ミナミキヨロアザミウマ個体群の生態学的研究
5. 露地キュウリにおける増殖

河合 章（野菜試験場久留米支場）


施設栽培のキュウリにおいては、ミナミキヨロアザミウマは指数関数的に増加し、成虫は活発に分散して展開直後の成果に集中することが報告されている。実験栽培においては降雨等の増殖制御因の働きが強いものと考えられるが、露地における本種の増殖に関する研究はない。そこで、露地栽培のキュウリにミナミキヨロアザミウマを放牧し、その後の増殖および分布様式を調査したので報告する。

本文に入るに先立ち、本稿の御校閲をいただいた野菜試験場久留米支場被害研究室長原敏夫室長に謝意を表する。

1. 試験方法

野菜試験場久留米支場（福岡県久留米市御井町）内の棚場に、1983年5月18日にキュウリ（品種“さくらのちどり”）4月20日接種）を、植え込み72cmの1条植え、41株定植した。供試株は1本立ててとし、主枝は25節、子枝は2節で摘ん出し、倍枝は除去了。

1981年2月および8月に福岡県内で採集し、野菜試験場久留米支場において繁殖体をしたミナミキヨロアザミウマを、定植9日後の5月27日に放牧した。放牧は、キュウリの寄生果を各株の株元に静置する方法で行った。なお放牧数は制御しなかった。

寄生果数の調査は放牧7日後より開始し、原則として7日間隔で行った。6月10日までは全株について、それ以後は1株おきに、すべての果について成・幼虫個数を数えた。

2. 結果

ミナミキヨロアザミウマの株当たり成・幼虫数の経時的変化および調査期間中の降水量を第1図に示した。放牧7日後の株当たり成虫数は20.5±3.8頭、幼虫数は15.5±15.6頭であった。その後、成虫数は急激に増加し、放牧14日後で149.7頭、35日後に440.7頭に達した。その後、本種の加害による葉の悪化により、個体数は急速に減少した。放牧からピーク時までの個体数の変化は、1nNt = 0.098t + 3.04（t：放牧後日数、Nt：t日後の個体数）の直線式に良く適合した（第2図）。すなわち、放牧から約1か月間の成虫の株当たり個体数の増加過程は、指数関数的成長式（t：時間）、項Nt = No・e^r（r：自然対数の底）に、時間増加率、No：初期群体数）によって表すことができ、1日当たりの群体増加率は0.098となった。

幼虫個体数も成虫個体数と同様に、放牧後指数関数的に増加し、放牧27日後に株当たり1391.3頭に達した。その後しばらくは株当たり1000頭前後に保ったが、加害による葉の加害により、個体数は急速に減少した。
の悪化の進行に伴って急速に減少した。

株内での垂直分布の経時的変化を第3図に示した。各株の主枝のデータを用いて、各枝葉上に個体数の主枝上の全個体数に対する割合を示した。どの調査日においても葉位別分布は、成・幼虫ともほぼ1山型であった。成虫の多い葉位は、摘莖前ではキュウリの生育に従っている上位へ移っていたが、葉剣からの位置は10番月間後の1葉位ではほぼ一定であり、展開直前の成葉であった。摘莖後では、主枝では前観察付近に最も多く、側枝の展開直後の成葉にも多かった。幼虫の多い葉位も生育に従い上位へ移ったが、葉剣からは1番月前後、1葉位ではほぼ一定であつた。また、幼虫の多い葉位は前回調査時の成虫の多い葉位と良く一致していた。

分布構造を分析するために、各調査日ごとの平均密度（転）や、平均こみあい度（転）を単位で求め、Iwaoのm-n回帰分析法により示した（第4図、第5図）。葉単位でみた場合、基本集合度係数（転）は成虫で1.75、幼虫で2.27であり、密度集中度係数（転）は成虫で2.08、幼虫で2.27であった。成虫ではaをもとに個体を単位として、個体ではaをよりやや大きく、極めて小さなコリーネーを単位として、成虫・幼虫ともβは1.01大きさ集中分布をしていることが示された。単位葉でみた場合、βは成虫で1.16、幼虫で1.14となる、どちらも10尾近く、株間分布は成・幼虫ともほぼランダムと考えられた。

第4図、葉単位でみたミナキキロアザミウマの平均密度と平均こみあい度の関係
（破線はポアッソーンライン）

第5図、葉単位でみたミナキキロアザミウマの平均密度と平均こみあい度の関係
（破線はポアッソーンライン）

3. 考察

施設栽培のキュウリの生育前期において、ミナキキロアザミウマは指数関数的に増加することが報告されている。2）畑栽培のキュウリの生育前期においても同様に指数関数的に増加することが示された。一般に畑栽培においては、植物の生育に伴って寄生場所や数が十分に与えられても、風雨等の物理的増殖制限要素の働きも大きく、天敵等の生物的増殖制限要素の働きも大きいものと考えられている。本試験においては、放牧後約2週間は降雨がほとんどなかったが、その後6月20日に111.7mmのまとまった降雨があり、191日間で271.6mmの降雨量であった。しかしながら、寄生により葉の悪化するまでは指数関数的な増殖を続けており、この程度の降雨は本種の密度上昇に大きな影響を及ぼさなかったものと考えられる。また、調査期間中の観察では本種の有効な天敵は認められなかった。

キュウリにおける成虫の日当たり瞬間増加率（転）について本試験では0.08という値がえられた。また、河合2 の9月から11月の無加温ビニールハウスでの調査では0.05、西野ら3の12月から4月の加温ビニールハウスでの調査データから計算した値は0.07であり、本試験でえられた値にはこれらより大きくなった。指数関数的増加のみられた期間の平均気温は本試験では22.8℃であるのに対し、河合2では18.0℃、西野2では20.4℃であった。本試験での高い瞬間増加率は施設栽培の違いや個々の温度によるものと考えられ、高温時の急速な個体群の増殖がうかがわれる。

葉位別分布は、成虫が展開直後の成葉付近をピークとし1山型を示し、幼虫の分布は7日前の成葉の分布と近似しており、施設内のキュウリにおける結果2）と一致した。この分布は、成虫が若い葉に集中して、そこで産卵した結果と考えられる。

成虫の分布は個体を単位とし、葉当たりでは集中、株当たりではランダムであることも、施設キュウリにおける結果2）と同様であり、α・βの値はほぼ等しかった。幼虫の分布は極めて小さなコリーネーを単位とし、葉当たりでは集中、株当たりではランダムであり、施設キュウリの場合2）の小さなコリーネーを単位とし、葉当たりでは集中、株当たりでも低い集中分布であるのとやや異なった。本試験でえられたα・βの値は施設での結果2）に比べ小さく、施設に比べて規模での集中傾向が弱かった。施設ではランダムに分布した成虫が同一株にとっては一定的に生産するのに対し、施設では風等の影響により、成虫の移動が多いことにようと考えられた。

引用文献