ミカン園におけるスプリンクラー施設の多目的利用に関する研究
（第1報）樹形別散布量について

田久保美彦・江口浩
（佐賀県果樹試験場）

TAKUBO, Y. and EGUCHI, H.
Studies on the Multi purpose Application of Over Head Sprinkler System for Satsuma Mandarin Orchards
(1) On the Spraying Dosage in Various Tree-forms

ミカン園におけるスプリンクラー施設の多目的利用が実用化しつつあるが、散布薬の増大や薬液の付着がむらが問題となっているので、散布量低減の観とするため、樹形別付着度について検討した。

1. 試験方法

供試園、原斎作18°の段階状2年生を通温温園
試験区

低樹形無立枝樹	3.3 x 3.7 x 2.2 m (1972年)
低樹形短枝樹	3.0 x 3.6 x 2.4
高樹形短枝樹	3.6 x 3.4 x 3.0
構築樹形	3.2 x 3.8 x 2.8

散布量（たとえば）700 t, 500 t, 400 t, 300 t。スプリンクラーの配置、テラスの対角線上に14mの間隔とし、2方向から散布。使用機種 OF 30 B (20°)

付着度調査、樹冠の上部、中部、下部。内部にタイプライター用紙を6分の1に切り、これを5株づつに貼付し、赤色食用着色剤1000倍液を散布して、農林省果樹作成の付着度標準表に基づいて調査した。

2. 試験結果

樹形別付着度は低樹形樹が優れており、付着が最もよかったのは低樹形短枝枝で、以下無枝枝、慣行枝枝、樹形短枝枝の順であった。

散布量別では700 t区が付着が最も良く、散布が少なくなったのに付着度は劣った。

付着が最も悪いといわれる樹形下部では、慣行枝形の700 t散布に匹敵する付着度が得られたのは、葉裏において低樹形枝の500 t区であった。葉表では低樹形無立枝枝の外縁部の少量散布において認められた。これらのことから、樹形を改造することによって薬液の付着を高めることが可能、散布量も減らすことができるように思われた。

<table>
<thead>
<tr>
<th>散布量別樹形別付着度</th>
<th>樹冠の部位</th>
</tr>
</thead>
<tbody>
<tr>
<td>低樹形無立枝樹</td>
<td>700</td>
</tr>
<tr>
<td>低樹形短枝樹</td>
<td>6.6</td>
</tr>
<tr>
<td>構築枝枝</td>
<td>5.4</td>
</tr>
<tr>
<td>構築枝形</td>
<td>NS</td>
</tr>
</tbody>
</table>

低樹形無立枝樹	5.0	6.3	4.7	6.6
低樹形短枝樹	5.7	4.7	4.7	4.7
構築枝枝	5.3	5.3	5.3	5.3
構築枝形	NS	NS	NS	NS

低樹形無立枝樹	5.2	4.9	4.7	4.7
低樹形短枝樹	4.6	2.9	4.0	4.2
構築枝枝	4.1	2.9	4.0	4.2
構築枝形	NS	NS	NS	NS

低樹形無立枝樹	5.4	3.9	4.5
低樹形短枝樹	4.9	3.9	4.5
構築枝枝	4.9	2.7	4.0
構築枝形	NS	NS	NS

低樹形無立枝樹	5.4	3.9	4.5
低樹形短枝樹	4.9	3.9	4.5
構築枝枝	4.9	3.9	4.5
構築枝形	NS	NS	NS