はじめに

農用地の土壌汚染等に関する法律には、土壌中カドミウムの検定方法として0.1規則塩酸法が用いられている。0.1規則塩酸法によって定量されるカドミウム（以下0.1 N HCl-Cd とゆう）は山海らによれば過塩素酸法によって定量されるカドミウム（以下HClO₄-Cd という）のおよそ60〜95%であるとされている。これらに関して筆者らも大牟田地域における精密測定の結果から非干拓と干拓水田の第1層土壌について両カドミウムの比を計算したところ、非干拓と干拓土壌でその比に違いはあるが、やはり山海からの示す範囲にあることを確認した。しかしながら、その後筆者らは新しい干拓の下層土とクリーク底質土について調査した結果、0.1N HCl-Cd/HClO₄-Cdの比が極めて低いものがあることを知った。そこでその原因等について検討を行ったのでその概要を報告する。

I 非干拓と干拓土壌第1層における0.1 N HCl-CdとHClO₄-Cdの比について

大牟田地域における水田第1層（0〜15cm）土壌の0.1 N HCl-Cd/HClO₄-Cdの比は非干拓土壌＞旧干拓土壌＞新干拓土壌の順であり、3種の土壌ともおおむね60%以上であった。これは非干拓土壌が非干拓土壌より低塩基鈣和度が高く、さらに干拓土壌は具が荒れを傾けていたため、0.1規則塩酸がそれに消費される度合が高いものと考えられる。

II 新干拓の下層土およびクリーク底質土の0.1 N HCl-CdとHClO₄-Cdの比について

新干拓の下層土（30〜40cmより下層）とクリーク底質土について0.1 N HCl-Cd/HClO₄-Cdの比とその関係要因等について検討した結果はおよそつきのとおりである。

1. 新干拓下層土の0.1 N HCl-Cd/HClO₄-Cdの比は26〜39%で、第1層土壌よりかなり低い値である。0.1規則塩酸土壌浸出液のpHは中性に近かった。しかし、土壌をあらかじめ酸化水素で処理しておくと、両カドミウムの比は43〜58%に上昇し、水溶性のSulfate-Sの量も増大した。また、下層土は第1層土壌より具がちの含有率が高かった。

2. 新干拓内のクリーク底質土の0.1 N HCl-Cd/HClO₄-Cdの比は1%前後であったが、塩酸の浸透度を1規則以上に増やすと、HClO₄-Cdの90%以上が浸出された。

また、酸化水素処理した底質土の両カドミウムの比は60%以上となり、水溶性Sulfate-Sの量も大幅に上昇した。このことは風乾土壌と言えども底質土は多量のSulfide-Sを含み、カドミウムもSulfide系のものが多いと考えられ、過酸化水素処理によってSulfate系に変化し、溶解度を増し、両カドミウムの比が増大したものと考えられる。

おわりに

新干拓水田やクリーク底質土のように、pHが高く、多量の具が荒れる水田にHCl-Cd/HClO₄-Cdの比が極端に低い場合があるので、0.1 N HCl-Cdの量ののみで汚染の程度を論ずることは極めて危険である。0.1 N HCl-Cdを測定した場合、浸出し液のpHが高いためその危険性があるので過塩素酸法等による全カドミウムの測定が必要である。