現在、宮崎県のキカン生産は全国シェアの約7割を占め、県の果树に於て有望な品目となっている。しかし、その果実は種子が多く、キカンの無核種が望まれているが、多胚のため交雑育種が困難である。そのため、細胞融合等による無核化を研究中である。今回、キカン珠心カルスからのプロトプラスト単離並びに植物体再生に成功したので報告する。

1．材料及び方法

1）キカン珠心カルスからのプロトプラスト単離のための酵素処理は、マゼロサイムR10 0.2、0.3％、セルラーゼオノゾカRS 0.2、0.3％、ドリセラーゼ 0.1、0.2％の組合せについて検討した。この酵素を1/2MT培地、0.6Mマンノトールに添加し、25℃、暗条件で16時間処理した。処理法として、静置法及び旋回振とう法（50rpm）の検討を行った。

2）プロトプラストの培養密度を1.0×10^5から0.625×10^5まで2倍希釈を行い、密度の検討を行った。培養条件は、1/2MT培地にヒアルロン酸0.15M、グルコース0.45 M添加して、ジュラニンG3.0％に封入後、25℃、暗培養、3週間、その後25℃、明培養した。また、コロニー移植培地として、糖漬にショ糖0.15M、ラクトース0.1、0.2 Mを各自添加し、効果を観察した。

3）MT培地に麦芽抽出物500mg/l、ラクトース0.1 M添加した、誘導した胚様体を用いて、NAA0.1mg/l、アデニン40μg/l、GA 1.0、5.0μg/l、BA 0.1μg/lをそれぞれ組合せた植物育成用培地の検討を行った。

2．結果及び考察

1）プロトプラストの単離には、静置法より振とう法が勝った。また、振とう法のドリセラーゼ濃度が0.1％では、細胞壁が残っている細胞は15％存在し、密度0.2％では、細胞壁残存細胞は0％となるものの、プロトプラスト生存率が38％まで減少することから0.1～0.2％の間に適正濃度が存在すると考えられた。マゼロサイムR10、セルラーゼオノゾカRS両酵素とも、0.3％で効果が高かった。

2）初期の生育コロニー数は、プロトプラストの培養密度が高まるにつれて多くなった。移植後の生育コロニー数は、いずれの初期プロトプラスト密度においてもラクトース0.2M添加で最も高かった。また、生育コロニー数もプロトプラスト密度5×10^4/mlで最も高かったが、plating efficiencyによる、効率の良い培養密度は2.5×10^4/mlであることが明らかとなった。

3）胚様体からの植物体誘導では、本業まで発生した個体は、NAA0.1mg/l单独添加で20個体中8個体と最も多く、本業発生の初期培地では、GA1.0mg/lにNAA及びアデニンを添加した培地で20個体中10個体と最も多く、生育が進むにつれ、枯死する個体が増加し、根の発生も上記培地に比べ劣った。そのため、今後GA添加培地から無添加培地への移植時期等についての検討が必要であると考えられた。

現在、再生植物体をカラチに接ぎ木して、育成している。今後、プロトプラスト由来植物体の変異について調査を行う予定である。

第1表 コロニー移植培地での生育コロニー数

<table>
<thead>
<tr>
<th>培地添加濃度</th>
<th>初期プロトプラスト密度</th>
<th>生育コロニー数</th>
<th>P.B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M M</td>
<td>1×10^4</td>
<td>46</td>
<td>0.046</td>
</tr>
<tr>
<td>0.15 M</td>
<td>5×10^4</td>
<td>486</td>
<td>0.972</td>
</tr>
<tr>
<td>2.5×10^4</td>
<td>429</td>
<td>1.716</td>
<td></td>
</tr>
<tr>
<td>0.1 M</td>
<td>1×10^4</td>
<td>45</td>
<td>0.045</td>
</tr>
<tr>
<td>5×10^4</td>
<td>512</td>
<td>1.024</td>
<td></td>
</tr>
<tr>
<td>2.5×10^4</td>
<td>174</td>
<td>0.696</td>
<td></td>
</tr>
<tr>
<td>0.2 M</td>
<td>1×10^4</td>
<td>93</td>
<td>0.093</td>
</tr>
<tr>
<td>5×10^4</td>
<td>614</td>
<td>1.238</td>
<td></td>
</tr>
<tr>
<td>2.5×10^4</td>
<td>480</td>
<td>1.920</td>
<td></td>
</tr>
</tbody>
</table>

注) a)培養度1.0当り
b)plating efficiency=生育コロニー数／総プロトプラスト数×100