転換畑の土壌水分管理

古賀 沢（九州農業試験場）

KOGA, H. : Management of Soil Moisture Conditions with Special Reference to its Drainage
for Upland-State Utilization of Paddy Field

九州地域では水田転換を行いながら、水稲、大豆、飼料作物、麦、野菜を組み合わせることで転換畑作の土壌生産性を向上させることができる。今後も重要な課題である。

転換畑の生産安定のためには、水田土壌は長い間の灌水農業によって下層土が重き化しているため、排水技術とともに保水保土にかんがい技術という相反した技術の調和が求められる。したがって、渓流化水田としての土壌整備の整備とともに、集地栽培条件のもとで、これら技術の効果を最大限に発揮して高生産を可能とする土壌の特徴に基づく水分管理が必要となる。

1. 九州地域における水田土壌の特徴と排水対策

九州地域における水田の土壌は各地方間により異なることが第1図に示した。ここでは排水対策を考慮して土壌型をII群に区分している。

III群土壌は地下水面が高く、重力排水の排除を必要とするので、約11%を占め、全国の25%に比べて少ない。次いでII群土壌も地下水面が排水に関連して排水上の問題が多いが、グラウ土、グラウ土地、黒ボクグラウ土と合わせて11%を占める。さらに川水田が川水田に比べて少なく、九州地域の水田は比較的排水良好のものが多いと言える。II群群土壌は傾斜水田では横浸透水型の遮断対策、平壌水田では対象区域外への過剰水の排除を目的とする機械排水が必要である。

I群土壌は一般に乾燥であるが、灰色低地土が全体の49%、黒ボク土が11%、黄色土・暗赤色土が約9%となっている。I群土壌においても排水路水位が高い場合には地域的に排水系を管理する必要があり、地表水排除のためには日常的に排水溝を整備する。さらにI群土壌の約44%は細粒質土で、これらの土壌では排水管理とともに内部排水性の改良を要するものが多い。

九州地域の水田の高度利用が進展するほど水田土壌の物理的阻害要因を克服して排水を促進することへの要求が大きくなる。とくに最近では基盤状態の大規模化に伴う土壌改良、転換や営農用機械の大型化による圧密の増大、排水系の維持管理の粗放化などによる排水不良化が指摘されるなかで、どのような土壌にどのような排水法を適用するかを明らかにすることが必要である。

第1表 九州地域における排水対策のための土壌診断基準

<table>
<thead>
<tr>
<th>排 水 対 策 (※)</th>
</tr>
</thead>
<tbody>
<tr>
<td>地下水位</td>
</tr>
<tr>
<td>30～60</td>
</tr>
<tr>
<td>60＜</td>
</tr>
<tr>
<td>グラウ土</td>
</tr>
<tr>
<td>30～60</td>
</tr>
<tr>
<td>60＜</td>
</tr>
<tr>
<td>風雨後の待機</td>
</tr>
<tr>
<td>24＜</td>
</tr>
<tr>
<td>作土の土壌水分</td>
</tr>
<tr>
<td>1～1.5</td>
</tr>
<tr>
<td>1.5＜</td>
</tr>
</tbody>
</table>

注) 0.0必要，△必要な場合がある，×必要でない

2. 診断項目はここでは基本項目のみの示した

--

\(\text{附図 九州地域における水田の土壌診断} (\text{黒塗り部分は耕植混土割合})\)

--
第2表 水田転換による土壌の有効水分とコンシステンシーの変化

<table>
<thead>
<tr>
<th>底部</th>
<th>PF1.5～4.2 (% %)</th>
<th>L.L. (%)</th>
<th>P.L. (%)</th>
<th>P.L.／PF1.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>水田</td>
<td>A P</td>
<td>15</td>
<td>87</td>
<td>44</td>
</tr>
<tr>
<td>田</td>
<td>B R</td>
<td>23</td>
<td>109</td>
<td>53</td>
</tr>
<tr>
<td>グラ</td>
<td>G</td>
<td>30</td>
<td>121</td>
<td>54</td>
</tr>
<tr>
<td>明</td>
<td>1 A P</td>
<td>17</td>
<td>76</td>
<td>42</td>
</tr>
<tr>
<td>年</td>
<td>14</td>
<td>73</td>
<td>40</td>
<td>0.69</td>
</tr>
<tr>
<td>10 cm</td>
<td>G</td>
<td>30</td>
<td>121</td>
<td>54</td>
</tr>
<tr>
<td>灰</td>
<td>B R</td>
<td>9</td>
<td>90</td>
<td>49</td>
</tr>
<tr>
<td>地</td>
<td>B R</td>
<td>102</td>
<td>53</td>
<td>0.58</td>
</tr>
<tr>
<td>色</td>
<td>A P</td>
<td>12</td>
<td>80</td>
<td>47</td>
</tr>
<tr>
<td>低</td>
<td>B R</td>
<td>8</td>
<td>90</td>
<td>51</td>
</tr>
<tr>
<td>地</td>
<td>B R</td>
<td>101</td>
<td>52</td>
<td>0.56</td>
</tr>
<tr>
<td>土</td>
<td>10 A P</td>
<td>12</td>
<td>71</td>
<td>43</td>
</tr>
<tr>
<td>年</td>
<td>B R</td>
<td>8</td>
<td>86</td>
<td>47</td>
</tr>
<tr>
<td>畑</td>
<td>9</td>
<td>106</td>
<td>53</td>
<td>0.71</td>
</tr>
</tbody>
</table>

行う場合を対象としている。

これらは、Ⅱ、Ⅲ群土壌とはほとんど、Ⅰ群土壌でも下層土に疎層をもつ場合には吸水力が一般化し、基盤凍結などで土壌が隆起され圧密した場合にも排水が行われるようになった。また、この基準では台地土壌を一般化する土壌で、下層土の透水係数10−5cm/sec以下の被透水性土壌あるいは密度25mm以上の硬盤層をもつ場合には心土破壊を必要とするとしている。

2. 転換畑土壌の水分特性と下層土からの水分供給

九州地域では排水対策を行えばグライ土でも転換1年目で一定の排水性が示され、作土の物理特性はかなり良好になる。しかし、下層土の物理特性は不良で、下層土への根の伸長をはかるための物理化学改良が必要である。3)

転換畑土壌の水分特性は水田土壌の親水性の特性を水田耕作の状況に変化過程にあると考えることができる。有明海沿岸の沖積平野を代表する粒状グライ土および細粒灰色低地土について転換10年間における有効水分と乾燥限界の変化を第2表に示した。細粒グライ土は干拓後25年経過した佐賀県白石町有明干拓地の転換1年目の大豆畑で、また細粒灰色低地土は干拓後20年経過した佐賀県春日部町平和町の約100haの集団作業大豆畑で調査2)したものである。

有効水分は下層土よりも表層土へと土壌の乾燥に伴い顕著に小さくなっている。作土の有効水分はグライ土では13～17%で、灰色低地土では11～14%と小さくなる、転換1～10年間の変化はみられなかった。

液性限界、乾燥限界も水田転換によっていちじるしく変化する。乾燥限界とpH 1.7水分との比は乾燥限界の指標とされているが、下層土よりも表層土で大きく、作土ではグライ土で7.0、灰色低地土で0.8以上となった。

以上のことから、暖地の二毛作水田の作土はもともと乾燥環境をもつことから、畑転換によって容易に乾燥土壌に変化するが、下層土、とくに農床土は転換後も親水的性質を残すことは、自然に乾燥土壌が排水性に富む、排水機を増設する必要がある。

転換畑では乾燥土壌が浸透を抑制して過湿になる反面、晴天が継続すると地下水位が高いにもかかわらず過干することも多い。これは下層土からの水分供給が制限されるためと考えられ、これを裏付けるための実験結果3)を示し第2図のとおりである。この実験では畑土壌下層土（CL）の5mm節土を用い、100mmの金属円筒にpF2.7に調整した供試土を圧縮度を変えて充填し、仮比重の異なる土層を作成した。この土層の水分を一定条件にし、これに接続した同型円筒の表層土からの水分供給速度を調べ、さらに大豆、エンパク協会栽培中の同型円筒を接続した場合の生育への影響を実験した。

下層土からの水分供給の影響、作物の生育や水分含量によっても明らかに示されている。下層土のpF1.5条件下の大豆の生育は仮比重1.10のとき最も良好であった。この場合、1週間の実験終了時には全区がしぼれ状態となり、生育の著らしさはしぼれ程度が高くなり、乾燥が多かった。

下層土のpF1.5条件で、エンパク地上部の水分含量は下層土の仮比重1.1～1.2で最大を示し、これ以上に仮比重が大きくなるに伴い減少した。すなわち、下層土の仮比重の増大によって水分供給速度が小さくなり、表層土の水分低下によって作物の生育が悪くなった。

このように、pF1.5条件下でも下層土からの表層土への水分供給量は最大2mm/日であり、このときの仮比重は別の実験でのみ観察された。
転換作物の土壌水分管理

転換作物の安定栽培というためには、機械作業に適する土壌条件と作物の生育に適した土壌条件が要求される。このためには、総合的に排水性と保水性を調和させる土壌水分管理が必要である。下段土の透水性の改良と土壌条件に応じて行うことによっては既にのべたが、保水性向上のための根域の拡大のためには地下水位の低下と排水対策によって下段土に構造性を与えることが必要となる。根の伸長の適正な土壌の物理性1）（粗孔率15％以上、透水係数10⁻⁴ cm/sec以上、中密度20mm以下）に改しすることは容易なことではなく、水田との輪換の場合、満水の際には丁寧な代かきを必要とするようになる。したがって、転換作物の生産安定のためには主として根域である作土を深くすることができなくて重要なことである。

一方、転換作物は水田に比べて有機物の消費が大きいことから、有機物の補給によって主たる根域の物理性を良好に維持することが必要である。

有機物の運用による土壌物理性の改良効果を第3表に示した。これによると有機物の被用に比べて有機物の量が著しく、土壌のコンシスタンシーの変化が明らかであり、抗則抵抗も小さく、土壌の耕運適性、作業作業性が顕著に改善されている。また、最大容水量の増大など保水性の直接改良効果も明らかである。

有機物の運用土壌では、第3図のように、改し後迅速に排水が可能である。したがって、有機物の運用による土壌の物理性の改良土壌では降雨後の適時の機械作業が可能である。根域も良好な通気性に影響されやすい。

以上、ここでは基本的な転換作物の土壌水分管理対策として、①九州地域の水田の排水促進のための土壌診断基準に基づく排水改良、②下段土からの水分供給が期待されないことから、根域拡大のための土壌改良、③有機物の運用による土壌の排水性と保水性を調和させる改良のための形状をした。転換作物の土壌の地保維持のためには水田の高水位地保維持機能を活用できる田中輪替体系の確立も期待したい。

なお、以下のような基本的な土壌管理でも干砂の時のように水分が不足する場合には、水田のかんがい系を利用し、排水かんがいを兼用する地下水かんがいを行うことが必要である。

引用文献
1）古賀 沢沢：こ国農試報，25，1～232（1972）
2）古賀 沢沢：九州農試，45，59（1983）
3）九州地域技術連絡会議：九州地域における水田の排水促進のための土壌診断基準1～8，九州農試，1980
4）中野晋三：転換作物研究成果集報1，54～60，1983

第3表 有機物の运用による土壌物理性の改良効果（適用12年後）

<table>
<thead>
<tr>
<th>試験区</th>
<th>有機物C（%）</th>
<th>透水性（kg/㎡）</th>
<th>最大容水量（%）</th>
<th>透水係数</th>
<th>透水係数</th>
<th>透水係数</th>
<th>切断排水（cm/d）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 無施用</td>
<td>1.62</td>
<td>7.02</td>
<td>60.1</td>
<td>59.2</td>
<td>31.6</td>
<td>27.7</td>
<td>13.0</td>
</tr>
<tr>
<td>2. 稲わら1t/ha連用</td>
<td>2.55</td>
<td>0.92</td>
<td>68.9</td>
<td>62.8</td>
<td>36.4</td>
<td>26.4</td>
<td>10.4</td>
</tr>
<tr>
<td>3. 堆肥2t/ha連用</td>
<td>2.91</td>
<td>0.89</td>
<td>75.4</td>
<td>76.3</td>
<td>42.7</td>
<td>33.6</td>
<td>10.3</td>
</tr>
<tr>
<td>4. イタリアンライグラス栽培</td>
<td>2.53</td>
<td>0.92</td>
<td>76.4</td>
<td>68.5</td>
<td>36.4</td>
<td>32.1</td>
<td>10.6</td>
</tr>
</tbody>
</table>

注）1. 試験農場：九州農試試田圃，稲わらベッド有機土圏整化（LIC）