堆肥の多量施用が果実の収量と品質にどのように影響しているかを明らかにするため堆肥の施用量試験を行った。この試験の中で、栽培面積に施用される堆肥の量および切口からの温湿液を用いて生育中の栄養状態や果実の品質の相関が明らかかどうかについて検討した。

1. 試験の方法
供試品種は日本国産のアムスメロン。供試台木はライオン冬瓜（南都）、アトム冬瓜（沖縄）、白根（対照）の3種。播種：昭和60年2月15日、定植：3月18日、栽植距離：2m×40cm（2木立仕立）。

試験区は堆肥の施用量が0、10、40、60、80、100tの6区に分けた。

5月8日、5月21日、6月6日の3回。温湿液は5月8日と6月6日の2回、まどづるを切削した切口からの自然温湿液を採取した。

まどづるは葉と果実に分けた無機成分を分析し、同時に土壤中の無機成分含量を調査した。

2. 試験の結果
1）自根の堆肥6t区を除き、各台木とも堆肥の増施により果実重は増加する傾向が認められた。

2）自根では堆肥の増施に伴い糖含量が増加した。特に、ショ糖の増加が著しかった。ライオンとアトムでは判然としなかった（第1図）。

3）土壌中の無機成分は堆肥8t区では、全生育期間を通じて高く推移し、20mg／soil100g以上であった。

4）整形により切削されるまどづるの葉と果実の果実含有率と土壌の無機成分との関係には、有意の相関が認められた（第2図）。また、まどづる葉と果実の間に有意の正の相関がみられた。このようにまどづる果実の品質は土壌中の果実含有率と関連が深かった。

5）まどづる果実の無機成分含有率とまどづる切口からの湿温液中の成分濃度との関係には、果実、リン、カリ、カリについては有意な正の相関が認められた（第1表）。このことから湿温液中のこれら成分濃度から果実への果実中の成分含有率の推定も可能ではないと考えられる。また、果実については湿温液中の成分濃度から土壌中の果実の推定も可能になると考える。

6）各生育時期のまどづる果実中の無機成分含有率と果実重および糖度との関連を、定植後51日目以降の3回について検討してみると葉のカリ含有率が、果実重と正の相関、糖度は負の相関が認められる時期があった（第2表）。

（第2表）したがって、さらにデータを集積することにより、これらの時期のまどづる果実中のカリ含有率を、果実の品質推定の指標として使うことができると考えられる。

7）自根では堆肥の増施に伴い果実中の遊離アミノ酸含量は増加した。ライオンとアトムでは6t施用では増加したが8t区では減少した。

果実中の遊離アミノ酸の組成は、ライオンとアトムでは類似していたが、自根は多少異なっており、他に見られる糖度が高くなり、アスパラギン酸とレシンギンが多くかった。いずれの台木も堆肥の施用量とともに果実アミノ酸含量は増加した。果実中の遊離アミノ酸含量と湿温液中のアミノ酸含量との間には関連が認められなかった。

九州農業研究（九州農）第49号 昭和62年8月

アムスメロンの生産安定と品質向上
第3報 まどづるおよび湿温液を利用した生育および果実の品質診断
小林一成 小林雅昭 井手 勉 岡野健太（義経県総合農林試験場）

Azumio TOYOMI, Masaaki KOBAYASHI, Tsutomu IDE, and Kunikata OKANO: Productivity Stabilization and Quality Improvement of Amo Melon.

第3诊断の果物成長と栄養成分の品質向上

栄養成分の果物成長と果物の品質向上

テーブル1 まどづる果実の無機成分含有率と湿温液中の成分濃度との関係

<table>
<thead>
<tr>
<th>T - N</th>
<th>P<sub>2</sub>O<sub>5</sub></th>
<th>K<sub>2</sub>O</th>
<th>CaO</th>
</tr>
</thead>
<tbody>
<tr>
<td>まどづるの葉</td>
<td>0.587*</td>
<td>0.706**</td>
<td>0.654**</td>
</tr>
<tr>
<td>まどづるの果実</td>
<td>0.716**</td>
<td>0.604**</td>
<td>0.518*</td>
</tr>
</tbody>
</table>

注：* = 0.17 Y: まどづる果実の無機成分含有率 Y: 湿温液中の成分濃度

カリについては有意な正の相関が認められた（第1表）。このことから湿温液中のこれら成分濃度から果実成長の果実の中の成分含有率の推定も可能ではないと考えられる。また、果実については湿温液中の成分濃度から土壌中の果実の推定も可能になると考える。

第2表 まどづるおよび果実中の無機成分含有率と果実重および糖度との関係

<table>
<thead>
<tr>
<th>調査時期</th>
<th>定植後日数</th>
<th>果実重</th>
<th>糖度</th>
</tr>
</thead>
<tbody>
<tr>
<td>5月8日</td>
<td>5月21日</td>
<td>6月6日</td>
<td></td>
</tr>
<tr>
<td>果実</td>
<td>51t</td>
<td>64t</td>
<td>80t</td>
</tr>
<tr>
<td>糖</td>
<td>0.451</td>
<td>0.509</td>
<td>0.349</td>
</tr>
<tr>
<td>糖度</td>
<td>0.749</td>
<td>0.687</td>
<td>0.726</td>
</tr>
</tbody>
</table>

(第2表) したがって、さらにデータを集積することにより、これらの時期のまどづる果実中のカリ含有率を、果実の品質推定の指標として使うことができると考えられる。

7）自根では堆肥の増施に伴い果実中の遊離アミノ酸含量は増加した。ライオンとアトムでは6t施用では増加したが8t区では減少した。

果実中の遊離アミノ酸の組成は、ライオンとアトムでは類似していたが、自根は多少異なっており、他に見られる糖度が高くなり、アスパラギン酸とレシンギンが多くかった。いずれの台木も堆肥の施用量とともに果実アミノ酸含量は増加した。果実中の遊離アミノ酸含量と湿温液中のアミノ酸含量との間には関連が認められなかった。