有機物連用水田のロータリー耕燃料消費

古賀 汐・*小野信一（福岡県農業試験場，*九州農業試験場）

Hiroshi KOGA and Shinichi ONO: Effect of Long Term Application of Organic Residues on the Oil Consumption at the Rotary Tillage

有機物の連用によって作土が深くなり、土壌物理性が改良されることを報告した。本報では有機物の連用による土壌の物理性、コンシンステンシー、砂土率などの変化とロータリー耕燃料消費との関係を明らかにした。

1. 有機物連用試験圃場

調査圃場は九州農業試験場（筑後）で1963年より22年間と1978年より7年間有機物を連用している圃場で、土壌は細粒低地土、土性はLICである。

有機物連用区として、稲わら区は10 a 当たり 1 t を秋施用、稲わら堆肥区は10 a 当たり 2 t を水稲作付前に施用し、イタリア産ライグラス栽培（IR）区とその最終栽培地上部を緑肥としてすき込む区を設けた。IR 区以外は水稲単作区で、各区には無機素が設置されている。

2. ロータリー耕燃料消費と土壌物理性的測定法

ロータリー耕用を目的に不遠332トラクターを用いて行った。燃料消費は登載型燃料消費計（精密流量計、東京航空計器 KK PS-106 T-D）の読み、速度計の読み、耕起の深さcm、耕起の幅cmを用いて計算した。すなわち、完全燃焼率基準燃焼率としてロータリーの空転させながらトラクターを空走させた時の燃料を差し引いた数値を耕起燃料とした。これは耕すことのみに消費した燃料と考えてよい。

土壌物理性、コンシンステンシーを常法で、圧縮抵抗を自然採土100ml乾燥の薄層圧加用昇圧機による抵抗として測定し、さらに耕起時の5 cm以下土壌への砂土率を求め、これらとロータリー耕燃料消費との関係を調べた。

3. 研究結果および考察

耕起燃料と土壌の容積率、圧縮抵抗との関係を第1図に、土壌有機物含量、砂土率との関係を第2図に示した。有機物連用区の T-C は無施用区の1.7～1.9%に対しで2.1～2.8%と土壌有機物を著しく集積し、土壌有機物含量は容積率、圧縮抵抗と負、コンシンステンシーと正の相関にあり、耕起燃料の大きい区ほど容積率や圧縮抵抗が大きく、砂土率が小で、流性限界や pF 1.8含水比が小さいなど有機物連用の耕起適性への影響はきわめて著しいことが実証された。すなわち、有機物の連用によって土壌物理性が改良され、燃料消費量は最大30％節減された。

土壌のような細粒灰色低地土では有機物無施用の場合、T-C は1.7～2.0%の最低水準で低減して平衡状態になり、土壌肥沃度を維持するためにはこの水準以上の土壌有機物を必要とすることを報告した。本研究では有機物連用区の T-C の最小値は稲わら連用無施用区の2.1%で、この水準において土壌物理性や耕起適性はおむね良好に維持されている。したがって、土壌のような細粒灰色低地土ではほぼ2%の土壌有機物水準は土壌肥沃度と物理性の両面から好適な下限の水準と認めることができる。

謝辞：本研究のトラクター試験は九州農業試験場農地利用部機械作業研究室と共同で実施した。稲崎浩之主任研究官、尋木精一技官の協力に心から感謝する。

引用文献

1) 古賀 汐・小野信一：日本土肥講演要旨集、31集、6、1985。
2) 古賀 汐・藤原重義・小野信一：農林水産技術会議事務局、研究成果166、70－72、1985。