粘質偏斜細における有機物施用と養分収支（ライシメーター試験）
第2報 初年度の窒素収支について
藤山正史・矢野文夫（長崎県総合農林試験場）

Masafumi Fujiyama and Fumio Yano: Effect of Organic Matters on Nutrient Balance in Clayey Upland Soil. (Lysimeter Experiment)
2. Nitrogen Balance in the First Year

養分供給量、特に窒素について一定の条件下で、粘質偏斜細土壌に有機物を施用した場合の作物生産、化学肥料の節減効果、環境影響、養分収支に与える影響等についてライシメーター施設を用い、1984年から調査を開始した。前報（1）では、試験開始時の条件について報告したが、今回は、初年度の窒素収支について報告する。

1. 試験方法
供給土壌として安山岩を母材とする細粒赤色土（新谷統）を深さ1mに充てんし、1984年夏に有機物（トウモロコシ、化学肥料の全量を一定に供給した）栽培し、ライシメーターの作付体系で本試験を開始した。

供試有機物は、乾燥粉末、もみがら粗葉、下水汚泥、し尿汚泥の4種で、区の構成は第1表のとおりである。

有機物および化学肥料施用量は、土壌中の各地域物の年間分解挙率を、乾燥粉末、下水汚泥、し尿汚泥で10、もみがら粗葉で3と推定し、次式を用い、5年後に乾燥粉末から供給される窒素量が、化学肥料単用区の窒素量の60％になる様に、毎年一定のT-N施用量を算出した。次にこの式を用い、年ごとの窒素無機化量を推定し、不取分を硫酸で補うこととした。

\[\frac{N}{N-1+r} \] は、窒素年間無機化量

\(N \): 希釈のT-N値（推定）、\(r \): 分解率、\(n \): 連用年数

したがって、有機物、硫酸からの窒素施用量は、第1表のとおりとなった。

第1表 1年目窒素施用量の計算方法（kg/10a）

<table>
<thead>
<tr>
<th>区域</th>
<th>名称</th>
<th>合計</th>
<th>(r)</th>
<th>(N^*)</th>
<th>(y^*)</th>
<th>硫酸</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>化学肥料単用区</td>
<td>28.0</td>
<td>0</td>
<td>0</td>
<td>28.0</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>乾燥粗葉区</td>
<td>28.0</td>
<td>0.6</td>
<td>17.0</td>
<td>10.2</td>
<td>17.8</td>
</tr>
<tr>
<td>3.</td>
<td>もみがら粗葉区</td>
<td>28.0</td>
<td>0.3</td>
<td>20.2</td>
<td>6.1</td>
<td>21.9</td>
</tr>
<tr>
<td>4.</td>
<td>下水汚泥区</td>
<td>28.0</td>
<td>0.6</td>
<td>17.0</td>
<td>10.2</td>
<td>17.8</td>
</tr>
<tr>
<td>5.</td>
<td>し尿汚泥区</td>
<td>28.0</td>
<td>0.6</td>
<td>17.0</td>
<td>10.2</td>
<td>17.8</td>
</tr>
<tr>
<td>6.</td>
<td>し尿汚泥単用区</td>
<td>28.0</td>
<td>0.6</td>
<td>46.7</td>
<td>28.0</td>
<td>0</td>
</tr>
</tbody>
</table>

注）* 5年後には希釈から供給される窒素量が化学肥料単用区の窒素量の10％に過ぎないためには\(N^* = 28.0 \times 60/100 \)

** 1年目では\(y^* = N^* (1 - r \))

2. 結果および考察
1）収量・1年目の果樹重、塊塩重は、ともに乾燥粗葉区、し尿汚泥単用区で高く、化学肥料単用区（果樹重62.6kg/a、塩塩重160.0kg/a）に対する指数で130％以上であった。ところが、春作の果葉重は、化学肥料単用区の192.7kg/aに対して乾燥粗葉区は80％程度であった。

2）窒素収支量 収支量はもと同様推定となり、春作と合わせると、乾燥粗葉区、下水汚泥区が、他区と比較して5％程度低かった。

3）窒素溶出量 汚泥量に比例して増減する傾向が見られたが、各区とも著しい差はなかった。

以上の結果から、初年度の窒素収支を算出したところ、第2表のとおりで、農業による収穫量の多い区ほど収支上の残量は少なかった。

第2表 1年目窒素の収支収支（kg/10a）

<table>
<thead>
<tr>
<th>区域</th>
<th>化学肥料単用区</th>
<th>28.0</th>
<th>17.8</th>
<th>22.0</th>
<th>17.8</th>
<th>17.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>乾燥粗葉区</td>
<td>0</td>
<td>10.2</td>
<td>6.0</td>
<td>10.2</td>
<td>28.0</td>
</tr>
<tr>
<td>3.</td>
<td>もみがら粗葉区</td>
<td>28.0</td>
<td>28.0</td>
<td>28.0</td>
<td>28.0</td>
<td>28.0</td>
</tr>
<tr>
<td>4.</td>
<td>下水汚泥区</td>
<td>21.5</td>
<td>19.9</td>
<td>21.1</td>
<td>20.0</td>
<td>21.1</td>
</tr>
<tr>
<td>5.</td>
<td>し尿汚泥区</td>
<td>3.9</td>
<td>4.1</td>
<td>4.0</td>
<td>2.9</td>
<td>4.3</td>
</tr>
<tr>
<td>6.</td>
<td>し尿汚泥単用区</td>
<td>2.6</td>
<td>4.1</td>
<td>2.9</td>
<td>4.0</td>
<td>2.2</td>
</tr>
</tbody>
</table>

この中で、化学肥料単用区の無機態窒素を100％と仮定して各処理区の収支上の残量と化学肥料単用区との差を、当初推定していた窒素の年間無機化量から差し引き、前表に示した数値に対してはめて分解率を算出した結果を第3表に示した。その分解率は、乾燥粗葉51.0、下水汚泥、し尿汚泥0.52で、当初の推定値0.6を下回り、もみがら粗葉が0.28、し尿汚泥単用が0.61で、推定値と同程度の値となった。

第3表 分解率の計算（1年目、kg/10a）

<table>
<thead>
<tr>
<th>区域</th>
<th>化学肥料単用区</th>
<th>10.2</th>
<th>6.0</th>
<th>10.2</th>
<th>10.2</th>
<th>28.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>乾燥粗葉区</td>
<td>2.6</td>
<td>4.1</td>
<td>2.9</td>
<td>4.0</td>
<td>2.2</td>
</tr>
<tr>
<td>5.</td>
<td>し尿汚泥区</td>
<td>0</td>
<td>8.7</td>
<td>5.7</td>
<td>8.8</td>
<td>28.4</td>
</tr>
<tr>
<td>6.</td>
<td>し尿汚泥単用区</td>
<td>1.00</td>
<td>0.51</td>
<td>0.28</td>
<td>0.52</td>
<td>0.61</td>
</tr>
</tbody>
</table>

引用文献
1）藤山正史・矢野文夫: 昭和61年度日本土壤施肥学会九州支部春季例会講演要旨集