ベンチオカーブによる水稲の薬害の軽減に関する試験

第2報 BNA-1980による薬害防止

江口末馬・中山社一・高林 夫（九州農業試験場）

EGUCHI,S.,S.NAKAYAMA and M.TAKABAYASHI: Mitigation of Rice Injury Caused by the Herbicide Benothiocarb.
2. Effectiveness of BNA-1980 for Protecting Rice from Benothiocarb Injury

除草剤ベンチオカーブを使用した水田の一部に、ベンチオカーブの分解生成物に原因すると考えられる、水稲の生薬障害（矮化症）がみられるようになり、問題となったこととは既に第1報で報告した。そこで、その生薬障害の防止対策として発売された、BNA-1980（４プロモフェニルクロロメチルスルホン）の薬害防止効果についての試験を行った。その結果の概要を報告する。

1. 試験方法

試験は1982年6月から8月にわたって、1/5000のワグネルポットで実施した。佐賀農試、大分農技センターおよび九州農試で3場所の土壌を供試した。矮化症の発生を助長するため、風乾した播えらを3粒あたり100kg、代かき時に入植した。薬剤は通常のベンチオカーブ・CNP粒子（以下、添加と略記）と同剤でBNA-1980を0.5%添加した粒子（以下、添加と略記）を供試し、薬量は1粒当たり製品量で300, 600 gの2段階とした。処理は水稲の移植後5日（6月1日）にに行った。水稲はトウモロコシの2葉期を8月1日に1株2本移植し、ポット当たり3株植え付け、1区1ポット、3区反復で実施した。

2. 試験結果及び考察

播えらを投入し、矮化の発生をはかったが、7月中、下旬が半田に比べ著しく低温であったことも原因の一つと考えられるが、本試験では矮化の発生は少ないと、除草剤以外では発生が極めて軽くであった。処理後10日毎に水稲の草丈、茎数を毎週調査した結果を第1、第2図に示した。

![第1図 草丈の推移](image1)

第1図 草丈の推移

佐賀、茎数においても300 g、600 g区ともに処理後40日頃までは添加、無添加、土壌の種類によって生育抑制の程度、回復の期間などに多少の相違がみられたが、最終的には佐賀、九州農試両土壌では回復し、添加、無添加区間に大きな差はみられなかった。しかしこの大分土壌の無添加、600 g区では終局、草丈、茎数の抑制力が大きく、一部には枯死する株もみられた。

![第2図 茎数の推移](image2)

第2図 茎数の推移

処理後50日日に水稲の地上部を刈取り乾物量を測定した結果を第3図に示した。矮化の発生が極めて軽微であった、佐賀、九州農試両土壌では添加、無添加区間に明らかな差はみられなかった。しかし矮化の発生が大きかった大分土壌では600 gで処理区が無処理区の93%に対し、無添加区では58%と著しく低下した。

![第3図 地上部乾物量の比較（処理後50日）](image3)

第3図 地上部乾物量の比較（処理後50日）

以上のように極く初期にみられる生育抑制は矮化症を発生するとされるベンチオカーブの分解生成物である、脱塩素ベンチオカーブによるものではなく、ベンチオカーブ自体の作用によるものと考えられ回復も速いものと思われる。所調、矮化症状は脱塩素ベンチオカーブが水稲に対し作用力を示す程度に生成された場合に起こる現象と考えられ、本試験の結果から、BNA-1980は、その脱塩素ベンチオカーブの生成を抑制する効果があるものと考えられた。したがってベンチオカーブ・CNP粒子には0.5%程度のBNA-1980を添加することによって、水稲の生薬障害（矮化症）を回避することが可能であると考えられる。