鞘虫をさとうきび栽培における管理作業機の試作
（第2報）苗葉板について
山田清道・伊地知弘一郎・前田浩敬
（九州農試試験場）
YAMADA, K., IJICHI, K. and MAEDA, H.
Trial production of managing cultivator of sugarcane.
（2）On the protection plate for cane plant.

はじめに
鞘転機でさとうきび畑の培土を行う場合、生育初期では、車転や車転および作業機により葉の損傷が多く、また最終培土では茎の折損率が高い、このようなことから当面、鞘転機の進行直前に竹で葉をあし上げたり、葉をあし上げることで補助作業を2名で行ない茎葉が損傷しないよう努めてきた。しかし最終培土時には葉もかなりのひびでおり補助作業も困難で、多くの労力を要する。

試作された鞘葉板は茎葉の損傷を防ぎ、かつ労力節減となることが実証されたので、その概要を報告する。

試作機の概要

第1図 鞘葉板略図

鞘葉板は鞘転機の車転前方に第1図のような左右2枚の鉄板を鞘転機のフレームに固定した取付金具に鉄板の前方上端を取付けた。また、植地旋回時に鞘葉板が地面にさわり移動障害となるように手元のレバーを引き、鉄板の前力を30cm以上とするような引き上げ装置が取付けられている。

鞘葉板の大きさは第1図に示す通りで、葉をおし分けるとき当りを弱めるために上部は内側に、下部は外側に若干のそりを持たせた。板の前方角は約30cm、後方は車転がかくれる程度に取付けた。なお、高さは地上40cmとした。車転や作業機の調節ネジ等茎葉に損傷を受けやすい所にはカバーを付け、茎葉の損傷を防いでいる。

結果

第1表 最終培土時における損傷葉数（a当り）

<table>
<thead>
<tr>
<th>項目</th>
<th>鞘葉板のない場合</th>
<th>鞘葉板を取付けた場合</th>
</tr>
</thead>
<tbody>
<tr>
<td>a当り葉数</td>
<td>1,344本</td>
<td>1,322本</td>
</tr>
<tr>
<td>折損葉数</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>埋没葉数</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>堆斜葉数</td>
<td>42</td>
<td>2</td>
</tr>
<tr>
<td>被害葉合計</td>
<td>135</td>
<td>2</td>
</tr>
</tbody>
</table>

第1表は畦面1mの場所で、品種はN:Co 310の結果である。被害葉のうち堆斜葉はすぐに引きこすことによりある程度の損傷は防げるが、埋没葉はほとんどが折損している。単位面積当たり葉数及び収量の間には高い正の相関が認められている。従って鞘葉板がなく、補助作業もしない場合生ずる折損葉と埋没葉は収量に悪影響をおよぼすことが予想される。一方鞘葉板を取付けて培土を行なった場合は茎葉の損傷はみられない。

第2表 培土作業時間（10当り）

<table>
<thead>
<tr>
<th>項目</th>
<th>作業方法</th>
<th>1人</th>
<th>1人</th>
<th>1人</th>
<th>1人</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>300分</td>
<td>513分</td>
<td>813分</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>人</td>
<td>3</td>
<td>3</td>
<td>90</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>人</td>
<td>1</td>
<td>1</td>
<td>90</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>被害葉板</td>
<td>90</td>
<td>90</td>
<td>160</td>
<td>20</td>
</tr>
</tbody>
</table>

第2表には培土作業時間を示した。すなわち鞘葉板を使用すると、人力の場合より5分の1、または補助作業を加えた場合より3分の1の労力ですむことが実証された。