砂耕法による3要素の増加に伴う茶葉のアミノ酸および
茶樹の無機成分含量

石垣幸三
（農林省茶業試験場 枝崎支場）

ISHIGAKI, K.
Contents of Amino Acids and Mineral Elements in the Tea Leaves, according to
the Amount of Three Manure Elements, by Sand Culture Method.

a/5,000ウサネルネットを用いた砂耕法により、やお
きた2年苗を作り試して観察。リン酸、カリの3要素濃
度を変えて培養し、茶樹の生育および茶葉のアミノ酸組
成、茶樹器官別の無機成分含量に与える影響について
調べた。まず、窒素はアソニシロニ酸（NH₄-N）
と硝酸ニトロ酸（NO₃-N）とし、N、P、Kとしてそれぞれ
0、25、50、100 ppmの4段階、3反復として1971年
に定植、2年間培養した。その後茶葉のアミノ酸組成を
調べたのも、茶樹を抜きとれて器官別に無機成分含量を
調べた。生育はいずれの要素も25、50 ppmが良好で100
ppmになると過剰症状を呈した。各要素の欠陥区はそれぞれ
欠乏症状を呈したが、無機素区は最も顕著で著しく
黄化して生育が劣った。また、窒素形態で比較するとNH₄-
-N 区のほうが NO₃-N 区に比べて生育は良好であり、
NO₃-N 区はいずれも黄化した。これに対して過剰区は
NH₄-N 区のほうが顕著に現れた。

アミノ酸組成をみると、無機素区はいずれも少なかったが、
NH₄-N 区ではN濃度の増加に伴ってテアニン、アルギ
ニン、セリン、スレオニンなどが著しく増加した。アス
パラジン酸とグルタミン酸は初年度は明らかではなかっ
たが、2年目にはNH₄-N の濃度増加に伴って増加し、
その他のアミノ酸も全般的に増加を示した。これに対し
てNO₃-N 区では、初年度はN濃度の増加に伴ってテア
ニン、アルギニン、セリンなどがわずかに増加する傾向
がみられたが、2年目ではいずれの組成も著しく減少を
示した。リン酸の影響についてみると、無機酸区では
アルギニンが著しく増加し、リン酸濃度の増加に伴って
アルギニン、テアニン、セリンなどが減少した。カリ濃
度とアミノ酸組成との関係は明らかではなかった。

無機成分含量についてみると、3要素の増施によって
それぞれ各器官における増施した成分が増加する。T-N
含量の増加割合はNH₄-N 区のほうが NO₃-N 区に比べて
多かった。Mn 含量は地表部ではNH₄-N 区のほうが
多いが、根では逆に NO₃-N 区のほうが多く、かつN濃

<table>
<thead>
<tr>
<th>アミノ酸</th>
<th>NH₄-N (ppm)</th>
<th>NO₃-N (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>リジン</td>
<td>1.7</td>
<td>3.5</td>
</tr>
<tr>
<td>ヒスチジン</td>
<td>1.2</td>
<td>1.9</td>
</tr>
<tr>
<td>アンモニア</td>
<td>19.4</td>
<td>28.4</td>
</tr>
<tr>
<td>アルギニン</td>
<td>12.5</td>
<td>13.7</td>
</tr>
<tr>
<td>アスパラジン酸</td>
<td>24.7</td>
<td>122.0</td>
</tr>
<tr>
<td>スレオニン</td>
<td>3.8</td>
<td>12.1</td>
</tr>
<tr>
<td>セリン</td>
<td>18.5</td>
<td>74.6</td>
</tr>
<tr>
<td>テアニン</td>
<td>60.2</td>
<td>546.1</td>
</tr>
<tr>
<td>グルタミン酸</td>
<td>46.7</td>
<td>188.3</td>
</tr>
<tr>
<td>グリシン</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>バリン</td>
<td>tr.</td>
<td>1.3</td>
</tr>
<tr>
<td>イソロイシン</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td>ロイシン</td>
<td>0.4</td>
<td>1.7</td>
</tr>
<tr>
<td>チロシン</td>
<td>1.0</td>
<td>2.9</td>
</tr>
<tr>
<td>フェニールアラニン</td>
<td>0.9</td>
<td>7.2</td>
</tr>
</tbody>
</table>

表1 形態別窒素濃度の増加と茶葉のアミノ酸組成（一番茶、新芽）
度の増加に伴って増加した。Al 含量は NH₄-N 区のほうがいずれの器官も多かった。Fe 含量は全般的に NH₄-N 区のほうが多いが根の場合が著しかった。拮抗作用は

表 2 3 要素の増加と茶葉の無機成分含量（一番茶、新葉）

<table>
<thead>
<tr>
<th>原素</th>
<th>濃 度</th>
<th>N</th>
<th>P₂O₅</th>
<th>K₂O</th>
<th>CaO</th>
<th>MgO</th>
<th>MnO</th>
<th>Fe₂O₃</th>
<th>Al₂O₃</th>
<th>Zn</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>-N</td>
<td>ppm</td>
<td>3.12%</td>
<td>0.60%</td>
<td>2.59%</td>
<td>0.61%</td>
<td>0.42%</td>
<td>0.016%</td>
<td>0.018%</td>
<td>0.056%</td>
<td>38 ppm</td>
<td>17 ppm</td>
</tr>
<tr>
<td>NH₄-N</td>
<td>25</td>
<td>3.99</td>
<td>0.47</td>
<td>2.60</td>
<td>0.60</td>
<td>0.42</td>
<td>0.059</td>
<td>0.065</td>
<td>0.120</td>
<td>60</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>4.03</td>
<td>0.40</td>
<td>2.32</td>
<td>0.51</td>
<td>0.60</td>
<td>0.054</td>
<td>0.073</td>
<td>0.096</td>
<td>48</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>4.35</td>
<td>0.39</td>
<td>2.11</td>
<td>0.40</td>
<td>0.56</td>
<td>0.040</td>
<td>0.015</td>
<td>0.079</td>
<td>42</td>
<td>21</td>
</tr>
<tr>
<td>NO₃-N</td>
<td>25</td>
<td>3.36</td>
<td>0.42</td>
<td>2.09</td>
<td>0.89</td>
<td>0.77</td>
<td>0.018</td>
<td>0.020</td>
<td>0.028</td>
<td>47</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>3.38</td>
<td>0.48</td>
<td>2.15</td>
<td>1.38</td>
<td>0.73</td>
<td>0.027</td>
<td>0.012</td>
<td>0.044</td>
<td>46</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>3.48</td>
<td>0.44</td>
<td>2.08</td>
<td>1.49</td>
<td>0.57</td>
<td>0.028</td>
<td>0.033</td>
<td>0.032</td>
<td>44</td>
<td>12</td>
</tr>
<tr>
<td>P</td>
<td>0</td>
<td>5.58</td>
<td>0.53</td>
<td>2.57</td>
<td>0.39</td>
<td>0.49</td>
<td>0.081</td>
<td>0.012</td>
<td>0.059</td>
<td>69</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>4.36</td>
<td>0.80</td>
<td>2.71</td>
<td>0.56</td>
<td>0.41</td>
<td>0.068</td>
<td>0.016</td>
<td>0.072</td>
<td>57</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>3.98</td>
<td>1.09</td>
<td>2.75</td>
<td>0.62</td>
<td>0.54</td>
<td>0.081</td>
<td>0.010</td>
<td>0.039</td>
<td>51</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>3.83</td>
<td>1.31</td>
<td>2.91</td>
<td>0.58</td>
<td>0.76</td>
<td>0.064</td>
<td>0.010</td>
<td>0.046</td>
<td>39</td>
<td>21</td>
</tr>
<tr>
<td>K</td>
<td>0</td>
<td>4.69</td>
<td>0.73</td>
<td>2.08</td>
<td>0.58</td>
<td>0.39</td>
<td>0.068</td>
<td>0.010</td>
<td>0.064</td>
<td>62</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>4.29</td>
<td>0.64</td>
<td>2.58</td>
<td>0.52</td>
<td>0.39</td>
<td>0.055</td>
<td>0.010</td>
<td>0.060</td>
<td>60</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>4.05</td>
<td>0.61</td>
<td>2.85</td>
<td>0.45</td>
<td>0.50</td>
<td>0.045</td>
<td>0.008</td>
<td>0.059</td>
<td>48</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>3.68</td>
<td>0.58</td>
<td>3.46</td>
<td>0.45</td>
<td>0.45</td>
<td>0.033</td>
<td>0.008</td>
<td>0.052</td>
<td>42</td>
<td>19</td>
</tr>
</tbody>
</table>