南九州の主要火山灰畑土壌の物理的特性
(第2報) 土壌の相分布および有効水分

亀 忠男・五十嵐孝典・大鳥秀雄
（九州農業試験場）

KON, T., IGARASHI, T. and OSHIMA, H.
Physical Characteristics of Several Volcanic Ash Soils in Southern KYUSHU
2. Three Phases and Available Water Contents of Soil

畑地のかんがい水は地域の降雨特性、土壌の水分特性等を基に計画される。本報では南九州畑地における水利用計画の基礎資料を得るため、比較的広く分布する5種土壌の相分布、水分恒数および有効水分についての調査結果を報告する。

1. 調査方法

前報の地点において各層の土壌相分布（容積数値）、pF-水分分布（吸収法、過心法）を測定し、有効水分量を算出した。

2. 結果と考察

表1の黒ボクは第1表に示すとおり固相率、仮比重、非毛管孔隙量（全孔隙率=容積数値に相当する孔隙率）が下層土に比し多く、土壌相間に差はみられない。また最大容水量、場容水量および生長期限水分点は下層土に比し明らかに少なく、初期降水量における保水量は全孔隙の1/3以下であって、有効水分量は他の層に比し多いことが認められる。

黒ニガ層はその上部に圧縮層をもつあいがあるが、小林層および鹿屋層では固相率20%以下であって、全孔隙の約半量は作物に利用されないpF 4.2以上の非有効水によって占められ、低圧力側においては非毛管孔隙量が黒ボクに比し少なく、透水係数の小さい、有効水分量の少ない比較的密な層を形成している。さらに、その下層の黒ニガ層下部では固相率がより小さく、有効水分量も少なく、寄植の多い黒ニガ層は保水力の大きさに比し有効水の少ないことが特徴的に認められる。また赤ホヤ層では仮比重が小さく、全孔隙量が多いにもかかわらず、正常生育限水点および初期吸水量が高き、孔隙量が高圧力水によって満たされているため有効水分量は黒ニガ層に近いことを示している。細粒砂層は非毛管孔隙量が比的多く、有効水は少なかった。

pF-水分分布は小林、志和池、鹿屋層の黒ボクのばあい、pF1.5～2.0の間に大きいpeakをもつが、山田層では幅広いpeakを示し、土壌の微細構造の差異を反映しているものと考えられる。黒ニガおよび赤ホヤ層ではpF2以下の分布が少なく、pF3以上の高圧力側に最大分布値があり、細粒砂層は赤ホヤ層の分布補に類似するなど下層土においては高圧力側の水分の多いことが特徴的に認められる。

以上の結果を基に有効土層を30cmとして算出した各土壌の有効水分量は第2表に示すとおり、主として表層にある黒ボクの有効水分量の多少によって支配され、山田層＞岩川層＞志和池層、鹿屋層の順に多く、小林層に

第1表 主要土層の相分布および水分恒数（Vol %）

<table>
<thead>
<tr>
<th>土層</th>
<th>土壌名</th>
<th>地点</th>
<th>固相率</th>
<th>仮比重（g/cc）</th>
<th>場容水量 pF 1.8</th>
<th>生長期限水分 pF 3.0</th>
<th>初期吸水量 pF 3.8</th>
<th>有効水分</th>
</tr>
</thead>
<tbody>
<tr>
<td>黒ボク</td>
<td>小林</td>
<td>野尻</td>
<td>30.9</td>
<td>0.73</td>
<td>44.1</td>
<td>29.7</td>
<td>21.8</td>
<td>14.4</td>
</tr>
<tr>
<td>山田</td>
<td>大川原</td>
<td>29.9</td>
<td>0.74</td>
<td>44.4</td>
<td>24.7</td>
<td>16.7</td>
<td>19.7</td>
<td></td>
</tr>
<tr>
<td>岐屋</td>
<td>笠野原</td>
<td>28.7</td>
<td>0.71</td>
<td>43.7</td>
<td>28.2</td>
<td>19.4</td>
<td>15.3</td>
<td></td>
</tr>
<tr>
<td>黒ニガ</td>
<td>小林</td>
<td>野尻</td>
<td>17.8</td>
<td>0.42</td>
<td>67.6</td>
<td>59.2</td>
<td>49.8</td>
<td>8.4</td>
</tr>
<tr>
<td>岐屋</td>
<td>笠野原</td>
<td>19.6</td>
<td>0.46</td>
<td>68.8</td>
<td>59.6</td>
<td>49.6</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td>赤ホヤ</td>
<td>小林</td>
<td>野尻</td>
<td>14.6</td>
<td>0.36</td>
<td>68.9</td>
<td>60.9</td>
<td>46.2</td>
<td>8.1</td>
</tr>
<tr>
<td>岐屋</td>
<td>東串良</td>
<td>15.7</td>
<td>0.41</td>
<td>70.3</td>
<td>61.8</td>
<td>49.9</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>細粒</td>
<td>山田</td>
<td>大川原</td>
<td>16.0</td>
<td>0.40</td>
<td>64.7</td>
<td>52.8</td>
<td>42.0</td>
<td>11.9</td>
</tr>
</tbody>
</table>
おいてもっとも少ない。また深さ60cmまでとしたらよい
にも山田統において多く、小林統では少ないことがみら
れる。

このように土壌統をその有効水分保持量によって再編
成し、有効水分図として作成し、畑地の水管理に利用す
ることができるものと考えられる。

<table>
<thead>
<tr>
<th>深さ</th>
<th>野尻</th>
<th>小林</th>
<th>志和池</th>
<th>山之内</th>
<th>大川原</th>
<th>月野</th>
<th>笹野原</th>
</tr>
</thead>
<tbody>
<tr>
<td>0〜30cm</td>
<td>40.9</td>
<td>32.3</td>
<td>45.2</td>
<td>55.4</td>
<td>57.6</td>
<td>50.1</td>
<td>44.8</td>
</tr>
<tr>
<td>0〜60cm</td>
<td>64.1</td>
<td>56.9</td>
<td>78.1</td>
<td>90.2</td>
<td>-</td>
<td>77.7</td>
<td>75.5</td>
</tr>
</tbody>
</table>