黒糖焼酎廃液の耕地還元技術の確立
第1報 廃液の窒素無機化速度及びサトウキビの初期生育
古江広治・水田茂穂・林 政人（鹿児島県農業試験場徳之島支場）
Koji Furui, Shigeo Nagata and Masato Hayashi:
Utilization of Spirits (Kokuto Shoto) Waste for Fertilizer and Soil Amendment in the Field
1. Nitrogen Mineralization Rate of spirits Waste and Initial Growth of Sugarcane

黒糖焼酎廃液の耕地還元技術を確立するために、廃液の窒素無機化速度の解析を試みるとともに、サトウキビの初期生育に対する効果について検討した。

1. 試験方法
1）試験実施場所 鹿児島県徳之島支場内圃場
2）供試土壌 暗赤色土造成相（硫球石灰岩風化土）
3）供試品種 NCo 310
4）耕種要項 廃液散布 1990年3月20日
5）栽培密度 120×25 cm
6）廃液のpH 3.8, T - N 0.16%
7）試験区の構成 标肥区, 10t (10t 当たり廃液10t 用), 20t区, 40t区の4区で、標肥区の窒素施用量は0.9 Kg/a, 廃液施用量は無窒素とした。また、各区から廃液無施用区に採取した土壌を別途生土のまま3段階の温度（20, 25, 30℃）で、圃場容量水を保って約2か月間培養した。ほぼ月間培養された結果について速度論的方法により解析し、無機化モデル式を求めた。

2. 結果及び考察
1）窒素無機化モデル式
廃液10t区の窒素供給推定式は以下の式で示された。
\[\text{N}=10.6 \times \left(1-e^{-0.0221t}\right) + 0.017 \]
\[\text{N}=10\text{t 当たりの窒素供給量の推定値（耕土20cm）} \]
\[\text{t : 20℃変換日数} \]
この結果と廃液無施用区土壌の培養結果から、廃液施用10t当たり8～10 Kg程度の無機態窒素を供給し、易分解性窒素を30日で50%，70日で90%無機化する分解性の高い資材と推定された（第1図）。また、10t区のサトウキビの収穫は標肥区（9 KgN/10a）と同程度で推移しているからこの推定は実際と近似していると考えられた。

2）発芽率
廃液はpHが3.8と低いためにサトウキビの発芽に悪影響が懸念されたが、むしろ施用量を増すに従って発芽率は高くなった（データ略）。

3）土壌の層位別無機態窒素含量及び可溶態窒素含量
標肥区と40t区の層位別無機態窒素含量の比較を第2図に示した。標肥区では施肥層である0～10 cm層には無機態窒素は少なかったが存在しており、30～40 cm層、40～50 cm層に多く集積していた。それに対して40t区では0～10 cm層に最も多く、無機態窒素が存在し、40～50 cm層まで層位が深くなるほど無機態窒素含量は少なくなっ

[図1] 推定土壌窒素供給量

[図2] 層位別無機態窒素含量

[図3] 層位別可溶態窒素含量（5/31）