>337</td>
<td>54</td>
</tr>
<tr>
<td>Ⅳ</td>
<td>7.2</td>
<td>0.3</td>
<td>1.26</td>
<td>0.123</td>
<td>503</td>
<td>54</td>
</tr>
</tbody>
</table>

作付体系終了時の土壌の化学的状態については、慣行体系に比べてクローパーはP2O5が高く、換算性石炭量が多かった。収量低効率が非常に多いので注意が必要である。また体系Ⅳは換算性石炭量が少なかった。

以上について考察すれば地力増強手段としてクローパー体系は有効であるが、大きな期待はもてない。また、作物によって残効に対する反応が異なり、甘しょ作においては効果が望まない。