高水分サイレージ製造に関する試験
江崎正・野口義之
（福岡県種畜場）
ESAKI, I. and NOGUCHI, Y.
Studies on High-Moisture Silage Making.

近年サイレージ製造技術は、予乾サイレージが普及しているが、高水分サイレージは、比較的天候に支配されることが少なく、省力的であるため大量製造に適していると思われる。しかし、品質が劣る家畜の利用も低く、その欠点を改善するため、エタリアンライブラス、ソルガムについて、摂取時期、溶出率、添加物の利用などについて検討したので報告する。

1. 試験方法

(i) 試験設計
試験処理、添加割合は、第1表の通りとした。

第1表-Ⅰ 試験処理（イタリアンライブラス）

<table>
<thead>
<tr>
<th>サイロ</th>
<th>妖照区</th>
<th>有</th>
<th>有</th>
<th>有</th>
<th>有</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>添加物として、糖蜜飼料（水分18%, CP 7.5%, NFE 53.3%）, 砂酸カルシウム, 亜酸をそれぞれ添加した。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>角型サイロ（insert: 1 m x 1.75m）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>地下式円型サイロ 直径1.0m, 深さ1.8m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>砂ばらま期 1972. 9. 18.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>ソルガム 未排汁 1972. 9. 25.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

供試材料は、イタリアンライブラス：出穂期前（水分86%, CP 2.1%）、ソルガム：砂ばらま期（水分87%, CP 2.0%）、開花末期（水分82%, CP 1.9%）のものを、フレールハーベスタでダイレクトカット詰を行なった。

第1表-Ⅱ 試験結果

<table>
<thead>
<tr>
<th>サイロ</th>
<th>妖照区</th>
<th>有</th>
<th>有</th>
<th>有</th>
<th>有</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>糖蜜飼料10%添加</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>サイロ内添加</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>ソルガム 排汁区</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>ソルガム 未排汁</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(ii) 仮設方法
材料是フレールハーベスタで刈取、糖蜜飼料、砂酸カルシウムはサイロ内添加を行ない、亜酸はP区で排汁を行なった。モーテ2人で踏み込みビニールで被覆した上から土20kgをのせ、サイロ側壁の目ばりを兼ねて重石とした。

(iii) 開封月日
イタリアンライブラス 1972. 7. 31.
ソルガム 未排汁 1973. 3. 27.

2. 試験結果および考察

1. ソルガム
各区ともサイレージ固有の色で、砂酸添加区は、臭気、触感、味とも良好であった。また、糖蜜飼料添加区も、若干酸味が感じられたが良好であった。なお、無排汁
区、下層部は、浸出液にひったいた。
製品歩留りは、糖蜜添加区が96.1%と最も高く、対照区は91.3%であった。拡散量は、糖酸添加区が53kgと高く、糖蜜添加区が6.6kgで最低であった。また糖酸添加区は接触後3日間で18kgの拡散があり、対照区、糖蜜添加区は、4日目から測定された。

サイレージの品質
水分は糖蜜添加区において、低い値を示したが、他は差がなく、拡散処理区、上層で水分の低が認められなかったが、これは材料の間に浸出液を包みこんだためと思われる。
pHは、糖蜜添加区で高い値を示したが、他は4.0前後で良好であった。
有機酸組成は、糖蜜添加区で、乳酸、乳酸含有が高く、糖酸、糖酸カルシウム添加区で、酢酸が増加の傾向を示した。酢酸は、対照区、糖軸添加区で認められるが、糖酸、糖酸カルシウム添加区では、ほとんど認められなかった。また、糖酸添加により、NH₃-N の発生は減少の傾向を示した。

2. ソルガム

拡散区、稲ばら期、間花末期刈とも固有の明るい色をし、臭気も良好であった。間花末期刈のものは、拡散密度が、低かなかったためか、サイレージ表面、サイロ側壁にカビによる腐敗を生じた。
拡散量は、稲ばら期刈が、75kg、間花末期5kgであった。

無拡散区は、稲取時期により、サイレージ品質の差が顕著に現れ、稲ばら期・糖酸添加区下層部は、水分が多く、暗褐色で蜜物臭があり、劣化がひどく、製品歩留りも他に比べ、著しく低下した。

<table>
<thead>
<tr>
<th>第2表</th>
<th>サイレージの品質（イタリアン）</th>
</tr>
</thead>
<tbody>
<tr>
<td>話込量</td>
<td>回収量 kg</td>
</tr>
<tr>
<td>kg</td>
<td>原業 製品</td>
</tr>
<tr>
<td>A</td>
<td>812 46 503</td>
</tr>
<tr>
<td>B</td>
<td>750 25 615</td>
</tr>
<tr>
<td>C</td>
<td>750 37 488</td>
</tr>
<tr>
<td>D</td>
<td>750 27 559</td>
</tr>
<tr>
<td>E</td>
<td>550 34 496</td>
</tr>
<tr>
<td>F</td>
<td>550 25 39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>第3表-1</th>
<th>サイレージの品質（ソルガム）</th>
</tr>
</thead>
<tbody>
<tr>
<td>話込量</td>
<td>回収量 kg</td>
</tr>
<tr>
<td>kg</td>
<td>原業 製品</td>
</tr>
<tr>
<td>稲ばら期</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>632 30 481</td>
</tr>
<tr>
<td>B</td>
<td>632 23 482</td>
</tr>
<tr>
<td>間花末期</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>620 55 519</td>
</tr>
<tr>
<td>B</td>
<td>620 65 466</td>
</tr>
</tbody>
</table>
第3表-Ⅱ サイレージの品質（ソルガム）

<table>
<thead>
<tr>
<th></th>
<th>詰込量 kg</th>
<th>回収量 kg</th>
<th>位置</th>
<th>水分%</th>
<th>pH</th>
<th>有機酸組成%</th>
<th>NH₃-N T-N %</th>
<th>フリーク氏評点</th>
</tr>
</thead>
<tbody>
<tr>
<td>種</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>乳酸</td>
<td>酪酸</td>
<td>酐酸</td>
</tr>
<tr>
<td>A</td>
<td>187</td>
<td>27</td>
<td>125</td>
<td>上下</td>
<td>76.7</td>
<td>3.9</td>
<td>3.08</td>
<td>0.53</td>
</tr>
<tr>
<td>B</td>
<td>171</td>
<td>23</td>
<td>132</td>
<td>上下</td>
<td>82.5</td>
<td>4.0</td>
<td>2.33</td>
<td>0.41</td>
</tr>
<tr>
<td>C</td>
<td>171</td>
<td>43</td>
<td>93</td>
<td>上下</td>
<td>84.6</td>
<td>4.0</td>
<td>2.13</td>
<td>0.61</td>
</tr>
<tr>
<td>D</td>
<td>179</td>
<td>59</td>
<td>95</td>
<td>上下</td>
<td>82.4</td>
<td>4.3</td>
<td>1.47</td>
<td>0.70</td>
</tr>
</tbody>
</table>

						乳酸	酪酸	酐酸	亜酸				
-------	-----------	-----------				乳酸	酪酸	酐酸	亜酸				
A	187	21	80	上下	75.9	3.8	2.44	0.46	0	2.90	5	95	
B	170	91	53	上下	81.3	3.8	2.24	0.45	0	2.69	7	95	
C	170	11	154	上下	81.0	4.0	1.96	0.51	0	2.47	8	95	
D	170	61	51	上下	80.8	4.1	1.85	0.58	0	2.13	5	88	

サイレージの品質

齊量は、各区ともpHは、4.0 前後で、有機酸組成も良好であった。

無排汁区は、水分の高い穂ばかり期において、下層部の劣化がみられ、特に酸添加による下層部の品質の低下が著しい。しかし、開花末期周辺のものは、良質のサイレージが得られた。また糖蜜添加添加によって、サイレージ水分は減少し、有機酸組成に添加効果が認められた。

以上の結果より、サイロ型式について、排汁処理サイロは、上下層及びの品質の差は小さく、普通サイロの下層に著しく劣化し、排汁効果が認められた。

生育前期には、穂ばかり期は水分が高く、開花末期に比べ、特に、下層部の品質が劣り、従って若葉材料草の場合、排汁または、糖蜜添加の添加が必要であると思われる。

適期収穫、細切、排汁により良質のサイレージが調製されるが、更に高品質サイレージを望む場合、糖蜜添加、酸添加カルシウムをサイロ内で均一添加し、さらにハーベストによる酸のドライエクスト添加により、不良変酵を抑え、良質のサイレージを調製できる。普通サイロにおける酸添加は、下層部の浸出液が多く、排汁が必要で、排汁処理及び添加物の添加することで、良質の高水分サイレージが効率的に大量調製できると考えられる。